Optical Compressive Sensing (CS) Technologies for Space Applications

ESA Contract No. 4000116422/15/NL/BJ/gp

Final Presentation

Alexandre Pollini

Division System, CSEM SA

ESTEC, 13 Septembre 2018

Project

- Objectives:
 - 1. Investigate and assess the **potential of using CS technologies in future optical instruments** for several space applications, and to compare them with traditional systems.
 - 2. Design a CS based optical system (at elegant breadboard level) targeting a specific space application and aiming at a significant advantage with respect to the resources required at instrument level as compared to a traditional counterpart.

Numerically:

- A. > 5% improvement on compression ratio, processing time and PSNR.
- B. > 40% reduction of system's mass, power and volume
- Optical systems for EO and SSE to be assessed include: optical cameras, spectrometers, hyperspectral imagers, attitude sensors and 3D cameras.
- The final result is the **detailed design** and the EBB **development roadmap** of an optical CS based multispectral imager for EO

CSem

Instruments review

- Large set of instruments and applications
 - Land and geology survey, cartography, vegetation monitoring, etc. Involve surface imaging with very high spatial resolution
 - Detection of aerosol and trace gases in the atmosphere. Relatively low spatial resolution, atmospheric limbs scanning
 - LiDARs
 - Imagers
 - Laser Altimeters
 - Imaging spectrometers (slitless spectrographs, IR and thermal IR systems, FTS)
 - Spot spectrometers
 - X-ray spectrometers
- 50-60 instruments reviewed !
- 1st selection down to 11 instruments according to:
 low resolution detector ?, faster spectral measurement ?, big data set ?, signal sparsity ?
- For analysis, used as additional hardware (if needed) off-the-shelf features of DMD (spatial modulation) and PRISM+stepper motor (Spectral modulation)

Tool to proceed with 2nd down-selection: Figure Of Merit

• FOMs proposed:

$$FOM_1 = 8 \cdot \left(\frac{1}{m} + \frac{1}{V} + \frac{1}{E}\right) + \left(PSNR + \frac{1}{R} + \frac{1}{T}\right)$$
$$FOM_2 = A \cdot \left(\frac{1}{m} + \frac{1}{V} + \frac{1}{E}\right) + B \cdot \left(\frac{1}{R} + \frac{1}{T^*}\right) + C \cdot SNR + D \cdot \frac{1}{r}$$

- Change motivations:
 - 1. Large disparity of instruments \rightarrow better use relative figures between standard and CS versions
 - 2. Factors in FOM1 and 2 hardly available for all instruments (litterature, IP)
 - 3. PSNR/SNR \rightarrow requires original dataset

$$= A \cdot \left(\frac{1}{\frac{\Delta m}{m} + \frac{\Delta V}{V} + \frac{\Delta E}{E}}\right) + B \cdot \left(\frac{AfterCompressionBit_{pixel}(PAN)}{NBit_{pixel}(PAN) \cdot 0.25} + \frac{1}{MaxSpectralBand}\sum_{1}^{MaxSpectralBand} \sum_{1}^{MaxSpectralBand} \frac{AfterCompressionBit_{pixel}}{NBit_{pixel} \cdot 0.25 \cdot 0.25}\right) + C \cdot \left(\frac{Nb \ of \ Colon \cdot Nb \ of \ Row \ (PAN)}{Raw \ image \ size \ (PAN)} + \frac{1}{MaxSpectralBand}\sum_{1}^{MaxSpectralBand} \frac{Nb \ of \ Colon \cdot Nb \ of \ Row \ Raw \ image \ size \ (PAN)}{Raw \ image \ size \ (PAN)} + \frac{1}{MaxSpectralBand}\sum_{1}^{MaxSpectralBand} \frac{Nb \ of \ Colon \cdot Nb \ of \ Row \ Raw \ image \ size \ Nb \ of \ Row \ Raw \ image \ size \ Nb \ of \ Row \ Raw \ image \ size \ Nb \ of \ Row \ Raw \ image \ size \ Nb \ of \ Row \ Raw \ image \ size \ Nb \ of \ Row \ Raw \ image \ size \ Nb \ of \ Row \ Raw \ image \ size \ Nb \ of \ Row \ Raw \ image \ size \ Nb \ of \ Row \ Raw \ image \ size \ Nb \ of \ Row \ Raw \ image \ size \ Nb \ of \ Row \ Raw \ image \ size \ Nb \ size \ Row \ Raw \ image \ size \ Nb \ Row \ Raw \ image \ size \ Nb \ size \ Row \ Row$$

