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ABSTRACT

In this paper, synergy refers to a process where the use of multiple satellite observations makes
the retrieval more precise than the best individual retrieval. Two general strategies can be used
in order to use multi-wavelength observations in an inversion scheme: First, the multi-wavelength
observations are merged in the input of the retrieval scheme. This means that the various satellite
observations are used simultaneously and that their possible interactions can be exploited by the
retrieval scheme. Second, each multi-wavelength observations are used independently to retrieve a
same geophysical variable and then, these independent retrievals are combined a posteriori using a
simple weighted averaging for example. In this paper, it is shown that the first approach provides
better synergy results because the retrieval process is able, in this case, to exploit the possible
interactions between the various input informations. Since all the information is provided at the
same time to the retrieval process, it is better suited to optimize their grobal use.
The two retrieval approaches are tested and compared using an application for the retrieval of
atmospheric profiles and integrated column quantities (water vapour, ozone and temperature) using
MetOp observations from IASI, AMSU-A and MHS instruments. The infrared and microwave
observations appear to have a good retrieval synergy for atmospheric temperature, water vapour,
and, surprisingly, for ozone thanks to the indirect synergy.

1. Introduction

Synergy refers to a process where the use of multiple
satellite observations makes the retrieval more precise than
the best individual retrieval. In (Aires 2011), it has been
shown that various synergy mechanisms exist: (1) addi-

tive synergy, the simpler mechanism, where the addition
of multiple informations on a same geophysical variable
increases naturally the retrieval accuracy. (2) Indirect syn-
ergy, where the relationships between the geophysical vari-
ables are exploited by the retrieval scheme. (3) The non-
linear synergy acts when interaction terms of the satellite
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observations are relevant for the retrieval. (4) De-noising
synergy refers to situations where the instrument noise of
the observations are correlated in some sort. All these syn-
ergy mechanisms make the simultaneous use of all the ob-
servations beneficial for the retrieval with results more per-
formant than the best individual retrieval.

It was shown in (Aires 2011) that the NN inversion
model is particularly well adapted to exploit the synergy
among satellite observations. In (Aires et al. 2011b), the
InfraRed (IR) + MicroWave (MW) synergy from MetOp
observations was tested for the retrieval of atmospheric
temperature and water vapour profiles. These tests were
performed using “theoretical” data from Radiative Trans-
fer (RT) simulations.

In this paper, real observations will be used instead
of the RT simulations: from IASI (Infrared Atmospheric
Sounding Interferometer), AMSU-A (Advanced Microwave
Sounding Unit-A) and MHS (Microwave Humidity Sounder)
instruments. Furthermore, the retrieval scheme will re-
trieve atmospheric profiles not only for temperature and
water vapour, but also for ozone. The total column amount
of water vapour and ozone will be retrieved too. The IR
and MW observations appear to have a good retrieval syn-
ergy for atmospheric temperature, water vapour, and, sur-
prisingly, for ozone too.

Two general strategies can be used in order to use multi-
wavelength observations in an inversion scheme: First, the
multi-wavelength observations are merged in the input of
the retrieval scheme. This means that the various satel-
lite observations are used together and simultaneously by
the retrieval scheme. Second, each multi-wavelength ob-
servations are used independently to retrieve a same geo-
physical variable and then, these independent retrievals are
combined a posteriori for example using a simple weighted
averaging. It will be shown that the first approach provides
better synergy results because the retrieval process is able,
in this case, to exploit the possible interactions between
the various input informations. Since all the information
is provided at the same time to the retrieval process, it is
better suited to optimize their global use.

First, the datasets used in this study will be described,
along with the necessary pre-processing of the data (sec-
tion 2). A preliminary analysis of the satellite observations
information content will be conducted in section 3. The re-
trieval methodologies and synergy measres are presented in
section 4. The results will be described in section 5 using
real observations. The retrieval of both integrated quan-
tities and profiles will be assessed. Finally, section 6 will
conclude this study and present the perspectives of this
work.

2. Datasets

a. The satellite observations

Launched on October 19, 2006, MetOp is Europe’s first
polar-orbiting satellite dedicated to operational meteorol-
ogy. It is a series of three satellites to be launched se-
quentially over 14 years, forming the space segment of EU-
METSAT’s Polar System (EPS). MetOp carries a set of
“heritage” instruments provided by the United States and
a new generation of European instruments that offer im-
proved remote sensing capabilities to both meteorologists
and climatologists. The new instruments increase the ac-
curacy of temperature humidity measurements, wind speed
and direction, and atmospheric ozone profiles. MetOp flies
in a polar orbit corresponding to local “morning”.

In this study, the observations from the following in-
struments will be used. The AMSU-A measures the oxygen
band between 50 and 60 GHz, for the retrieval of atmo-
spheric temperature profiles (Mo 1996). It is a cross-track
scanning radiometer, with ±48.3◦ from nadir with a total
of 30 Earth fields-of-view of 3.3◦ per scan line, providing
a nominal spatial resolution of 48 km at nadir. The in-
strument completes one scan every 8 seconds. The swath
width is approximately 2000 km. AMSU-A is divided into
two separate modules:

• AMSU Module A-1 with channels 3 to 15: 12 sound-
ing channels in the 55 GHz O2 band and one at the
89-GHz window;

• AMSU Module A-2 with channels 1 and 2 at 23.8 and
31.4 GHz.

AMSU-A is used in conjunction with the High-resolution
Infrared Sounder instrument to estimate the global atmo-
spheric temperature and humidity profiles from the surface
to the upper stratosphere (≃50 km). AMSU-A measure-
ments also provide precipitation and surface information
including snow cover, sea-ice concentration and soil mois-
ture.

The MHS is designed to measure the atmospheric wa-
ter vapour profile, with 3 channels in the H2O line at
183.31 GHz plus two window channels at 89 and 150 GHz
(Hewison and Saunders 1996). MHS scans the Earth from
left to right, in a vertical plane. Each swath is made up
of 90 contiguous individual pixels sampled every 2.67 sec-
onds. The scan is also synchronized with the AMSU-A1
and A2 instruments.

