
      

Publishing Date: 17/10/2024
Contract Number: 4000140197/22/NL/GLC/ov
Implemented as ESA Initial Support for Innovation

ESA Discovery & Preparation
From breakthrough ideas to mission feasibility. Discovery & Preparation is 

laying the groundwork for the future of space in Europe 
Learn more on www.esa.int/discovery

Deliverables published on https://nebula.esa.int

ARTIFICIAL INTELLIGENCE APPLIED TO CODE REPAIR 
AFTER CODE STATIC ANALYSIS VERIFICATION

Executive summary

Early technology development

New concepts for onboard SW development Campaign

Affiliation(s): Thales Alenia Space España (Prime), and Universidad de Alcalá (Sub 1) 

Activity summary:
On-board software quality is very important for the space industry, and Advances in last years in 
Artificial Intelligence have drastically changed the landscape of automated code refinement.
This work main objective is to create an AI-based solution capable of automatically repairing code 
with the lowest human intervention, and with better performance than previous non-AI commercial 
solutions.
Stating with an extensive study on the most recent automated code repair approaches, an AI model 
has been created and refined, and then evaluated with real SW examples, finalizing with a 
demonstration execution of the complete model.

DISCOVERY



ARTIFICIAL INTELLIGENCE APPLIED TO CODE REPAIR AFTER CODE STATIC ANALYSIS 
VERIFICATION 

 Contract 4000140197/22/NL/GLC/ov - Executive summary 

1. Introduction 

On-board software quality is crucial for the space industry and is verified from the early stages of 
development. One of the first steps is static code analysis, performed by tools that assess adherence 
to coding standards. Developers then need to correct the identified issues, which can be labor-
intensive. Reducing this effort is key to accelerating on-board software development. 

In recent years, several automated repair tools have emerged, although few have adopted a data-
driven approach, despite the availability of millions of open-source projects in popular repositories. 
With recent advancements in Artificial Intelligence (AI), especially in Natural Language Processing 
(NLP), innovative approaches have been developed to "translate" buggy code into clean code, 
showing promising performance.  

This work aims to address the lack of effective solutions for low-level languages, such as C, which 
are common in on-board development. By creating an AI solution capable of automatically repairing 
code with minimal human intervention, we expect to surpass the limitations of previous commercial 
tools. Key objectives include developing an automated system for fixing code vulnerabilities in low-
level languages, bridging the gap between learning-based automated fixing and on-board 
development, enhancing performance using advanced models like GPT-3 or CodeT5, and evaluating 
the impact of automation on development processes and resource efficiency. 

2. Project Background 

In the space industry, maintaining robust software performance is essential, as failures in extreme 
environments can lead to significant risks. Automatic Program Repair (APR) plays a vital role in 
addressing code errors detected by tools like SonarQube, which identifies bugs, vulnerabilities, and 
code smells. While pinpointing these issues is an essential first step, the ability to generate effective 
automatic fixes is an ongoing challenge in software engineering. 

The state of the art in APR encompasses a variety of methodologies. Traditional approaches include 
heuristic-based methods, which utilize predefined rules and patterns to create repair patches, and 
constraint-based techniques that restrict the search space for fixes. While these methods have 
demonstrated effectiveness, particularly in scenarios involving relatively simple and repetitive 
defects, they often rely on manually designed templates and require considerable domain-specific 
expertise to create and maintain. Although template-based approaches could potentially be effective 
in certain cases, they fall outside the scope of this project due to several reasons. Our proposed 
approach does not require predefined templates or extensive test suites, making it more flexible and 
broadly applicable. Evaluating traditional methods would involve significant additional effort in 
terms of developing, testing, and tailoring templates, which is beyond the focus of this project, 
particularly given our emphasis on leveraging large language models. 

In contrast, modern approaches increasingly leverage machine learning, particularly neural machine 
translation (NMT). These methods utilize advanced neural networks like recurrent neural networks 
(RNNs) and transformers to model the repair process. Notable examples include CURE and the 
method-to-method repair model by Tufano et al., which effectively apply NMT architectures to APR. 



