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Activity summary:
Cyberattacks in space pose serious risks for ground based critical infrastructure, and 
insecurities in the space environment. Thus, an important consideration to preserving 
future critical space mission objectives is a successful detection to an adversarial attack on 
Artificial Intelligence (AI) based space software solutions. We harness the eXplainable 
Artificial Intelligence (XAI) techniques with adversarial learning for adversarial attacks 
detection, specifically on the AI-based spacecraft Guidance Navigation and Control (GNC) 
systems. In this work, we firstly develop an XAI based deep learning model providing the 
performance required for the GNC scenarios proposed. Then, an XAI adversarial learning 
method that handles the challenging detection through classification of adversarial attacks. 
Finally, we conduct extensive validation of the proposed architecture based on simulation 
and real data.
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1. Introduction 
In this project, we harness the XAI techniques with adversarial learning for adversarial 
attacks detection that is potentially applicable to various satellite systems, and more 
specifically on the embedded GNC module of those space vehicles adopting deep learning 
algorithms. The XAI algorithms are investigated to make onboard adversarial learning 
transparent to ensure a trustable decision, providing highly precise detection and 
defensive response to ensure the space vehicle safety. A comprehensive framework is 
studied and proposed to address the XAI-based adversarial learning for spacecraft GNC 
system, including synthetic dataset generation, guidance scenario building, XAI-based 
adversarial-learning model developing, software verification and testing, etc. Considering 
that adversarial attackers can force many deep learning algorithms to misbehave by 
adding small and imperceptible perturbations on the original inputs to generate adversarial 
examples, deep network defence can be classified into two categories: active and passive 
defences. The former implies that a model can correctly classify inputs that are perturbed 
by adversarial adversaries by hardening its network. In contrast, the later aims to detecting 
and rejecting adversarial examples. In our study, we first follow the second idea. We 
developed two deep learning GNC systems for space rendezvous and planetary landing 
scenario, respectively. Then developing an XAI-based adversarial learning, through 
training, method that handles the challenging classification of adversarial attacks on the 
designed and input distribution shifts with a good explanation of results. and finally, we 
focus on optimising the network detector scheme to improve the detection accuracy and 
detect adversarial on real experimental setup. 
 

2. Project Background 
Cyberattacks on aerospace systems are becoming a growing concern in space missions, 
although they are often unpublished to attempt to delay or avoid further hacking. Jet 
propulsion Laboratory (JPL) reports seven times hacks against space systems during 
2007 2016, for example Goddard Space Flight Centre (GSFC), Glenn Research Centre 
(GRC), and Armstrong Flight Research (AFRC) reported hacks of drones that their data 
and commands are hacked in January 2016; attackers penetrated 
over some services, impacting missions in November 2011. Many real-world attacks have 
been shown to be surprisingly effective, which has raised serious concerns for space 
missions and been a legitimate threat to in-orbit spacecraft operations. Moreover, satellites 
and other space assets are parts of the digitized critical infrastructure that are crucial to 
support communications, transportation, information services, weather and environmental 
monitoring and defence systems. Consequently, cyberattacks in space therefore pose 
serious risks for ground based critical infrastructure, and insecurities in the space 
environment.  
 
Thus, an important consideration to preserving critical space mission objective is 
successful detection of adversarial activities when affecting onboard sensors which are 
employed by AI based GNC algorithms for the space vehicle autonomous decision 
making. The research work in this area is very new and we are pioneering in it. Many 
works are related to adversarial learning for object recognition in imaging datasets but 
none (up to our knowledge) of the adversarial research is dedicated to GNC systems. The 
proposed work is based on our unique first initial research that we did in this domain for a 
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terrestrial GNC application, and we are keen to adopt it and adapt it to space GNC 
application and to further mature it. 

3. Methodology 
In this project, two scenarios are proposed to investigate the impacts of adversarial attacks 
and relative detection mechanisms on AI-based autonomous space GNC systems. The 
first target scenario is Convolution Neural Network (CNN)-based relative pose estimation 
on close-range rendezvous and the second scenario is vision-based Deep Reinforcement 
Learning (DRL) for planetary landing guidance and control. 
 
For the CNN-based relative pose estimation on close-range rendezvous scenario, firstly, a 
3D simulation system has been developed on Blender software to provide representative 
visual images in deep space rendezvous environments. The simulator is aiming to render 
the camera view of target spacecraft to generate reliable synthetic images for training and 
validating the AI-based pose estimation algorithm under simulated deep space 
environment. Then, a CNN-based spacecraft relative pose estimator is newly designed 
with the aim of providing a reliable estimated position and attitude of the target spacecraft 
in as rendezvous scenario. Consequently, the Fast Gradient Sign Method (FGSM) 
adversarial attacks are adopted on the spacecraft onboard camera resulting in an 
adversarial image to evaluate the impacts on the proposed deep pose estimator. Next, 
SHAP values are employed to generate XAI signatures for both adversarial and normal 
input images in designed CNN-based relative pose estimator. Finally, a Long Short-Term 
Memory (LSTM)-based adversarial detector is proposed and trained, which learns normal 
and adversarial SHAP values to detect the adversarial attacks on the spacecraft relative 
pose estimator. 
 