IASI is a state-of-the-art Fourier transform spectrome-
ter based on a Michelson interferometer coupled to an inte-
grated imaging system that observes and measures infrared
radiation emitted from the Earth (Chalon et al. 2001). It
has been developed by the French space agency CNES. The
optical interferometry process offers fine spectral samplings
of the atmosphere in the infrared band between the 3.2
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and 15.5 microns representing 8461 channels. This enables
the instrument to retrieve temperature and water vapour
profiles in the troposphere and the lower stratosphere, as
well as measure concentrations of ozone, carbon monox-
ide, methane and other compounds. For optimum opera-
tion, the IASI measurement cycle is synchronized with that
of the AMSU-A1 and A2 (Advanced Microwave Sounding
Units). This instrument was designed to reach accuracies
of 1 K in temperature and 10% in water vapour with ver-
tical resolutions of 1 km and 2 km respectively for cloud-
free scenes. The signal-to-noise of IASI third band (2000-
2780 cm−1) is too low (measured radiance are low, and
instrument noise is too high) and these channels cannot
been used: only the first 5000 channels of the first two
bands are used in the following.

The volume of data is very important because of the 8461
channels of IASI. In order to sample as well as possible the
seasonal variability while keeping the volume of data rea-
sonable, four weeks of data have been gathered: January,
April, July, and October 2008. The datasets that we ex-
tracted have a global coverage, but in order to limit practi-
cal difficulties (space memory, computing time and sea-ice
mask), only pixels from ±30◦ in latitude have been kept
in the experiments. This spatial limitation doesn’t reduce
the generality of the following results.

It has been shown in (?) and (Aires et al. 2011b) that it
is very important, before applying the retrieval algorithm,
to preprocess the IASI data using a Principal Component
Analysis (PCA). This is usefull to compress the data, and
also to reduce the instrument noise. In order to process
the observations of the two wavelengths considered (MW
and IR) in a systematic way, we have also used a PCA for
the MW observations. Based on the percentage of variance
explained by each PCA components, we selected 20 com-
ponents for IASI and 12 for MW. This is a rough estimate
of the number of independent pieces of information that
can be extracted from each wavelenghts.

b. The ECMWF analyses

The atmospheric profiles and surface properties from
the 6-hourly operational global analyses from the Inte-
grated Forecasting System (IFS) of the European Center
for Medium Range Forecasting (ECMWF) (?) are used in
this study. The following information is kept: the temper-
ature, water vapour (relative humidity in % hereafter) and
ozone profiles on 43 pressure levels ranging from 1000 to
1 hPa (these levels have been interpolated for the inital 21
levels in order to be used with the RTTOV code). These
analyses are provided on a regular 1.125◦ × 1.125◦ grid,
every six hours.

The higher-level layers have no real variability and there
is no reason to maintain them in our retrieval scheme and a
selection had to be made: (1) All the levels are kept for the
temperature retrievals; (2) The five highest atmospheric

layers are suppressed for the water vapour (higher than
10 hPa); (3) And the eight highest layers are suppressed
for the retrieval of ozone (higher than 50 hPa). The cloud
cover information from the ECMWF analysis is also kept,
to filter out in our retrieval process the cloudy scenes.
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Fig. 1. Top: Auto-correlation matrices for atmospheric
profiles of (from left to right) Temperature (T), Relative
humidity (R), and Ozone (O3). Bottom: Correlations
among the atmospheric profiles (from left to right): T &
R, T & O3 and R & O3.

Fig. 1 represents the correlations between the geophys-
ical atmospheric profiles, among themselves (Top) and be-
tween them (Bottom). It can be seen that the vertical
correlations for temperature are stronger for temperature
than for water vapour. The ozone has a strong vertical
correlation in the upper troposphere, where the ozone con-
tent is higher. The correlation between the profiles indicate
that the temperature profile is strongly correlated to the
water vapour for pressures higher than 250 hPa. There ex-
ist also a strong correlation between the temperature and
ozone for both surface and upper layers. The correlation
between water vapour and ozone is less important but it is
still significant.

c. The aerosols

A climatology of aerosols in some in situ locations has
been obtained from AERONET stations. AERONET is
a globally distributed network of automated ground-based
instruments and data archive system, developed to sup-
port the aerosol community. The instruments used are
CIMEL spectral radiometers that measure the spectral ex-
tinction of the direct Sun radiance (Holben et al., 1998).
The Aerosol Optical Thicknesses (AOTs) are determined
using the Beer-Bouguer Law in several spectral bands. For
this study, level-2 data are used and consist of AOTs at
440 nm, 675 nm and 870 nm retrieved at least every 15 mn
during day time. Level-2 data are cloud-free and qual-
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ity assured retrieved from pre- and post-field calibrated
measurements (Smirnov et al. 2000). The estimated accu-
racy in the AERONET AOTs is between ±0.01 and ±0.02
depending on the wavelength, for an airmass equal to 1
(Dubovik et al., 2000).

A spatial interpolation scheme has been applied to ob-
tain AOT fields at a horizontal resolution of 1.125◦×1.125◦

(same as the ECMWF analyses). This spatial interpola-
tion scheme is rather crude (a bilinear interpolation). In
order to obtain better AOT fields, a dedicated interpola-
tion scheme would have to be developed specifically for
AOT fields. This could be based for example on a PCA of
AOT fields but since such a dataset is not available, this
approach cannot be used here. The alternative would be to
develop an AOT retrieval scheme based on the satellite ob-
servations, but this is beyond the scope of this study. This
aerosol information is used to identify the optical thickness
regime of each particular scene. This is important for the
IR observations.

d. Spatio-temporal coincidences

The satellite observations have to be matched in space-
time coincidence. The three instruments being onboard the
same satellite, good coincidences are obtained. The collo-
cation of the MW observations is easy, the instruments
have been designed to facilitate this step: each AMSU-A
pixel is associated to the corresponding 3×3 higher reso-
lution pixels of MHS. The MW observations are then pro-
jected into the IASI pixels using a closer pixel rule. The
final resolution of the dataset is the IASI resolution.