ARTIFICIAL INTELLIGENCE APPLIED TO CODE REPAIR AFTER CODE STATIC ANALYSIS 
VERIFICATION 

 Contract 4000140197/22/NL/GLC/ov - Executive summary 

The field of automatic vulnerability repair poses unique challenges, incorporating general-purpose 
methods as well as security-specific techniques that aim to generate repair specifications for identified 
vulnerabilities. Recent advancements in Large Language Models (LLMs) like GPT-4 have 
significantly enhanced the capabilities of APR, enabling models such as Codex and CodeT5 to 
understand and manipulate code in ways that resemble human programming logic. 

This project seeks to capitalize on these advancements by creating a comprehensive dataset of 
programming defects, leveraging insights from SonarQube. By treating rule descriptions as explicit 
instructions for code modifications, we aim to fine-tune selected LLMs to improve their efficacy in 
generating precise code repairs. This initiative not only addresses existing gaps in the literature 
regarding APR for low-level languages but also strives to enhance software development practices in 
the space sector through greater automation and efficiency. 

3. Methodology 
 
The initial approach in this work involved fine-tuning Code Llama, a model recognized for its ability 
to handle large contexts, using datasets such as CommitPackFT and real-world examples of MISRA 
rule corrections made by human developers. This approach enabled the model to effectively address 
a range of real-world coding errors and compliance issues. The results showed that Code Llama was 
able to correct 17.4% of the identified issues, with 22.6% providing partial fixes. However, a 
significant portion (35.2%) of the generations were incorrect, highlighting areas for improvement. In 
comparison, ThalesGPT only managed to correct 4.5% of the issues, indicating that Code Llama 
performed significantly better in understanding and applying fixes to the code. 
 
To improve performance, we switched to the Llama 3 model and expanded the dataset by 
incorporating new real-world examples from recent projects, as well as a synthetic dataset generated 
from SonarQube rules. This extended dataset provided more diverse and comprehensive examples of 
code errors and fixes. With these improvements, the successful correction rate increased to 40%, and 
incorrect fix rate decreased to 18.1%. These results demonstrate the improved reliability and 
effectiveness of the refined model in addressing real-world coding issues. 
 

4. Key Findings 

The experimental framework established to evaluate our code repair solution has yielded significant 
insights into the efficacy of various models, particularly in addressing real-world coding errors. 

1. Model Comparison: The baseline for our evaluations was a customized version of Code 
Llama, known for its superior handling of lengthy contexts. Its performance was benchmarked 
against ThalesGPT, a modified version of GPT-3.5. The experiments utilized datasets like the 
Bug Fix Corpus and the OctoPack, focusing on a variety of code errors and high-quality 
commit messages. Additionally, Code Llama was trained on datasets containing examples of 
issues identified through MISRA rules, where corrections were made by human developers. 
This integration of manually corrected MISRA examples provided the model with a more 
grounded understanding of real-world coding standards and practices, enhancing its 
performance in addressing compliance-related issues. 

2. Correction Rates: Initial results from the Code Llama model indicated it could resolve 17.4% 
of identified issues, with 22.6% providing partial corrections, but a concerning 35.2% were 



ARTIFICIAL INTELLIGENCE APPLIED TO CODE REPAIR AFTER CODE STATIC ANALYSIS 
VERIFICATION 

 Contract 4000140197/22/NL/GLC/ov - Executive summary 

incorrect. In contrast, ThalesGPT managed to correct only 4.5% of issues. These findings 
underscore Code Llama's greater potential in understanding coding conventions and best 
practices. 

3. Evaluation Metrics: The study employed rigorous evaluation metrics to assess both the 
precision and efficiency of each model. Code Llama demonstrated an ability to process 
requests in an average of 38 seconds, while ThalesGPT took about 68 seconds. Despite slight 
differences in speed, both models operated within acceptable time frames for practical 
deployment. 

4. Correction Quality and Context: Detailed analysis revealed that the effectiveness of Code 
Llama varied significantly across different MISRA rules. For instance, it achieved a 100% 
success rate for some rules but struggled with others, such as the misuse of parameters, where 
context misinterpretation led to a high rate of incorrect corrections. This highlights the need 
for improved context awareness in automated corrections. 