For the Mars landing scenario, a 3D simulation environment is developed on Blender 
software. The Mars landing simulator consists of two main components: an optical data 
generator and a 3 Degree-of-Freedom (DOF) lander dynamics. The 3 DOF controller takes 
the engine actions command as its inputs and outputs the relative position of the lander, 
while the optical data generator takes the relative position and outputs the relevant vision 
view. Next, this project introduces a newly designed monocular vision-based DRL system 
to provide guidance and control, facilitating a soft landing at the targeted position and 
velocity. Following this, FGSM attacks are employed on the optical input data to produce 
an adversarial image, which serves to assess the impact on the DRL system. SHAP 
values are utilised to create XAI signatures for both the adversarial and normal input 
images. Lastly, we propose and train an LSTM-based and a Transformer-based 
adversarial attacks detector that learns to discern normal and adversarial SHAP values, 
effectively detecting adversarial attacks on the vision-based DRL system. 
 

4. Key Findings 
In this project, proposed and developed are tested on synthetic data and the performance 
of each scenario is analysed. The impacts of adversarial attacks to the space GNC 
systems have been analysed. To further evaluate the performance of the rendezvous 
scenario, we tested them with real-world images obtained from the Autonomous Systems 
and Machine Intelligence Laboratory (ASMI Lab) at City, University of London. These data 
include sensor noise, camera calibration noise, ground truth measurement noise, and 
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different lighting conditions that are not present in the training synthetic images. Due to 
limitation of simulating the Mars candidate landing site, the Mars landing scenario has not 
been tested with real data. 
 
Space Rendezvous Scenario 
The CNN-based relative pose estimator is trained on image data generated from the 
simulator we built, resulting in a dataset with 32,500 images for training and testing in total. 
After training for 50 epochs, the proposed spacecraft relative pose estimator achieves an 
accuracy of around 0.49 metres in position error and 0.68 degree in attitude error on the 
test dataset. Compared recent published works, the proposed spacecraft deep relative 
pose estimator can achieve relatively good performance on the synthetic data and can be 
applied as a baseline model to implement the adversarial attack algorithm on and test the 
adversarial attack detector.  
 
To investigate the impact of FGSM adversarial attacks on CNN-based space relative pose 
estimation, different  values are selected to generate adversarial onboard camera image 
input to the proposed deep relative pose estimator. The experimental results demonstrate 
that as the  
attitude error is quite stable on  = 0.1, 0.05 and 0.01 but has a dramatic increase if the  > 
0.3. Typically, when the distance between the camera and the target is smaller than 30m. 
In most cases, continuously attacking the deep model for more than 15 frames after the 
camera approaches less than 30m to the target, the camera (chaser) will fail to reach the 
target position. In a real space rendezvous mission where a chaser relies on a CNN-based 
relative pose estimation system, an adversarial attack has the potential to cause the 
chaser to fail in approaching the target position, resulting in mission failure.  
 
The LSTM-based adversarial attacks detector has been trained on a generated dataset 
with 24,000 SHAP values for training and 6,000 for testing. After training for 1,000 epochs, 
it achieved a training accuracy of 99.98% and a test accuracy of 99.90% on the test 
dataset. Then, the LSTM-based adversarial attacks detector, CNN-based pose estimator 
and SHAP value generator have been integrated into one system to test with three 
complete trajectories. From the test results, the proposed adversarial attack detector 
successfully detects all incoming FGSM attacks when the  = 0.5. As the  value goes 
small, i.e. fewer perturbations are made to input images, the detection accuracy has 
slightly dropped. For these three test trajectories, the proposed adversarial attack detector 
achieves a detection accuracy of 99.21% on average. 
 
Furthermore, all frameworks developed in this scenario has been tested on the real-world 
data in the ASMI Lab. As the results, the CNN-based pose estimator achieved a relative 
position error about 1.43m and attitude error about 0.0551m. Compared with the prediction 
accuracy on the Synthetic-Lab Dataset, the position error of the ASMI Dataset is slightly 
higher. This could be attributed to variations in the illumination conditions compared to the 
Synthetic-Lab Dataset, as well as factors such as ground truth measurement noise and 
camera calibration noise. On the real-world data, the LSTM-based adversarial attack 
detector achieves an average correct detection rate of 96.29% with digital FGSM attacks. 
 
Final experiment conducts physical implementation of FGSM attacks in real-world. In this 
case, a projector has been employed to project the calculated perturbation patch to the 
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target. In this experiment, LSTM-based adversarial attack detector achieves an average 
correct detection rate of 80% on real physical FGSM attacks, which is lower than the 
accuracy for digital attacks. This discrepancy could be due to several factors, i.e. 
illumination condition, lightning source, light direction, 
image resizing, and normalisation by its firmware of camera. 
 
Mars Landing Scenario 
For the Mars landing scenario, three DRLs operate in a sequential manner. The first DRL 
agent (Agent 1) is active when the altitude exceeds 400m. The second DRL agent (Agent 
2) takes over at altitudes ranging from 400m down to 30m. Finally, the third DRL agent 
(Agent 3) assumes control at altitudes below 30m. The DRL models are tested with 300 
random episodes and achieves of 100% in successful soft-landing conditions.  
 
