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Activity summary: 
The goal of this project was to develop new techniques for super-resolving Sentinel-2 images 
underpinned with loss functions that embrace specific downstream tasks. In particular, road and 
building segmentation were employed to guide the training of deep networks for single-image and 
multi-image super-resolution. The results clearly indicate the merits of the developed approach in 
the context of real-world Sentinel-2 super-resolution.  
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Super-resolution (SR) is aimed at generating a high-resolution (HR) image from low-resolution (LR) 
observation, being either a single image or multiple images of the same area of interest [11]. 
Recently, a lot of efforts have been invested into making the SR techniques suitable for enhancing 
real-world images that have not been degraded beforehand [2]. One of the ways to achieve that 
goal is to exploit real-world data for training that encompass original LR and HR images of the 
same area that were acquired independently. This is in contrast to employing simulated data for 
training and validation, in which LR images are obtained by downsampling and degrading the 
original images, later treated as an HR reference. However, using real-world data for training 
brings considerable challenges resulting from temporal changes between subsequent acquisitions 
and different characteristics of the imaging sensors [5]. State-of-the-art SR techniques are 
underpinned with deep networks that are commonly trained with loss functions that maximize the 
similarity between the reconstructed and reference images. However, pixel-wise image similarity is 
not sufficiently robust in such settings, leading to worse performance for real-world data than for 
the simulated ones. In this project, we addressed this problem by treating SR as a preprocessing 
step before performing specific image analysis tasks. The selected tasks were exploited as loss 
functions while training single-image SR (SISR) and multi-image (MISR) techniques, resulting in 
task-driven training. The activity was supposed to provide answers to the following questions: 
 

1. How much can the analysis outcome be improved by super-resolving the input images with 
the models trained with a task-specific loss, compared with those trained using an image 
similarity loss? 

2. Is the task-driven loss more robust against the variations resulting from different image 
acquisition conditions than the standard pixel-wise loss functions? 

3. Considering the case when the simulated data are used for training models that are later 
applied for enhancing real-world images: is it better to use the task-driven loss in such 
cases than the pixel-wise loss functions? 

4. What is the performance gap between MISR and SISR techniques trained in the task-
driven manner? 

 
The project was executed according to the initial plan presented in the proposal and the main 
achievements are summarized below. 

• We have investigated several image analysis tasks, including road network segmentation 
[6], building network segmentation [7], keypoint detection (using Key.Net) [1], generic 
unsupervised image segmentation (Segment Anything) [4]. At first, these tasks were 
applied to images at different scales, including interpolated and super-resolved images. 
This led us to elaborating a methodology for assessing the suitability of such image 
analysis tasks for training the SR networks, which we will present at IGARSS 2024 [12]. 

• We have extended our MuS2 dataset with Sentinel-2 images coupled with WorldView-2 
images with ground-truth masks of roads and buildings acquired from OpenStreetMaps 
[10]. We found using these masks during training to be more effective than relying on the 
masks obtained by segmenting the HR reference images. Furthermore, this opens a 
possibility of training real-world SR networks without HR reference images. 

• We have developed the methodology to better understand the loss functions by inspecting 
their sensitiveness to the registration errors, as well as to the synchronized shifts of the 
input and target. Furthermore, we made attempts to investigate the optimization landscape 
by optimizing the input that is compared with a given target image.  

• We found out that using a task-based loss function makes the SR network training heavily 
ill-posed—commonly, an almost perfect segmentation outcome can be retrieved from a 
noisy image which does not present any meaningful structures. Therefore, the task-based 
loss functions must be either employed for fine-tuning (after training the network with 
conventional image-based loss functions) or they must be combined with an image-based 
loss. Moreover, we employed task balancing for multi-task learning [9] which helped us 



eliminate the problem of falling into a minimum defined by an “easier” loss function, without 
optimizing the remaining loss functions (or even at a cost of increasing their values). We 
have confirmed that by observing the loss functions, each of which is minimized during 
training. 

• We have selected building segmentation and road segmentation tasks for training the SISR 
and MISR networks. For SISR, we selected the hybrid attention transformer (HAT) [3], and 
for MISR, we used residual attention multi-image super-resolution network (RAMS) [8]. 
After running many tests based on simulated and real-world images, we designed a set of 
around 30 final tests to answer the aforementioned research questions.  

 
The obtained quantitative and qualitative results, reported in the D2 document, confirmed that task-
driven training substantially improves the quality of the super-resolved images in terms of their 
value for image analysis tasks. As presented in Figures 1 and 2, road and building segmentation is 
much more effective from the images super-resolved using models trained in a task-driven way. 
This can be observed both for the simulated and original Sentinel-2 images. Also, the details are 
much more clear after running the task-driven training.  
 
