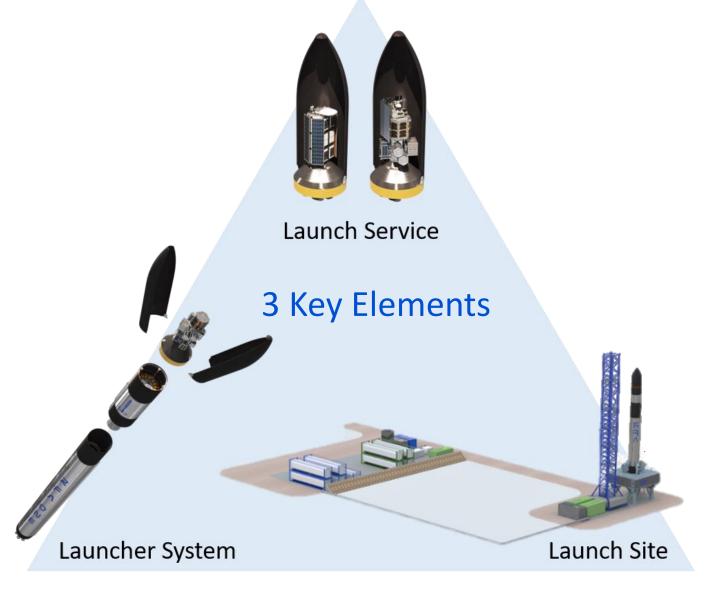


ESA MINI/MICRO-LAUNCHER FINAL PRESENTATION

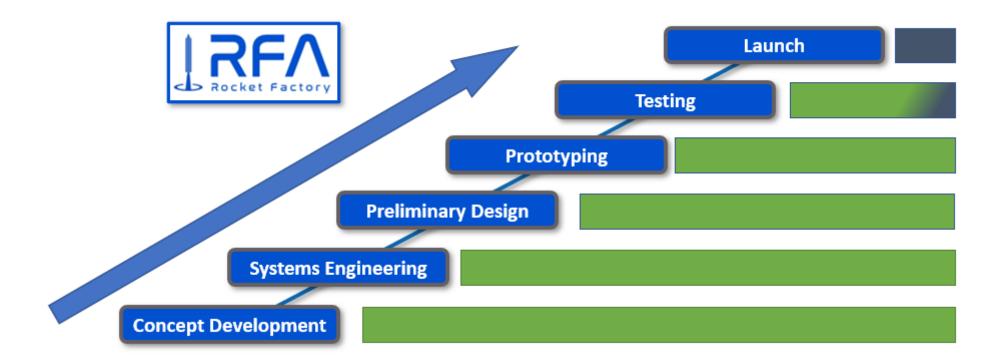
Augsburg, 19 June 2024

AGENDA



Project Overview

- WP 1000 Company Robustness Assessment
- WP 2000 Launch Service Feasibility
- WP 3000 Gap Analysis & Roadmap


WP1000: RFA ROBUSTNESS ASSESSMENT

WP1000: RFA LAUNCH SYSTEM DEVELOPMENT

WP1000: RFA ONE LAUNCH SYSTEM

Helix Propulsion System Cluster

- Staged-combustion technology
- Up to 1,300kg to 500 km SSO

TC 05m

Redshift OTV

- Proprietary orbital stage
- On orbit maneuvers
- In-plane phasing
- Inclination & RAAN changes

- Common tank design made of stainless steel
- Maximum cost efficiency

WP1000: RFA PAST MILESTONES

First successful test of RFA turbopump

3RD STAGE ENGINE

First test fire of the 3rd stage engine

NEW FACILITY

100+ employees, 5000 sqm facility

1ST DEMONSTRATOR

Burst test of core stage

RFA FOUNDATION

Independent company, own facility, full private invest

2ND STAGE PROTOTYPE

Completion and qualification of 2nd stage tank

TEST INFRASTRUCTURE

Completion of engine prototype and test site implementation

STAGED COMBUSTION

Executing main engine test campaign

WP1000: RFA ONE ON THE ROAD TO LAUNCH

ENGINE QUALIFIED

Integrated flight engine qualification

INTEGRATED 1st STAGE

Fully integrated first stage with 9x engines

RFA ONE FIRST LAUNCH

Inaugural test flight with 150 kg DLR Payload

INTEGRATED 2nd STAGE

Fully integrated 2nd stage test

3rd STAGE STACK TEST

Fully integrated 3rd stage with 1x Fenix engine

WP1000: RECENT S1 HOT-FIRE TEST

WP1000: FINANCIAL PERSPECTIVE OF RFA ONE

- Provide among the best price in the space industry by achieving high levels of frugality and efficiency for development and manufacturing
- Deliver the highest lift-off performance of small launch vehicles

- Review of the satellite interface requirements document
- Conducted mission design and compute flight trajectory
 - Launch vehicle model created
 - Preliminary mission constraints derived
 - Launch site options considered
- Establish launcher performance and conduct trajectory optimization
 - Conducted 3D of trajectory calculations for performance assessment
 - Created deployment propagation of re-entering stages