The aerosol information presented in section c is pro-
jected in the 1.125◦ × 1.125◦ regular grid of the ECMWF
analysis data of section b. This analysis and aerosol dataset
is then projected into the satellite observations. A time
threshold of 30 mn is used for this collocation, only some
of the satellite orbits are kept around the analysis time
steps at 0, 6, 12 and 18 h UTC. For each satellite pixel,
the closest analysis grid point is taken, this means that
there can be multiple use of the same analysis grid cell).

Only oceanic situations are kept. The total cloud cover
for the ECMWF is used to reject all the cloudy situations.

3. Preliminary analysis

a. Sensitivity analysis

The Jacobian of the RTM are estimated for the three
instruments that are considered here, namely AMSU-A,
MHS and IASI. RTTOV radiative transfer model provides
analytical Jacobians. However, for practical reasons linked
to computational time, the Jacobians are estimated using
RTM simulations on perturbed input profiles. The pertur-
bations are chosen to be 1 K for temperature and 10 %
for relative humidity and ozone (in PPMV) (Please, see
(Garand and et Al. 2001) for an intercomparison study of

such Jacobians). Figures 2, 3 represent respectively the
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Fig. 2. Jacobian of the AMSU-A+MHS observations with
respect to temperature (Top), water vapour (Middle), and
ozone (Bottom) atmospheric profils for a typical ocean
scene over the Tropics.

temperature, humidity and ozone Jacobians for AMSU-A,
MHS, and IASI for a typical Tropical situation over the
ocean. It appears that MHS instrument is as expected
more sensitive to changes in relative humidity than to changes
in temperature. AMSU-A provides information nicely spread
in the vertical. Its window channels are sensitive to both
temperature and water vapour. MHS provides a better
vertical coverage for water vapour. As expected, there is
no sensitivity to ozone in the MW observations. COM-
MENTER IASI (15 micron pour temperature, et water
vapour)

The magnitudes of Jacobians are comparable for the
three instruments, including the infrared from IASI. How-
ever, the vertical resolution for IASI is higher for water
vapour in the upper troposphere, and for the temperature
for the whole troposphere. Furthermore, the IASI instru-
ment possesses a lot of channels, this has a lot of conse-
quences for the retrievals (i.e., computation time for the
retrieval, necessity to perfrom a dimension reduction on
the observed spectra, redundancy considerations for the
de-noising, etc.).
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Fig. 3. Jacobian of the IASI observations with respect
to temperature (Top), water vapour (Middle), and ozone
(Bottom) atmospheric profils for a typical ocean scene over
the Tropics for the first two band of IASI.

b. Correlation matrix analysis

The correlation matrices between the temperature, wa-
ter vapour and ozone atmospheric profiles with respect
to the observations in the MW, respectively IR are rep-
resented in Fig. 4, respectively Fig. 5. These correlation
matrices using real observations provide a good and simple
information content analysis. They can be related to the
sensitivity of the observations to the geophysical parameter
of interest, but also to the correlation of the observations
with a parameter that is itself correlated to the parameter
of interest (indirect synergy).

For instance, let us examine the correlation between
the microwave observations and the water vapour. The
major water vapour line is located at 183 GHz, with a
much weaker line at 22 GHz. Outside these two lines,
the contribution of the water vapour continuum increases
with the frequencies. One would expect that the correla-
tion between the observations and the water vapour to be
higher (in absolute value) in the absorption lines, and to
increase with the continuum absorption. For pressures be-
low 200 hPa, the amount of water vapour is limited and
correlation structures between the water vapour and the
observations in the H20 lines or in window channels are
very likely related to the correlation of the water vapour
between the different levels in the ECMWF analysis. From
the analysis of the Jacobian in water vapor, we saw that the
sensitivity to water vapor was high in the 183 GHz channel
but very low in the O2 band aroud 60 GHz. The correlation
with the observations in the O2 band is to be attributed not
to the sensitivity of the Tbs to the water vapor directly but
to the correlation between the water vapour with the tem-

perature. Note that the correlation with the temperature
and with the water vapour shows rather similar patterns
(top and middle figure), in relation with the correlation be-
tween water vapour and temperature. By the same token,
the microwave observations are not expected to be sensi-
tive to the ozone variation. The correlation between the
microwave observations and the ozone in the O2 band is
actually due to the correlation between temperature and
ozone, in the ECMWF reanalysis.

Similar conclusions can be derived for the infrared. The
strong water vapour band above 1500 cm−1 induces large
correlation between the observations and the water vapour.
This frequency band is also very correlated to the temper-
ature, as expected from the analysis of the Jacobians in
temperature. In the CO2 absorption band, the correla-
tion between the IASI observations above 645 cm−1 and
the temperature is large, negative in the lower atmosphere
and positive in the higher atmosphere, related to the in-
version in temperature in the atmosphere. As a conse-
quence, a 1D-var retrieval scheme that uses the Jacobians
is expected to have a different behavior, than a statistical
retrieval method such as the NNs.

We also observe large correlation in this frequency range
with the water vapour and the ozone, due to the intrinsic
correlation between the three atmospheric variables in the
atmospheric profiles. The O3 band above 1000 cm−1 in-
duces similar effect on the water vapour and temperature.

The retrieval methodologies is trained on the database
of satellite observations and coincident ECMWF atmo-
spheric profiles. We have to keep in mind that it will not
only exploit the direct sensitivity of the observations to the
selected atmospheric parameter, but also benefit from the
correlation between the different variables at the different
levels, and from the correlation of the given variable along
the vertical. We also have to be aware that limitation in the
atmospheric profiles such as the one pointed out for ozone
can limit the quality of the retrieval for this variable.

4. Retrieval methodology

a. Architecture of the neural network inversion models

NN techniques have proved very successful in devel-
oping computationally efficient remote sensing algorithms.
The Multi-Layered Perceptron (MLP) model (Rumelhart
et al. 1986) is selected here. It is a non-linear mapping
model: given an input TB (i.e., the satellite observations),
it provides an output f (i.e., the geophysical variables to
retrieve) in a non-linear way. In this paper, a NN model
with only one hidden layer will be considered. The MLP
model is defined by the number of input neurons (i.e.,
the size of the inputs, number of channels), the number
of ouputs (i.e., the size of the geophysical variables to re-
trieve) and the number of neurons in the hidden layers that
control the complexity of the model. A study has to be
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Fig. 4. Correlations between AMSU-A and MHS obser-
vations and the ECMWF atmospheric profiles of tempera-
ture, water vapour and ozone.
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Fig. 5. Correlations between IASI observations and
the ECMWF atmospheric profiles of temperature, water
vapour and ozone.