5. Cost Analysis: A preliminary cost evaluation suggested that while ThalesGPT might seem 
cheaper for low call volumes, Code Llama becomes more economically viable with increased 
usage due to its fixed-cost model. The annual estimated cost for deploying Code Llama was 

 
6. Model Refinement: After transitioning to the Llama 3 model with a new dataset based on 

MISRA 2012 standards, as well as incorporating a synthetic dataset generated from 
SonarQube rules, its ability to provide accurate corrections significantly improved, raising the 
successful correction rate from 17.4% to 40%. The number of incorrect corrections dropped 
from 35.2% to 18.1%, showcasing the model's enhanced reliability and effectiveness in real-
world applications. 

7. Deployment of integration: The repair tool has been integrated into the final OBSW 
environment, which is hosted on a GitLab server. This integration allows the tool to 
automatically assist developers by providing detailed code suggestions whenever a new 
commit is pushed to the repository. Instead of requiring developers to manually input rules, 
the system is now connected to a SonarQube server that automatically provides the necessary 
code analysis rules. These rules serve as input for the repair tool to generate fixes. The tool 
was also packaged into a Docker image, making it more portable and easier to deploy in 
various environments, following standard engineering practices. Additionally, a GitLab 
extension was created to fully integrate the tool into the CI/CD pipelines. Each time a new 
commit triggers a pipeline, the tool runs automatically and generates a code quality report 
with suggestions for fixing errors identified by SonarQube. These reports are presented to 
developers in CSV or JSON format, helping them to quickly review and decide on the 
recommended code fixes. This integration streamlines the development process, making it 
easier for teams to maintain high-quality code while adhering to coding standards. 

8. Impact on Development Efficiency: The improvements realized not only automated a 
considerable portion of the coding correction process but also provided developers with 
valuable insights for resolving more complex issues. This dual function, combining automated 
fixes and developer assistance, enhanced compliance with coding standards and ultimately 
accelerated the development cycle. By reducing manual debugging and code review times, 
the team's overall efficiency and productivity improved significantly. 

 



ARTIFICIAL INTELLIGENCE APPLIED TO CODE REPAIR AFTER CODE STATIC ANALYSIS 
VERIFICATION 

 Contract 4000140197/22/NL/GLC/ov - Executive summary 

5. Conclusion 

These findings demonstrate the potential of advanced LLMs like Code Llama in addressing software 
quality challenges and ensuring compliance with coding standards, particularly in environments 
requiring adherence to MISRA rules. The integration of human-corrected MISRA issues has further 
refined the model's capabilities, making it a more effective tool for automated program repair, while 
also identifying areas for ongoing refinement and development. 

 

6. Future Work 
 

understanding, especially in complex scenarios such as parameter misuse, where Code Llama showed 
limitations. One possible recommendation is to expand the dataset to include more diverse real-world 
coding environments, such as those involving different programming languages or frameworks, 
which would improve the model's adaptability to different development environments. In addition, 
techniques such as Reinforcement Learning from Human Feedback (RLHF) or Direct Preference 
Optimization (DPO), which use human input to further improve the performance of the model, could 
be explored. Finally, testing the effectiveness of the model on larger, enterprise-level codebases 
would provide valuable insight into its scalability, making it more applicable to industrial 
applications. These steps could be implemented by incorporating iterative updates to the tool within 
the existing GitLab CI/CD integration, ensuring real-time improvements without disrupting 
developer workflows. 
 
Another potential direction could be to integrate confidence estimation into the model's inference 
process. For example, the system can use the model's probabilistic outputs to generate a confidence 
score for each proposed code fix. This confidence metric would provide developers with valuable 
insights into the reliability of the generated patches, indicating whether a fix is likely valid, potentially 
incorrect, or uncertain. Including this feature would enhance the tool's utility by guiding developers 
on which automated fixes can be trusted and which require additional evaluation, thereby optimizing 
the code review process and improving overall development efficiency. 
 


