
An open source FPGA toolchain for a European
space-grade FPGA

Executive summary
Early Technology Development

Channel: Open Discovery Ideas Channel

Affiliation(s): YosysHQ GmbH

Activity summary:

This activity aimed to develop support for NanoXplore’s NG-Ultra architecture within the
open-source place and route tool nextpnr, as an alternative to the proprietary Impulse tool.
Extensive benchmarking showed that in most cases the performance of the nextpnr prototype is
comparable to Impulse but there are also a number of outliers with significant room for
improvement. The results confirm that nextpnr is capable of supporting large FPGAs and
overcoming architectural limitations by performing netlist transformations and placement
optimisations. Future improvements may include support for high-speed I/O and SoC and further
placement optimisations to get better quality of results.

Publishing Date: 2024-11-01
Contract Number: 4000141380
Implemented as ESA Initial Support for Innovation

ESA Discovery & Preparation
From breakthrough ideas to mission feasibility. Discovery & Preparation is

laying the groundwork for the future of space in Europe
Learn more on www.esa.int/discovery

Activity Page: https://activities.esa.int/4000141380
Deliverables published on https://nebula.esa.int

http://www.esa.int/discovery
https://activities.esa.int/4000141380
https://nebula.esa.int


An open source FPGA toolchain for a European space-grade FPGA

This activity concerned the development and integration of the open-source place and route tool,
nextpnr, for NanoXplore’s NG-Ultra Field Programmable Gate Arrays (FPGAs). The NG-Ultra is a
high-reliability, radiation-hardened FPGA intended for use in critical environments such as space.
The primary aim of the project was to create an alternative place and route tool to NanoXplore’s
proprietary tool (Impulse) by implementing support for the NG-Ultra architecture inside nextpnr. To
make the goal more realistic, the main focus was on implementing support for the basic set of
primitives that are inferred by Impulse synthesis, and was extended to cover commonly used
manually instantiated primitives. Due to the fact that some of the primitives that were not initially
planned were quite simple to be added, the final implementation supported more than planned, but
specific features that were not thoroughly tested were marked as such.

When converting a user’s input design into a format suitable for running on the NanoXplore
NG-Ultra, the design is first turned into a netlist of gates. This netlist is optimised, and then mapped
into virtual cells representing the logic that the hardware provides, such as 4-input look-up tables
(“LUT4s”; used to implement logic), D flip-flops (“DFFs”; single bits of memory distributed
throughout the chip), carry chains (used for fast addition/subtraction), and register file blocks
(high-capacity memories). This part of the process was out of scope for the project and we relied
on the Impulse implementation for this step. Next, these virtual cells need to be assigned to
physical locations on the FPGA (“placement”), and these placed cells need to be connected using
the physical interconnect wires on the chip (“routing”). The steps of placement and routing are what
Impulse and nextpnr perform to produce a physical representation of the input design that can then
be converted into a configuration file the FPGA can load (the “bitstream”). Since the bitstream
format is proprietary, nextpnr outputs a description of the placed and routed netlist in JSON format,
which can be imported into Impulse for bitstream generation.

To perform the tasks of placement and routing, nextpnr needs to be aware of the available types
and locations of logic, and how they are connected to each other. nextpnr makes a distinction
between virtual logic (“cells”), and physical logic that cells can be placed into (“BELs”, an
abbreviation of “basic elements of logic”); placement is the assignment of cells to BELs. BELs are
connected through a graph with nodes (“wires”), and edges (“PIPs”, an abbreviation for
“programmable interconnect points”); routing is the connection of wires and PIPs between BELs.
Despite the large number of BELs and a complex routing graph that contains many PIPs, there are
patterns of identical relative connections between logic. nextpnr can detect and deduplicate these
patterns to store the routing graph compactly on disk.

As this kind of detailed internal architectural data is available only from vendors producing FPGAs,
it was necessary that NanoXplore share this data. The complete set of data included not only a
description of the specific building blocks of the NG-Ultra FPGA architecture and their connections
but also the necessary timing information to accurately estimate propagation delays during the
place and route process. This timing data is crucial for ensuring that signals meet the required
timing constraints, particularly in high-performance designs where propagation delays can impact
the overall functionality and reliability of the design. Using this detailed information, a chip
database file was created. This database provides a compact representation of the NG-Ultra
architecture, allowing nextpnr to perform placement and routing operations with reduced memory
and processing overhead.

The implementation of a nextpnr backend for NG-Ultra ensures that designers have the option of
validating their designs through an open-source tool, alongside the proprietary Impulse toolchain.
This redundancy increases confidence in design accuracy, as a design which functions identically
under two toolchains is significantly less likely to have been silently affected by toolchain issues.
Furthermore, nextpnr’s open-source nature allows for customization, enabling users to adapt the
tool to meet specific needs. This is particularly important in space applications, where
mission-critical reliability is essential. The nextpnr support currently includes key FPGA primitives,

4000141380 - Executive summary



An open source FPGA toolchain for a European space-grade FPGA

with the potential for future expansion to more specialised components like high-speed I/O and
SoC primitives.