To train the adversarial attack detectors, we utilise 30,000 SHAP value sets for normal 
instances and another 30,000 for adversarial instances. Upon completion of training, the 
LSTM-based adversarial attack detector achieved a training accuracy of 96.89% and an 
accuracy of 97.16% on the test set. And the Transformer-based adversarial attack detector 
achieved a training accuracy of 96.26% and an accuracy of 96.58% on the test set.  
 
Then, two experimental tests for the performance of both LSTM-based and Transformer-
based adversarial attack detection during the operation of the DRLs, as well as to evaluate 
the impact of adversarial attacks on the vision-based DRL landing scheme. For the first 
experiment (Task 1), the FGSM attacks are initiated at a random time step during the 
episode and continue to perturb the image for the subsequent time steps until the lander 
contacts the ground. For the second task (Task 2), the FGSM attacks will be randomly 
applied between time 0 to time 130 to continuously attack for 30 time steps. The second 
task aims to test the accuracy of the adversarial detectors after FSGM attacks bring the 
lander to unknow states. In the first Task 1, the LSTM-based detector achieves an average 
accuracy of 96.06% and the Transformer-based detector achieves an average accuracy of 
97.89%. In the first Task 2, the LSTM-based detector achieves a detection accuracy of 
90.16% and the Transformer-based detector achieves a detection accuracy of 92.92%. 
 
For the Taske 1, as the  value decreases, indicating fewer perturbations to the input 
images, there is a decline in detection accuracy. However, this corresponds with an 
increase in the successful landing rate. The detection accuracy for adversarial attacks 
experiences a more pronounced decrease when  =1/255, attributable to the minimal 
perturbation applied to the input image. Despite this, the lander achieves the successful 
landing criteria in all test episodes under these conditions. This outcome implies that the 
feature extractor within the proposed DRL can produce highly accurate features, even with 
minor adversarial perturbations. Consequently, the lander is still able to arrive at the target 
location with the desired velocity. For higher perturbations, i.e.  
attack detector demonstrates a high level of confidence in identifying incoming FGSM 
attacks. However, strong perturbations to the input images can lead to poor performance 
in the current vision-based DRL guidance scheme. 
 
Task 2 has more complexity than the Task 1, the detectors are required to identify 
between adversarial input and anomalies (in such states which never seen in training 
phase). In this case, the Transformer-based detector works better than the LSTM-based 



Explainable Secure Deep Learning Software for Spacecraft GNC Systems 

4000140064 - Executive summary 

detector with around 2% higher is detection accuracy. From the results in both tasks, the 
Transformer-based detector outperforms the LSTM-based detector. 

5. Conclusion 
In this project, we proposed the first comprehensive study on adversarial attacks for AI-
based space GNC systems and their detection mechanisms. Two scenarios of space AI-
based GNC are studied. 
 
The first study examines the impact of adversarial attacks on CNN-based spacecraft 
relative pose estimation in space rendezvous scenarios. To achieve this, we first 
developed a 3D simulator to render the camera view in a space rendezvous mission. 
Then, a CNN-based relative pose estimation algorithm was proposed. FGSM adversarial 

an LSTM-based adversarial attack detector was proposed to identify adversarial attacks 
on in
generate SHAP values-
experiments were carried out to evaluate the performance of the CNN-based spacecraft 
relative pose estimator, the impact of adversarial attacks, and the performance of the 
proposed adversarial attack detector on both synthetic datasets and real-world data of 
digital and physical adversarial attacks. 
 
The second study initiates an investigation into the effects of adversarial attacks on a 
vision-based DRL framework for guidance and control in a Mars landing scenario. A 
planetary landing simulator was developed to generate optical data along with 
corresponding aerodynamic parameters for the target landing scenario. The project 
introduces a DRL scheme, relying solely on visual data for observation. Following this, an 
adversarial attack detector is introduced, utilising SHAP value-based explanations to 
pinpoint adversarial manipulations in input images. A series of experiments were 
conducted to assess the efficacy of the vision-based DRL in landing guidance and control, 
the influence of adversarial attacks on DRL performance during the landing phase, and the 
effectiveness of the newly proposed adversarial attack detector.  

6. Future Work 
The solution we are aiming to develop in this project is going to be based on the orbital 
relative navigation scenario and Mars landing guidance and control. It will be specific to 
the AI systems adopted as deep GNC scheme. Generalising the solution to other space 
guidance scenarios and other navigation and control space scenarios can be done for 
further requested development as the same principle of the deep adversarial detection 
scheme we develop here could be extended to those other scenarios including other deep 
learning GNC schemes. 
 
Also, while the proposed adversarial attack detectors demonstrate high accuracy in 
detection, the current work has not thoroughly examined the actual recourse following the 
detection of these attacks. The integration of the AI-based space GNC systems with the 
adversarial attack detector to develop adversarial defence mechanisms presents a 
promising avenue for future work. 
 


