

Management Summary ESA Contract No. 4000140196/22/NL/GLC/ov

Generating Formally Verified Communication Protocol Implementations 1 of 4

Management Summary

Generating Formally Verified Communication

Protocol Implementations

Introduction and Background

Evolving Communication Protocols Reliably

During the launch of a mission a critical moment occurs when communication is established for the

first time. The details of the communication between ground control and a satellite are governed by

the communication protocol. Such a protocol is traditionally specified in human-readable form. Engi-

neering teams define the communication protocol early in the requirements definition phase. As the

development progresses, the protocols usually evolve as well. In rare cases protocols might even

change after the launch. Whenever the protocol specification changes, the documentation, code in the

ground segment and space segment must be changed accordingly. Keeping all parts consistent is

challenging, especially when different teams are responsible for different subsystems or instruments.

ESA addressed this need for consistency in the face of constant change with the ASN1SCC project.

ASN1SCC generates documentation and code from a single source of truth: A machine-readable spec-

ification of the communication protocol. This specification is written in the ASN.1 format. ASN1SCC

generates documentation and code from this specification fully automatically, which can be integrated

in other documentation and software. The ASN1SCC generator can be deployed in Continuous Inte-

gration (CI) systems to generate all required artifacts automatically from the single source of truth.

This ensures that all software and documentation use exactly the same protocol.

Prior to this project, ASN1SCC could generate code for the C and Ada programming languages. These

programming languages are often used in embedded applications, e.g. in the space segment. Software

for the ground segment is typically written in other programming languages, for example Java or Scala.

Integrating ASN1SCC-generated code in those applications was not easily possible. This project’s ob-

jectives were to extend the ASN1SCC generator with a Scala code generation backend, and to

apply formal software verification methods to the generated Scala code to guarantee that it is

defect-free.

The reliability of the generated communication code is obviously of critical importance, as satellites

are solely remote-controlled, and because the network protocol implementation is the first point of

contact for attackers. To increase the robustness, people try to use extensive manual or automated

testing. This might be useful to find the most obvious bugs, but as the well-known saying “Software

testing proves the existence of bugs, not their absence.” describes, it is impossible to produce ro-

bust and defect-free software using tests alone. Even if the generated Scala code behaves as expected

Management Summary ESA Contract No. 4000140196/22/NL/GLC/ov

Generating Formally Verified Communication Protocol Implementations 2 of 4

in thousands of tests, this does not mean that it is free of defects. The absence of evidence is not

evidence of absence. For this reason, we used the formal verification framework Stainless to provide

much stronger guarantees about the generated code. We prove that the generated code behaves ac-

cording to its specification and that it does not contain bugs for the most common classes.

Figure 1: A protocol standard like PUS-C is formally described in the ASN.1 specification language. This allows computer pro-

grams like ASN1SCC to work with the protocol standard. Using such a specification, ASN1SCC automatically generates match-

ing code in C or Ada. We extended the ASN1SCC generator with the ability to generate Scala code in this project. Additionally,

we formally verified the generated Scala code with Stainless, and created a test suite to automatically test interoperability of

the generated C and Scala code. The newly developed parts are depicted as green boxes.

Methodology and Approach

A new Scala Code Generation Backend and the Verification of its Output

We extended the ASN1SCC compiler by adapting the existing C backend. In addition to creating a new

backend, the ASN1SCC software architecture had to be changed as well because of the different na-

ture of Scala and C/Ada code. The generated ASN1SCC code relies on fixed library code (Figure 2).

We ported this library code from C to Scala by hand.

We developed a new interoperability test suite to ensure that the generated Scala code produces bit-

wise identical results to the code generated by the existing C backend (Figure 3). The test suite auto-

matically compares Scala- and C-generated packets defined by the PUS-C standard. This uncovered

problems in both the newly developed Scala backend and the existing C backend, which were both

fixed.

We formally verified the hand-written library code using the Stainless framework. Stainless proved that

all 5’113 properties of the code are guaranteed to hold: for example, that divisors are not zero, certain

arguments are non-negative, and that all loops terminate. We also proved that the encoding and de-

coding are inverses of each other, i.e. no information is lost through the encoding or decoding process.

ASN.1 Protocol

Specification
ASN1SCC

Documentation

Scala Code

C Code

Ada Code

PUS-C

Standard

Interop.

Test Suite

Formal

Verification

Management Summary ESA Contract No. 4000140196/22/NL/GLC/ov

Generating Formally Verified Communication Protocol Implementations 3 of 4

We changed the automatically generated Scala code, for it to be formally verifiable by Stainless. We

extended Stainless to support the generated code constructs. We tested this capability by verifying the

generated code for all packets defined in the PUS-C standard. It took Stainless several hours to verify

the resulting 327’321 properties on three dual-socket servers.

The performance of the generated Scala code and the generated C code are surprisingly similar. A

detailed analysis shows this is possible, because the generated Scala code does not perform any heap

allocation, and because the Scala runtime (JVM) employs more inlining optimizations.

Figure 2: The automatically generated Scala Code is combined with hand-written Library Code, and together forms a protocol

implementation, which is used in the ground segment software to create and interpret communication packets of a satellite.

Figure 3: The newly developed interoperability test suite ensures that the packets generated by the C and Scala backends are

bit-wise identical. The test suite generated packets for all packets defined in the PUS-C standard, with both the C and the

Scala backend. Each packet is compared with the same packet generated by the other backend. In addition, the tests verify

that the decoded data is identical to the input data.

Ground Segment Software

ASN.1 Protocol

Specification
ASN1SCC Scala Code

Library Code

Protocol

Implementation

…

…

…

Input

Data

Encoded

Data

Encoded

Data

Input

Data

Scala encoding

C encoding

Decoded

Data

Decoded

Data

C decoding

Scala decoding

Scala Tests

C Tests

Interoperability C Scala

Management Summary ESA Contract No. 4000140196/22/NL/GLC/ov

Generating Formally Verified Communication Protocol Implementations 4 of 4

Achievements and Results

The Scala Backend, Bugfixes and a Publication

The ability to produce Scala code was introduced in ASN1SCC release 4.5.1.2 on March 8th 2024. This

version includes bugfixes for all discovered bugs in the C backend. Since its initial release, the Scala

backend has already found use by early adopters.

The generated Scala code underwent manual and automated testing, and was formally verified. It is

correct, reliable and performant.

Mario Bucev, Simon Felix, Samuel Chassot, Viktor Kunčak, and Filip Schramka submitted the publica-

tion “Automatic Generation of Formally Verifiable ASN.1 Serializers and Deserializers” to the 26th In-

ternational Conference on Verification, Model Checking, and Abstract Interpretation (VMCAI 2025),

which will take place January 2025.