Configuration Number of Hidden Number of
inputs neurons outputs

Temp-IASI 20 20 21
Temp-MW 12 20 21
Temp-IR+MW 32 25 21
WV-IASI 20 20 16
WV-MW 12 20 16
WV-IR+MW 32 25 16
O3-IASI 20 20 13
O3-MW 12 20 13
O3-IR+MW 32 25 13

Table 1. Architecture of the NN retrieval models

conducted to define the optimal number of neurons in the
hidden layer. A balance needs to be found: Too many free
parameters in the model can conduct to the over-learning
(over-parameterization) leading to degraded generalization
properties. On the contrary, too few free parameters will
yield under-parameterization and bias error of the model.
Table 1 represents the number of neurons in input, hidden
and output layers for the various configuration that are
used in this paper.

Since the NN performances will be compared using dif-
ferent numbers of inputs (only the IR, only the MW or
both), it is important to address the relative stability of
the training. A NN with more inputs will have more free
parameters and more information to exploit; this can com-
plexify the NN training, and the learning step can become
much longer. An over-parameterization can led to over-
training if the learning process is not regularized. Good
testing and validation datasets, stopping criterion, and the
multiple initialisation of the weights for the learning tend
to reduce this problem. The following Tab. 1 indicates the
major characteristics of the NN models used in this study:
the number of neurons in input, hidden and output layers.

The NN is a remarkable model for information merging
(Aires et al. 2011b). Terms such as x1 · x2 are sometimes
introduced in regression models y = f(x1, x2) to allow for
the interaction of two inputs. These interaction terms are
non-linear and can directly be represented by NN architec-
tures and their use is optimized during the learning process.
Saturation effects also play an important role when data
is combined: an output can be sensitive to an input for a
particular range and to another input for a different range.
In order to represent this behavior, saturation effects need
to be used in the regression model. This is well represented
by the sigmoid functions used by each neuron in the NN
model.

6



b. The learning, testing, and validation datasets

The NN is trained to reproduce the behavior described
by a database of samples composed of inputs (i.e., the real
observions TBs) and their associated outputs (i.e., the geo-
physical variables f), for e = 1, . . . , N with N the number
of samples in the training database. Provided that enough
samples (TBe,fe) are available, any continuous relation-
ship, as complex as it is, can be represented by a MLP
(Hornik et al. 1989; Cybenko 1989).

A quality criterion that measures the discrepancies be-
tween the NN outputs and the desired targets from the
learning dataset has to be defined. In this study, the out-
puts of the NN are the atmospheric profiles (temperature,
water vapour and ozone) and integrated column quanti-
ties of water vapour (i.e. TCWV ) and ozone (i.e. TCO3).
This quality criterion is minimized during the learning of
the NN, it has to be carefully chosen.

The learning algorithm used to train the NN is the clas-
sical Back-Propagation algorithm. This optimization tech-
nique has long proved its efficiency for such problems.

Over the whole dataset of coincident real satellite ob-
servations and analyses, 60% are kept for the learning, 20%
for the testing, and 20% for the validation. The training
of the NN, i.e., the calibration of the retrieval scheme is
performed on the learning dataset.

The testing dataset is used during the learning to test
the NN results on data not directly used in the learning.
This allows measuring the generalization capacity of the
NN, i.e., its ability to perform retrievals on other data.
During the learning, the generalization errors are moni-
tored and the learning is stopped when, after a decrease,
they start to increase. This procedure avoids the over-
training of the retrieval, i.e., the problem of an algorithm
that performs very well on its learning dataset, but poorly
on other data.

The testing dataset is used several times, first to mea-
sure the generalization capacities of the NN on each step
of the learning process, second for all the tested NN con-
figurations, and finally for all considered retrieval configu-
rations (e.g., angle, optical thickness). As a consequence,
the whole NN selection process could “learn” the testing
dataset (i.e., be biased towards it) and the evaluation of the
generalization errors could become misleading. To avoid
this problem, another independent dataset is used: the val-
idation dataset. It is only used to estimate the retrieval er-
rors on an independent dataset, once the learning is done,
and once the model is chosen.

c. Regime selection

The retrieval algorithm has been developed for various
configurations:

• Viewing Zenith Angle equal to 0, 10, 20, 30 or 40◦;

• Solar Zenith Angle equal to 40, 50 or 60◦;

• Aerosol Optical Thickness equal to 0.0, 0.1 or 0.2;

• Land or ocean cases;

• Clear or cloudy situations.

This regime selection results in 5 × 3 × 3 × 2 × 2 = 180
datasets designed to train 180 specialized retrieval schemes.
However, only the clear cases over ocean are considered in
the retrieval tests in this study. Furthermore, in order to
limit the impact of the aerosols in the visible measure-
ments, only AOT <0.05 are kept. As a consequence, a
total of fifteen NNs have been trained.

d. Physical versus empirical retrievals

In order to train the NN, two strategies could be used:

• The inversion can be trained on a learning database
composed of the atmospheric profiles from the ECMWF
analysis, along with the simulated observations in the
two wavelength ranges derived from RT calculations
(instead of real observations). This type of inver-
sion is said to be a “physical” inversion, as it uses
a physical RT model. However, this second possibil-
ity requires a preliminary calibration step to insure
that the RT simulations and the real observations are
“compatible” (i.e., have similar statistics).

• The training can also be done using a learning database
composed of the satellite observations and collocated
profiles from ECMWF analysis. This type of scheme
is said to be an “empirical” inversion because no RT
model is used to solve the inverse problem.

The first approach involves explicitly two transformations,
namely the calibration of the satellite data and the actual
retrieval (Aires et al. 2010). The second approach involves
only one transformation of the real observations: it mixes
the calibration and the retrieval in a unique procedure.
Both methods could lead to satisfactory results, but the
second one is preferred here because obtaining a good cali-
bration procedure for both the IR and MW is a particularly
difficult task.

