Nebula Public Library

The knowledge bank of ESA’s R&D programmes

High efficiency 150 K Joule-Thomson cryocooler with an ejector

Programme
TDE
Programme Reference
TRP-NP-4000114493
Prime Contractor
UNIVERSITY OF TWENTE
Start Date
End Date
Status
Closed
Country
Netherlands
Objectives

There is an increasing need for ever smaller pulse-tube coolers. These coolers have the characteristics necessary for space applications because the absence of moving parts in the cold finger makes them extremely reliable and any induced vibrations are typically smaller and easier to control.

But these types of cooler are less efficient and have a lower power density. Typically, this is resolved by increasing their drive frequency, to reduce amplitudes and displacements, which means that the coolers are smaller

Unfortunately, at higher frequencies the thermal and flow losses increase as well. A new de-risk framework activity has investigated these losses, together with ways to improve optimisation

Three potential cold finger configurations were designed and met performance requirements. The designs chosen will be beneficial for a wide range of coolers, from high-end ‘full space’ coolers to series produced ‘COTS+’ coolers for low-cost missions.

The activity investigated design options for miniaturisation of pulse-tube cold fingers, and simulated and optimised for efficiency before experimentally verifying the predicted performance through breadboard testing.

Description

There is an increasing need for ever smaller pulse-tube coolers. These coolers have the characteristics necessary for space applications because the absence of moving parts in the cold finger makes them extremely reliable and any induced vibrations are typically smaller and easier to control.

But these types of cooler are less efficient and have a lower power density. Typically, this is resolved by increasing their drive frequency, to reduce amplitudes and displacements, which means that the coolers are smaller

Unfortunately, at higher frequencies the thermal and flow losses increase as well. A new de-risk framework activity has investigated these losses, together with ways to improve optimisation

Three potential cold finger configurations were designed and met performance requirements. The designs chosen will be beneficial for a wide range of coolers, from high-end ‘full space’ coolers to series produced ‘COTS+’ coolers for low-cost missions.

The activity investigated design options for miniaturisation of pulse-tube cold fingers, and simulated and optimised for efficiency before experimentally verifying the predicted performance through breadboard testing.

Application Domain
Space Science
Technology Domain
21 - Thermal
Competence Domain
2-Structures, Mechanisms, Materials, Thermal
Initial TRL
TRL N/A
Target TRL
TRL N/A
Public Document