Review of the safety submission

- EEZ areas and hazard areas defined for DRACO
- Ground safety analysis performed
- Perform payload accommodation analysis
 - Dedicated payload dispenser created for each satellite
 - Fairing clearance analysis performed
 - Preliminary structural analysis performed for each payload

- DRACO satellite will be securely positioned on RFA's dedicated adapter
- Interface with the DRACO satellite through its dedicated payloads node
- After the circularization the deployment sequence is initiated to deploy the rideshare payload (optional)
- Unique flexibility for microlaunchers because of Redshift OTV to select the impact point location caters to the needs of tracking aircraft during re-entry

- RFA ONE launch vehicle ideally suits this mission due to its payload class, low-cost, and flexibility of utilising the Redshift OTV
- Trajectory of the LUMIO mission with the aim to go to a lunar Halo orbit starts with a launch into a highly elliptical orbit towards either the Earth-Sun Lagrange 1 or 2 point
- Mission insertion is feasible both from Kourou and SaxaVord, while a launch from Kourou enables higher performances due to Earth's rotation

- Leveraging the remarkable dV performance of Redshift, depending on payload mass, RFA ONE minimizes steering losses and maximizes payload performance
- Similar to the LUMIO mission, the launch trajectory from Kourou follows an elliptical transfer orbit
- Flexibility of the number of burns required for payload delivery allows for tailored mission durations, ensuring efficient and precise insertion

WP2000: LEO-PNT MISSION

- Redshifts flexibility and performance enables to deliver all four satellites at the same launch/time as a constellation
- Targeted orbit for the final orbital insertion is a 500 km SSO
- Studied the most optimal dates to launch the different LEO-PNT missions
- Perform a direct RAAN shift manoeuvre, to efficiently place two pairs of Pathfinder-B satellites into separate orbital planes
- Quickest delivery of the Pathfinder satellites within a dedicated launch

TN5 Gap Analysis outcomes:

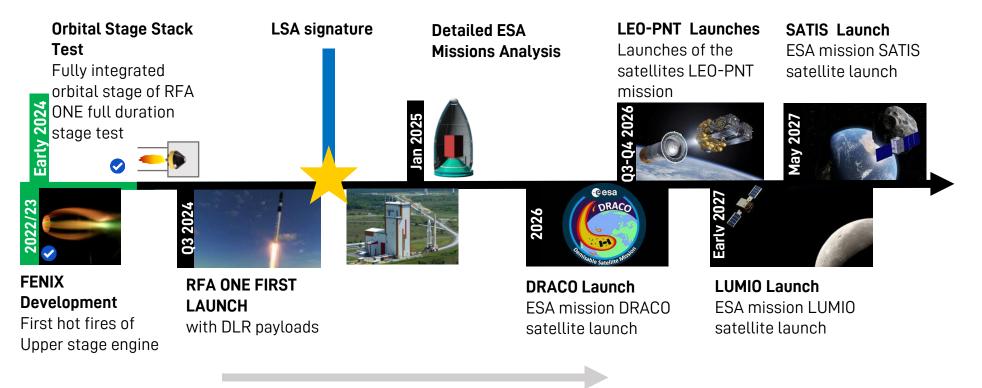
• All missions of this call can be realized with the RFA ONE launch system

- 3-stage architecture as key enabler for mission performance beyond LEO
- Redshift provides mission flexibility thanks to its reignition capabilities that allows for orbit changes
- Beyond LEO aspects are part of the RFA ONE qualification program

	Mission	Launch Site	Orbit
\heartsuit	DRACO	SaxaVord	LEO
\heartsuit	LUMIO	SaxaVord	Beyond LEO
\bigotimes	SATIS	Low Incl	Beyond LEO
\bigotimes	LEO-PNT	SaxaVord	LEO

WP3000: LAUNCH SITE

- Main launch site in SaxaVord Spaceport UK soon operational for first launch in summer 2024
- Particular missions such as SATIS will require a low inclination launch site
- Binding term-sheet with CNES for launch pad on Diamant launch complex at CSG in development


- License with UK CAA on track for first SaxaVord launch Summer 2024
- Demonstrates RFA's compliance with the UK Space Industry Act 2018 (SIA), the Space Industry Regulations 2021 (SIR), and the associated CAA
- Launch site partner SaxaVord Spaceport was granted a launch site operator license in December 2023
- Granted range control license in April 2024 by the CAA
- CSG launch site and process in implementation

- Increasingly important not only for ESA but any sustainable actor
- RFA ONE is very favorable
 - Three-stage architecture of non-toxic liquid propellants
 - No pyrotechnical elements
 - Redshift de-orbitation capabilities
 - \rightarrow No space debris from vehicle

All four ESA missions of this call can be provided with the current development of RFA One launch system

CSG Launch Pad Development and construction of Launch Pad on ELM site at CSG

THANK YOU FOR JOINING OUR MISSION!

Follow us on Social Media!

- in Rocket Factory Augsburg RFA
 - @rfa_space
- @rfa.space
- Rocket Factory Augsburg