The use of the ECMWF analyses as the “truth” for
the training of the Neural Networks (NNs) is justified be-
cause these analyses are the best knowledge of the state of
the atmosphere and surface: all the available satellite ob-
servations, all the in situ measurements from the weather
stations have been assimilated in the best weather/climate
model.

e. Synergy measures

1) Synergy factor

A synergetic scheme refers to an algorithm that uses
simultaneously or hierarchically the observations of two or
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more spectral ranges in order to obtain a more accurate
retrieval than the independent retrievals. We define a syn-
ergy factor of a retrieval scheme using R sources of infor-
mation (x1, . . . , xR) (each one can be multivariate) as the
ratio of the errors of the retrieval using the best single infor-
mation, min

i=1,...,R
E(xi) with the errors of the retrieval using

all the sources of information, E(x1, . . . , xR). In terms of
percentage of synergy, this corresponds to:

Fsyn = 100 ·





min
i=1,...,R

E(xi)

E(x1, . . . , xR)
− 1



 . (1)

There is synergy when this ratio is positive. This synergy
measure can be used for any type of algorithm, including
the a posteriori combination of products described in the
following section.

2) A posteriori combination versus synergetic data
fusion

In this study, the goal is to merge synergeticaly the IR
and MW observations directly as inputs to the retrieval al-
gorithm. It is unusual to exploit such data fusion/merging
strategy: In many retrieval schemes using multiple wave-
length data, the independent retrievals from each instru-
ment observation are, instead, combined a posteriori. An
example of such a posteriori combination is given, for ex-
ample, in Liu et al. (2011) where two soil moisture es-
timates from two different algorithms using passive and
active microwave observations are simply averaged.

This a posteriori combination by simple averaging can
be optimized, for example, by performing a weighted aver-
age based on the uncertainties of the two retrievals. This
is what is done in optimal interpolation or the assimila-
tion. Combining two independent retrievals fIR and fMW

using IR and MW observations, each one with uncertainty
estimates σIR and σIR is optimal when using:

f̂ =
σ2

MW

σ2
IR + σ2

MW

· fIR +
σ2

IR

σ2
IR + σ2

MW

· fMW (2)

The theoretical uncertainty related to this estimator is
given by:

σ̂ =

√

(

σ2
MW

σ2
IR + σ2

MW

)2

· σ2
IR +

(

σ2
IR

σ2
IR + σ2

MW

)2

· σ2
MW .

(3)
This expression can be generalized when more than two
sources of information are available. Other more sophisti-
cated a posteriori combinations could also be considered,
in particular, regime-dependent combinations which takes
into account the state dependency of the individual re-
trieval uncertainties.

In the following, the results of the retrieval scheme that
performs synergetic merging of the satellite observation in

the inputs of the retrieval scheme will be compared to the
results of this a posteriori combination of independent re-
trievals. The same amount of data is used in both of these
approaches so it is very interesting to compare the results,
in order to see if the merging of the satellite data can ex-
ploit the potential interactions among the observations.

5. Retrieval results

The retrieval of the atmospheric profils is first presented
and the synergy factors are presented for each atmospheric
layers. The retrieval of the integrated quantities (TCWV

and TCO3) is then analyzed, in particular, investigating
the a posteriori combination.

The retrieval statistics are provided for the following
configuration: the aerosol content is low (between 0 and
0.05), Viewing Zenith Angle=40◦ but Solar Zenith Angle
is composited for the various configurations (See subsec-
tion c). Note that similar results have been obtained for the
other configurations. The tests are performed over ocean
under clear sky conditions. Statistics are calculated using
the validation dataset (i.e., data not used in the learning
or generalization datasets), see section b.

a. Temperature, water vapour and ozone profiles

The statistics are provided for retrievals using only MW,
only IR, or IR+MW observations. Fig. 6 represents the
RMS for the retrieval of the atmospheric temperature pro-
file. Surprisingly, the MW retrieval is better than the IR,
especially in the lower troposphere, except in some layers
around 300-100 hPa. REF JACOBIANS AND CORRE-
LATIONS. The IR+MW data fusion, in the NN retrieval
scheme, benefits from a strong synergy, with RMS ranging
from 1 to 1.5 K in most atmospheric layers. The synergy
estimations for these temperature profile retrievals will be
analyzed in the following.

Similar statistical results are given in Fig. 7 for the
retrieval of the atmospheric water vapour profile. The IR
observations from IASI appear to be more informative than
the MW measurements from MHS/AMSU-A. This is par-
ticularly true for the upper troposphere above 300 hPa.
REF JACOBIANS AND CORRELATIONS. The IR+MW
data fusion has statistics...

Since the profiles of ozone have very different ranges of
variability in the lower or higher troposphere, it is more
convenient to represent the standard error of the retrieval
in terms of percentage of errors. It can be seen in Fig. 8
that errors are higher at high altitudes around 100 hPa
(i.e. where the ozone content is higher) and near the sur-
face (where the ozone content is really low). Except for
few lower atmospheric layers, the IR from IASI provides
the best information for the ozone profile retrieval. The
synergy is very good when IR and MW are merged. The
overall retrieval of the ozone atmospheric profile has a good
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Fig. 6. Root Mean Square errors for the temperature re-
trievals from IASI (dot-dashed), MW (dashed), IR+MW
(continuous) instruments. The natural STD of the tem-
perature is also provided (in dotted line) for comparison
purpose.
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Fig. 7. Root Mean Square errors for the water vapour re-
trievals from IASI (dot-dashed), MW (dashed), IR+MW
(continuous line) instruments. The natural STD of the
temperature is also provided (in dotted line) for compari-
son purpose.

quality with levels lower than 30% and often lower than
15%. It should be noted, again, that our absolute uncer-
tainty might be underestimated because the ozone profiles
from the ECMWF analyses might be too simple compared
to real profiles. Furthermore, this study focuses on ±30◦ in
latitude, with possible limitations of the ozone variability
in this region1. It is surprising that MW observations help
improving the IR retrieval of ozone since it has been shown
in the Jacobian study of section a that the MW measure-
ments are not sensitive to ozone. However, it has been seen
in section b that the MW brightness temperatures are cor-
related to the ozone profile (Fig. 4). This illustrates well
that contrarily to a 1D-var inversion scheme that is based
on the Jacobians, is not using the same information than
a statistical retrieval scheme such as the NN that exploits
the correlations.
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Fig. 8. Mean absolute errors, in percentage, for the
ozone retrievals from MW (dot-dashed), IR (dashed), and
IR+MW (continous line) observations.