This project represents a significant step forward in creating a flexible and open-source FPGA
development toolchain for NG-Ultra. The adaptability and collaborative nature of nextpnr
encourages innovation and improvements not only from within the developer community but also
through ongoing partnerships with the academic world. By offering an alternative toolchain, the
project ensures that developers can cross-verify their designs, which is important in critical
applications like space missions. The project also proved that nextpnr, although being a generic
implementation supporting multiple architectures, can be used for large FPGAs.

Throughout the project, the team conducted extensive testing and validation by running output
bitstreams on a test board to ensure that nextpnr is reliable and performs well with NG-Ultra
devices. A series of functional, integration, and performance tests were carried out, comparing
results between nextpnr and NanoXplore’s Impulse tool. Metrics such as place-and-route (PnR)
times, maximum operating frequency, and resource utilisation were analysed to gauge
performance and efficiency. Initial tests focused on basic FPGA components like LUTs and DFFs,
while subsequent tests incorporated more complex design elements, including memory blocks and
DSP components. As these tests needed to confirm a completely working workflow they were also
including bitstream generation and manual testing of design on the development board, which
were both time consuming but also necessary to validate results.

Several challenges emerged during the development process. One of the primary difficulties was
matching the performance of highly optimised proprietary tools in runtime and timing closure. While
benchmarking highlighted areas of weakness in nextpnr compared to Impulse, it was not always
clear how to resolve them. Achieving comparable performance required ongoing tuning and
testing, which informed what features were to be included in nextpnr to reduce runtime. Overall
goal was not to perform better but have comparable performance to Impulse, but most importantly
to have a reliable place and route that produces a bitstream that works on the development board
as expected.

Collecting a set of benchmarks which fully exercised nextpnr’s support for various NG-Ultra
features also proved difficult. Many publicly-available architecture-generic designs are intended for
FPGAs much smaller than the NG-Ultra, while larger designs usually focus on a specific FPGA,
utilising architecture-specific primitives that do not generalise. As NG-Ultra is quite a new
architecture we were not able to find existing open big projects utilising architecture specific
primitives, and these capabilities were mostly covered with individual tests.

Another challenge involved maintaining compatibility with NanoXplore’s proprietary toolchain, as
Impulse received frequent updates to the JSON netlist import functionality which was being
co-developed simultaneously for nextpnr integration. Despite these challenges, close collaboration
with NanoXplore and the use of detailed vendor documentation were crucial in ensuring that the
integration progressed smoothly. For example, differences in how Impulse and nextpnr represent
the routing graph could result in the Impulse importer going into an infinite loop when attempting to
load the output of nextpnr; discussion with NanoXplore identified the cause of this and a fix was
implemented in nextpnr.

The benchmark results highlighted several important improvements, but also pointed to pitfalls and
limitations of NG-Ultra architecture. Most impactful changes were the introduction of the optimised
bounding box prediction and CSC insertion, that both helped dramatically reduce time needed to
finish place and route for most of the designs. Many low effort optimisations, like DFF and LUT
chains and XLUT use, have proven useful, and helped routing by generating more efficient
placements utilising local routing resources and reducing congestion. While some experimental

4000141380 - Executive summary



An open source FPGA toolchain for a European space-grade FPGA

features, such as electrostatic placement and net partitioning, showed potential, they were not
included in the final version due to instability or poorer results. Overall, all of the included
improvements have resulted in faster place and route times, and in most cases, gave comparable
performance relative to the Impulse, with occasional trade offs in maximum frequency and critical
path lengths, especially for more complex designs.

Looking ahead, future work could focus on expanding support within nextpnr to cover additional
FPGA primitives, such as high-speed I/O blocks and SoC integration making it more useful for high
complexity designs. Developing a tool that translates the JSON output from nextpnr into a binary
bitstream format would enable a fully open-source toolchain, eliminating reliance on proprietary
tools, which may be useful for auditable and reproducible builds. As the benchmark results
demonstrated, there are still placement improvements that could be implemented to achieve better
execution time, but also to make sure that each design that can be processed with Impulse can
also be placed and routed with nextpnr.

In conclusion, the integration of nextpnr with NG-Ultra represents a major achievement in
open-source FPGA development, as it is by far the largest FPGA supported by open-source
tooling. The tool provides developers with a flexible and customizable option for designing for
NG-Ultra FPGAs, offering increased reliability through the ability to cross-verify designs using two
independent tools. Although there are challenges ahead in terms of optimising performance and
expanding tool functionality, this project has laid the foundation for ongoing innovation and
collaboration in the FPGA development community.

4000141380 - Executive summary


