

QTS

Quantum Teleportation for Space Systems

(ESA Contract No. 4000104180/11/NL/AF)

- Motivation
- Teleportation protocol
- Objectives and requirements
- Proof-of-concept demonstrator
- Inter-island quantum teleportation
- Development roadmap

Motivation

11/15/2012

Gordon Moore (© Intel 1065)

"The number of transistors that can be placed (inexpensively) on an integrated circuit doubles approximately every two years."

Year:	Electron/Bit:	
2000	100	
2010	10	
2020	1	

We will enter the quantum age soon

11/15/2012

Bit Binary Digit

Qubit Quantum Bit

"O" or "1" (classical)

"0" and "1" (Superposition)

A measurement reveal it's **true** state A measurement reveal **a random** state

11/15/2012

Quantum computing offers substantial computational speedups

Quantum teleportation is the key building block for generating a cluster state

11/15/2012

I Motivation for space-based Quantum Teleportation

Global Quantum Communication Networks

Quantum Internet

 H. J. Kimble, The Quantum Internet, *Nature* 453, 1023-1030 (19 June 2008)

Blind Quantum Computation

- A. Broadbent, J. Fitzsimons, E. Kashefi, In Proceedings of the 50th Annual Symposium on Foundations of Computer Science (IEEE Computer Society, Los Alamitos, CA, 2009), 517–526
- S. Barz et al., Demonstration of Blind Quantum Computing, *Science* 335(6066), 303–308 (2012)

Teleportation protocol

11/15/2012

- entanglement is independent from the distance
- quantum mechanics contradicts classical principles
 → spooky action at a distance (Einstein)

Interference on a BS and coincidence detection

photons take same BS output, but have different polarization

 $\left| \phi^{\pm}
ight
angle$

photons take $|\psi^-\rangle$ different BS output $\psi^-\rangle$

can not be identified with linear optics, because photons end up in same detector

BSM requires **pulsed photon sources**

ESA-QTS, Final Presentation, ESTEC, Noordwijk

11/15/2012

QTS project objectives and requirements

SNR $\approx \eta/n \cdot \tau$

η...channel efficiencyn...detector dark countsτ...coincidence time window

Pre-existing setup in Vienna

Count rate of entangled photon source	Count rate of non- entangled photon source	Expected 4-fold count rate at 30dB attenuation	Entanglement Visibility local	Coinc. time- window
00000 sounds /s	110.000	0.07	010/	1
90000 counts/s	110.000 counts/s	0,07 counts/s	91%	1 ns

	Parameter	Requirements
	Local 4-fold rate	≥ 70 counts/s
	Setup stability	≥ 6 hrs
goals	Detector dark counts	≤ 100 counts/s
	Coincidence window	≤ 5 ns
	AO system	≥ 3dB improvement
strict requirement	Teleportation fidelity @ 35dB	≥ 66.6%

Proof-of-concept demonstrator (POCD)

11/15/2012

Compact and stable quantum teleportation source

Large sensitive area, ultra-low noise Si-APD

Detection efficiency	Dark count rate	Active area	After-pulsing probability	Saturation count rate
50%	< 20Hz	500μm	0.15%	0.4MHz

Vadim Makarov

11/15/2012

11/15/2012

Inter-island quantum teleportation

Inter-Island QT setup (La Palma)

11/15/2012

Spectral compensation scheme

\rightarrow only e-photons interfere at BSM

- increased coupling
- higher 4-fold count rate

	EPR rate	Fock source rate	4-fold count rate local	4-fold count rate expected at 30dB	Entanglement Visibility local	Teleportation Fidelity local
"old" scheme	150.000 counts/s	140.000 counts/s	150 counts/s	0,15 counts/s	88%	87%
new scheme	180.000 counts/s	140.000 counts/s	180 counts/s	0,18 counts/s	88%	89%

11/19/2012

State Fidelities

Process tomography

Average linkattenuation: 36 dB → 605 teleportation events in 6.5 hrs

X. Ma et al, Nature 489, 269-273 (2012)

	Parameter	Requirements	Results	Complianc e
	Local 4-fold rate	≥ 70 counts/s	180 counts/s	+
goals	Setup stability	≥ 6 hrs	≥ 6 hrs	+
	Detector dark counts	≤ 100 counts/s	≈ 100 counts/s	+
	Coincidence window	≤ 5 ns	3 ns	+
	AO system	≥ 3dB improvement	0.8 dB	-
strict require- ment	Teleportation fidelity @ 35dB	≥ 66.6%	86.3±3.8%	+

Development roadmap

Description	pulsed laser source		
Development objectives	increase repetition rate		
	 reduce space-, mass- and power consumption 		
	 synchronization of two laser systems separated over long distances 		
	Test radiation hardness		
Estimated time required	> 5 years		
ROM cost estimates	5Mio to achieve TRL4		

Roadmap for space implementation

Description	SPDC sources
Development objectives	 Mounting, vacuum compatibility, radiation testing of SPDC crystals.
	 Assessment of periodically poled crystals for quantum teleportation applications
	 Assessment of new schemes for generating pulsed entangled photon pairs
Estimated time required	> 2 years
ROM cost estimates	3 Mio to achieve TRL4

Roadmap for space implementation

Description	Geiger mode avalanche photodiodes (APDs)
Development objectives	increase detection efficiency
	 reduce intrinsic dark count probability, timing jitter (≈100 ps desirable)
	 Radiation hardness, lifetime and reliability testing
	 Long-term: Assessment of superconducting TES (transition-edge-sensor) detectors for being used in a space environment
Estimated time required	2 years
ROM cost estimates	3 Mio to achieve TRL4

Thank you for your attention

Inter-Island QT setup (La Palma)