Fig 9 represents the synergy measured when IR and
MW observations are combined to retrieve temperature,
water vapour and ozone atmospheric profiles. This synergy
factor is based on Eq. (1). Synergy factor ranges from 10
to 15% for temperature for all the considered atmospheric
layers. The synergy for the ozone has similar character-
istics. The synergy for the WV is overall very interest-
ing, between 5 and 15%, in agreement with the retrieval of
TCWV in section b. Water vapour is also positive for most
atmospheric layers, except for the two top layers where it
is known that low information content is provided by the
satellite observations. Numerical instabilities can also be
present.

1Please, note that the limitation of the range of variability of the
variable to estimate is also a difficulty for the retrieval scheme

9



0 5 10 15 20 25
1000

150

2

SYNERGY FACTOR (%)

P
R

E
S

S
U

R
E

 (
hP

a)

 

 

Temperature
Water vapour
Ozone

Fig. 9. Synergy statistics for the retrieval of the tempera-
ture (continuous), water vapour (dashed) and ozone (dot-
ted) atmospheric profiles. The retrieval uses the IR, MW
observations from AMSU-A, MHS and IASI instruments.

b. The integrated quantities

1) Evaluation of the neural network retrieval

In this section, the retrieval of the TCWV and TCO3

variables are performed using the data fusion/merging prin-
ciple described in section 4: the NN model uses simultane-
ously the IR + MW observations to perform the retrieval.

Fig. 10 represents two scatterplots of the retrieved TCWV

(A, left) and TCO3 (B, right) versus the target from the
ECMWF analysis when various satellite observations are
used (MW from AMSU-A and MHS, IR from IASI, and
IR+MW/SYN (the IR+MW/WEI configuration will be
commented in next section). The scatterplots indicate that
the dispersion from the individual instrument retrievals
(MW or IR) is higher than the scatter obtained with the
IR+MW retrieval (in red). This general behavior is con-
firmed for both TCWV and TCO3.

The linear regression of the retrieval versus the target is
also represented, with the same color code. The closer the
linear regression to the diagonal (in black), the better the
retrieval: it means that the natural damping of a statis-
tically retrieved parameter is less of a problem. The best
linear regression line is obtained with the IR+MW/SYN
configuration (in red) meaning that synergy operates well.

The conclusions of these scatterplots are confirmed by
the results presented in Tab. 2, correlation and synergy
statistics are provided for both TCWV and TCO3, for the
IR, MW, and IR+MW configurations.

The MW observations are the better information for the
TCWV (RMS=3.34 kg.m−2), surprisingly better than the
IR observations from IASI (RMS=4.53 kg.m−1). However,

IASI MW IR+MW

RMS error TCWV (kg.m−2) 4.528 3.339 2.895
RMS error TCO3 (DU) 6.588 8.198 4.872
Correlation TCWV 0.893 0.943 0.958
Correlation TCO3 0.921 0.874 0.957
STD error TCO3 (%) 2.6 3.2 1.9
Synergy TCWV (%) 11.7
Synergy TCO3 (%) 26.0

Table 2. RMS, correlation and synergy statistics for
the retrieval of TCWV and TCO3 using IASI, MW, and
IR+MW satellite observations.

it should be noted that the cloud flag that was used to filter
the cloudy situations in this study is based on the total
cloud cover from the ECMWF analysis (see section b) and
this is far from a perfect cloud flag information. It has been
seen, in previous section, that cloudy situations, affecting
more the IR than the MW observations, contaminate our
statistics. However, it is known in the NWP centers that
the MW observations are very important for the quality
of the weather forecast, more than the IR observations,
and our results seem to converge to this statement for the
TCWV . The data fusion of the IR and MW in our retrieval
scheme results in a very interesting synergy factor, 11.7%,
with an RMS=2.948 kg.m−2. The correlation statistics
follow these RMS statistics, the TCWV retrieval in the
IR+MW/SYN configuration has a 0.958 correlation with
the target, which is a very good result.

For the retrieval of the TCO3, the best information is
provided by the IR observations from the IASI instrument
(RMS=6.6 DU) followed by the MW (RMS=8.2 DU). This
could be surprising considering that MW observations are
not physically sensitive to O3. However, the IR and MW
numbers are very close. Furthermore, MW observations
and O3 content have shown strong correlations in Fig. 4.
The MW appears to be linked to O3 (correlation=0.874),
but it is related to an indirect correlation: the MW is re-
lated to temperature and water vapour, and the tempera-
ture and water vapour are themselves related to O3 in the
ECMWF analysis. Our processing of the IR observations
is not perfect (see sections b and c): the cloud and aerosol
flags are not optimal and this is particularly a problem for
the IR. The synergy obtained when IR and MW are used
is impressive, equal to 26%, with a RMS down to 4.9 DU.
The synergy operates even better for the TCO3 than for
the TCWV . The three instruments have a significant con-
tribution when used together. The standard error for the
retrieval of ozone is also provided in percentage, this is a
common way to measure the quality of the ozone retrieval.
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Fig. 10. Scatterplot of the retrieved versus target TCWV (A, left) and TCO3 (B, right) for IASI (blue), MW (magenta),
IR+MW/WEIghted algorithm (magenta), IR+MW/SYNergy (red) retrievals. The linear regression of the scattered data
for each one of the retrievals is also represented using the same color code.

2) Satellite data fusion versus a posteriori combina-
tion of products

In this section, we investigate whether a posteriori com-
binations of products provides similar results than our satel-
lite data merging. We will consider two a posteriori combi-
nations: the simpler one where the two estimates from the
IR and MW are averaged, and the weighted average that
takes into account the uncertainty of each retrieval.