Overall, the performed activity allowed us to answer the aforementioned research questions (for 
details, see the D2.2 document): 

1. How much the analysis outcome can be improved by super-resolving the input images with 
the models trained with a task-specific loss, compared with those trained using an image 
similarity loss? 

 
Response: From the obtained results, it is clear that introducing a task-based component 
into the loss function substantially improves the outcome of the task. This is much more 
evident for the real-world data, where the task outcome is extremely poor without applying 
the task-driven training. For the simulated data, the task outcome after regular training is 
slightly better, but introducing the task-driven loss increases the segmentation scores 
substantially. 

 
2. Is the task-driven loss more robust against the variations resulting from different image 

acquisition conditions than the standard pixel-wise loss functions? 
 
Response: The question concerning the robustness was specifically aimed at real-world 
data in which the LR and HR images have been captured independently. The reference-
based metrics (i.e., the similarity to the reference image) were fairly similar across different 
trainings, but taking into account the increase in image segmentation quality after task-
driven trainings, it can be concluded that the task-driven training deals well with the 
differences between LR and HR images that result from the imaging conditions. When the 
SR outcomes generated after task-driven training (see Figures 1 and 2) are closely 
inspected, then it can be noticed that the enhanced details are achieved at a cost of some 
grid-like artifacts. Overall, the answer to this question is positive—task-driven training 
increases the robustness against the variations resulting from different image acquisition 
conditions. 
 

3. Considering the case when the simulated data are used for training models that are later 
applied for enhancing real-world images: is it better to use the task-driven loss in such 
cases than the pixel-wise loss functions?  
 
Response: Comparing the scores rendered by the models trained using simulated data 
with regular and task-driven loss functions, it becomes clear that the task-driven training 
leads to similar reference-based scores, but the image segmentation scores are definitely 



higher. However, in both cases some artifacts are visible and they are more severe than 
when the training is performed from the real-world data. 

 
4. What is the performance gap between MISR and SISR techniques trained in the task-

driven manner? 
 
Response: This question has been answered only partially, as it eventually occurred that 
the SISR model cannot be used to super-resolving the same scenes as the MISR model. 
The use of smaller patches in SISR caused the image similarity scores to be inflated, and 
eventually higher than for MISR. However, the visual quality of SISR is below that of MISR 
and also the segmentation scores were worse for SISR. Still, it is clear that the trends 
observed for MISR also hold for SISR and task-driven training is extremely helpful here. 

 
 
In addition to that, we have demonstrated that a model trained from the simulated data (relying on 
a regular loss) can be fine-tuned using real-world data without the HR references. In such a case, 
only the segmentation maps may be used to compute the task-based loss which is combined with 
the consistency loss that prevents the network from falling into minima. 
 
Overall, we have found the obtained results to be positive and in our opinion the problem of task-
driven training is worth further investigation. The results show that the SR space is quite broad and 
using a single task (including the image-based similarity) may not be sufficient to evaluate SR 
techniques and guide their training effectively. In particular, we identify the following future 
research pathways: 

1. Involving more tasks to stabilize the result and narrow down the SR space. 
2. Enhancing the multi-task learning via exploiting better loss balancing procedures. 
5. Combining the use of simulated data for training, coupled with the consistency loss that will 

allow for self-supervised training of SR networks, suitable for real-world applications. 
6. The aforementioned actions should be aimed at reducing the artifacts while preserving the 

high performance of image analysis tasks. 
7. Developing a robust SR evaluation protocol underpinned with image-based and task-based 

features. For that purpose, we plan to enhance our MuS2 dataset. 
 
The initial results obtained in this project were described in a research paper that was accepted at 
IEEE IGARSS 2024 [12]. Also, they will be presented at SUREDOS conference organized by ESA 
in May 2024. In addition to that, we are planning to prepare a journal paper summarizing the 
obtained results. 
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Figure 1: An example (an urban scene from the MuS2 benchmark) of reconstructing simulated 
(from WorldView-2) and real-world Sentinel-2 images using the RAMS network trained with regular 
and task-driven loss functions. The ground-truth image was acquired by WorldView-2 and the 
segmentation masks were extracted from OpenStreetMap. 



 
Figure 2: An example (a suburban scene from the MuS2 benchmark) of reconstructing simulated 
(fromWorldView-2) and real-world Sentinel-2 images using the RAMS network trained with regular 
and task-driven loss functions. The ground-truth image was acquired by WorldView-2 and the 
segmentation masks were extracted from OpenStreetMap. 