The scatterplots of the retrieved versus the target TCWV

(A, left) and TCO3 (B, right), for the weighted a posteri-
ori combination (in magenta) and the data fusion (in red)
from the NN retrieval exploiting the IR+MW observations
are represented in Fig. 10. The dispersion appears to be
lower for the data fusion retrieval, for both the TCWV and
TCO3. The linear regression of the data fusion is closer to
the diagonal (in black) than the linear regression of the a
posteriori combination, showing that the dynamics of the
TCWV and TCO3 variables is better retrieved by the syn-
ergetic data fusion than by the a posteriori combination.

It is possible to estimate the theoretical retrieval uncer-
tainties from these a posteriori combinations by using the
individual uncertainties of the two independent retrievals
(see Eq. (3)). These theoretical estimates are compared in
Tab. 3 to the real retrieval from the simple and weighted av-
erages a posteriori combinations, and to the NN retrieval in
the IR+MW configuration. The synergy is also estimated
in this Table for the real retrieval (not for the theoretical
estimates).

First, it can be noted that the theoretical estimates (for
both the simple and the weighted averages) are an under-
estimation of the real retrieval uncertainties: instead of
2.813 for the average or 2.687 for the weighted combina-

tion, the actual retrievals have respectively a retrieval un-
certainty of 3.561 and 3.402 kg.m−2 for TCWV . Similarly
for the retrieval of TCO3, the actual retrieval uncertainties
6.301 and 6.15 DU for the simple or weighted averages are
significantly greater than the theoretical estimates (5.528
and 5.135). These significant differences prove that the as-
sumptions to estimate the theoretical uncertainties are too
simplistic: (1) The uncertainties are more complex than
what the Gaussian hypothesis states. (2) The indepen-
dence of the two retrieval errors is not satisfied: even if
the two retrievals are from two different instruments and
wavelength (IR and MW), these uncertainties can be state-
dependent which can introduce correlations among them.
It is not a surprise that the weighted average is of better
quality than the simple averaging because the uncertainty
characterization for each source of information (even if it
is not perfect) is taken into account: The weighted average
will emphasize the observations with lower uncertainties.

Another striking comment is that the a posteriori com-
bination can degrade the best independent retrieval! This
can be observed for the TCWV retrieval, with negative
synergy factors observed (-6.64% and -1.88%). The sim-
plistic mixture of the two independent retrievals can de-
grade the best one if the hypotheses are not correct, as
already mentioned (Gaussian character and independence
of the two retrieval errors). This could indicate a wrong
individual uncertainty assessment, but the errors are well
characterized in this example. This shows that the a pos-
teriori combination is a too simplistic approach. For ex-
ample, the individual retrieval uncertainties are dependent
on the state of the atmosphere, so the weighting of the two
independent retrievals should use such state-dependency.
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A posteriori combination Data fusion
Theoretical Retrieval Theoretical Retrieval Retrieval

- Average - Average - Weighted - Weighted - NN TOTAL
RMS TCWV (kg.m−2) 2.813 3.561 2.687 3.402 2.895
RMS TCO3 (DU) 5.528 6.301 5.135 6.153 4.872
Synergy TCWV (%) -6.64 -1.88 13.29
Synergy TCO3 (%) 4.35 6.60 26.04

Table 3. A posteriori combination versus data fusion retrieval statistics for TCWV and TCO3. For the a posteriori
combination, both theoretical and real statistics are provided.

The comparison with the NN retrieval from the IR+MW
configuration clearly shows that using simultaneously the
two sources of information within the retrieval is much
more performant than just combining a posteriori the in-
dividual retrievals. The synergy is much better exploited
with the satellite data fusion principle. This should not
be surprising (Aires 2011): Using simultaneously all the
sources of information allows to add information2 (i.e., ad-
ditive synergy), reduce the uncertainties when the infor-
mation is redundant (i.e., denoising synergy), but also, and
this cannot be done with a posteriori combination, exploit
the interaction terms (i.e., non-linear synergy). These non-
linear interactions between the various input satellite ob-
servations makes it possible to account for the advantages
and deficiencies of each satellite observation. For example,
when a satellite observation is saturated for a particular
range of the variable to retrieve, the other observations can
help the retrieval. The NN data fusion is able to coherently
combine the two sources of information (IR from IASI and
MW from AMSU-A+MHS) in a way that depends upon
the atmospheric situation.

6. Conclusion and perspectives

a. Conclusions

A retrieval chain has been designed to retrieve the at-
mospheric profiles from the MetOp-A satellite, exploiting
the synergy between different measurements available from
this operational platform. This satellite provides coinci-
dent observations in the IR, IASI and in the microwaves,
AMSU-A and MHS, with nadir geometries. We concen-
trated this work on the major atmospheric parameters,
namely temperature, water vapour and ozone profiles, for
which the selected MetOp-A instruments are particularly
sensitive. This work focused on clear-sky situations over
ocean. The developed methodology is very general and
flexible and can be adapted to other applications, i.e., other
variables, instruments, or environmental conditions.

The results obtained here with real satellite observa-
tions confirm the theoretical results derived from simula-

2If the summation is done optimally, with reliable assumptions.

tions (Aires et al. 2011b). The major conclusions from this
study are:

• The NN approach is very efficient to exploit the syn-
ergy due to its truly multivariate nature and its non-
linear capacities (not all retrieval methodologies can
benefit from the synergy between observations);

• Strong synergies exist between the microwave and the
infrared for the retrieval of atmospheric temperature,
water vapour and ozone. This synergy has been ev-
idenced and quantified for the instruments on board
the MetOp platform;

• Simple statistical retrieval tools can realistically mea-
sure the potential synergy of a set of satellite obser-
vations;

• The synergetic data fusion/merging of the satellite
observations in the retrieval scheme is more perfor-
mant than the a posteriori combination of products
from independent retrievals.

Although the retrieval of atmospheric profiles under
clear-sky conditions over ocean are already considered of
reasonable quality when using one type of instrument only,
the synergetic merging of the observations of different in-
strument improves the results. This study proves that
there is still potential improvement in the retrieval of key
atmospheric variables such as temperature, water vapour,
or ozone profiles if synergy is used, even for supposedly
“easy” conditions. The efficient use of simultaneous ob-
servations in various wavelength ranges makes it necessary
to develop new retrieval strategies, as presented here. The
variational assimilation developed in numerical weather pre-
diction centers also benefits from the instrument synergy
but if the goal is to obtain pure satellite datasets, to vali-
date global circulation models for instance, methods have
to be implemented to use the synergy among all available
satellite observations. The NN approach proved its effi-
ciency in this framework.
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b. Perspectives

The potential use of the synergy between the different
observations opens exciting perspectives, the more difficult
the problem, the higher the potential benefits of synergy.
The visible information from the GOME II instrument is
used to retrieve ozone profiles (Burrows et al. 2005). IASI
also retrieves ozone (Aires et al. 2002; Coheur et al. 2005),
and since we have shown that indirect synergy can also
play so that MW observations can help the ozone retrieval,
it would be very interesting to test the retrieval of ozone
using the IR, MW and VIS synergy. Preliminary tests (not
shown) indicate that the retrieval of ozone is very much
improved when these three wavelength are used.

In this study, all observations were performed from the
same platform. Note that the synergy between observa-
tions can also be applied to instruments on different plat-
forms, although its practical application can be less conve-
nient due to the necessity to have adequate spatial and
temporal matching. The Sentinel suite would certainly
benefit from the synergetic use of different observations
from different satellites. We concentrated here on passive
observations. Synergy can also be found between passive
and active measurements at similar frequencies (this is the
concept behind a mission such as Soil Moisture Active and
Passive, SMAP).

In this first study, only ocean cases have been consid-
ered. The next natural step is to analyze the potential
of using simultaneously IR and MW observations over the
continents. In the MW as well as in the IR, several factors
contribute to make retrieval of atmospheric profiles much
more difficult over land than over ocean. First, surface
temperatures and emissivities are much more variable in
space and time over land than over ocean. Second, in the
microwaves, the land surface emissivities are much higher
than the ocean ones, making the surface contribution to
the signal much larger. Finally, land surface emissivities
are very complex to model, from arid surfaces to dense
vegetation or snow, being dependant upon a large number
of surface parameters that are difficult to estimate, on a
global basis (e.g., soil moisture, soil roughness, lithology,
snow cover and properties).

During the last years, several efforts have been con-
ducted to develop global datasets of land surface emissiv-
ities at both microwave and infrared frequencies (Prigent
et al. 2006; Seemann et al. 2008; Zhou et al. 2011), di-
rectly calculated from satellite observations. The use of
a priori emissivity information has shown its potential to
improve the retrieval of atmospheric parameters, namely
water vapor and temperature over land, in research mode
in the microwaves (Aires et al. 2001; Karbou et al. 2005;
Aires et al. 2011b). Some work has also been done in the
infrared (Seemann et al. 2008). A particularly interesting
idea would be to combine the MW and the IR for the re-

trieval of atmospheric profiles over continents. Using all
wavelength ranges will improve significantly the character-
ization of the surface, and the retrieval would benefit from
a higher constrain in the inversion process, especially in
the lower atmosphere. We suggest to extent the use of
MW and IR observations from MetOp, for the retrieval of
atmospheric profiles over land, with the help of the tools
recently developed to estimate the land surface emissivities
in the MW and in the IR.

Remote sensing under cloudy conditions would also cer-
tainly benefit from the synergy between the VIS, IR, and
MW domains: First, the retrieval of cloud characteris-
tics would benefit from the multi-wavelength observations
(Aires et al. 2011a). Second, with clouds better constrained,
the atmospheric retrieval would be facilitated. MW mea-
surements are much less sensitive to clouds than the VIS
and the IR, and to some extent, they can provide infor-
mation in the clouds and below. Thin cirrus are essen-
tially transparent at MW frequencies up to 200 GHz. Liq-
uid clouds mostly interact with the MW radiation through
emission/absorption and their effect can be accounted for
rather simply in the retrieval of the atmospheric temper-
ature and water vapor profiling. Convective clouds with
a significant ice phase can scatter the MW radiation and
their effect will be more difficult to take into account, likely
limiting the accuracy of the profile retrieval. As a conse-
quence, convective and precipitating situations should be
avoided in a first attempt to evaluate the synergy of the
VIS, IR and MW observations for atmospheric profiling
(This could be the subject of later investigations). Under
cloudy non-precipitating conditions, the MW, IR, and VIS
measurements offer complementary information about the
clouds. The IR provides its top height and its tempera-
ture. Preliminary information on the optical thickness of
clouds can be derived from the VIS. Using simultaneously
these different types of measurements will better constrain
the inversion process and the retrieval will benefit from it.
The inversion methodology developed for clear sky condi-
tions over ocean can be adapted to the cloudy cases.

The synergy we evidenced in this study is very signif-
icant and should be taken into account in the design of
the instruments for the new missions. The instrument
characteristics should be determined not separately, in-
dependently for each sensor but instead, all the instru-
ments should be taken into account, to optimize globally
the whole observing system. The tools we developed in this
study could be adopted to simulate the effect of the dif-
ferent potential channel characteristics and combinations
to reach an optimum set of channels across wavelength
ranges. This will not only ensure optimal retrieval ac-
curacy, but also cost efficiency for the system, avoiding
any non-necessary redundancies from an instrument to the
other.

13



Acknowledgments.

This project has been funded by ESAs General Stud-
ies Programme (GSP) under contract “Towards a syner-
getic approach for the retrieval of atmospheric geophysi-
cal parameters from optical/infrared and microwave mea-
surements”, No 21837/08/NL/HE. We would like to ex-
press our gratitude to Björn Rommen and Marc Bouvet
from ESA/ESTEC for interesting discussions related to
this project.

REFERENCES

Aires, F., 2011: Measure and exploitation of multi-
sensor and multi-wavelength synergy for remote sens-
ing: Part i - theoretical considerations. J. Geophys. Res.,
116 (D02301), doi:10.1029/2010JD014701.

Aires, F., F. Bernardo, H. Brogniez, and C. Prigent, 2010:
An innovative calibration method for the inversion of
satellite observations. JAMC, 49 (12), 2458–2473.

Aires, F., F. Marquisseau, C. Prigent, and G. Sèze, 2011a:
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