FOM application

Instrument	FOM
EO1: Worldview3	A x 2.7+ B x 7.3 + C x 17.8
EO2: SLSTR	A x 0.919 + B x 20 + C x 2
EO3: FCI (VIS-NIR)	A x 5.38 + B x 20 + C x 9.2
EO4: FCI (IR)	A x 10.8 + B x 20 + C x 3.2
EO5: MIPAS	A x 5.2 + B x 20 + C x 2
SSE1: IMP	A x 0.12 + B x 15.3 + C x 31
SSE2: CRISM	A x 0.49 + B x 2.86 + C x 18.9
SSE3: PFS	A x 0.532 + B x 10 + C x 2
SSE4: FREND	A x 0.09 + B x 8 + C x 2

- FOM's factors:
 - «A» proportional to delta SWaP figures
 - «B» factor proportional to compression efficiency and processing resources needs
 - «C» factor proportional to Focal Plane Array size

- Selection of FCI and MIPAS
- Performance Model application
 - FCI estimated Compression Ratio: 2-12, Power Saving: 75-89%
 - **MIPAS** estimated Compression Ratio: 0.1-1, Power Saving: 21-81%
- → both large instruments: no saving on size and weight as defined mostly by telescope
 CS implementation allows dataset reduction + higher resolution + power saving

Would CS change the world ?

- Compression conventional limit is determined by the Shannon-Nyquist-Whittaker sampling theory
- Compressive sensing
 - Relies on signal's structure
 - Know structure → signal can be reconstructed using sampling rate <<< Nyquist rate.

Coefficients in wavelet domain

Original

95% compression

CS for multispectral instruments

- FCI/MIPAS = multispectral imagers
- High dimensional data cube
- However, highly redundant due to:
 - Intra-channel correlations (in one spectral band)
 - Inter-channel correlations (among several spectral bands)

• \rightarrow efficient compression schemes must exploit both \rightarrow goal for CS

• Spectral data cube represented as n1 (spatial dimension) × n2 (spectral dimension) matrix

Transform domain ? SEVIRI images = FCI reference images

VIS 0.6	VIS 0.8	IR 1.6	IR 3.9
IR 8.7	IR 9.7	IR 10.8	IR 12.0
IP 12 /	W/V/ 6 2		
IK 13.4	VV V 0.2	VV 7.5	. 11
			$n_2 = 11$
			$n_1 = 608 \times 1120$

Sparsity in the transform domain ?

- Choice of transform domain:
 - 1. Curvelets \rightarrow NOK
 - 2. Undecimated wavelet transform \rightarrow NOK
 - 3. Daubechies wavelets \rightarrow OK except db1
 - SA: Sparsity Average model, concatenation of db5, db7 and db10
 → the best
- Singular Value Decomposition to assess sparsity of reference image within the transform domain chosen

Measurement matrix

- Spatial sampling with DMD \rightarrow Bernoulli distributed random variable
- With p= 0.5 \rightarrow equal number of 0 and 1 maximises the light on the detector

• Bernoulli matrix for 12 meaurements:

• Sense channels using different sensing matrix for each channel

Reconstruction

Reconstruction = convex problem

 $\min_{X} \|X\|_* + \mu \|\Psi^T X\|_{2,1} \text{ subject to } \|Y - \mathcal{A}(X)\|_F \leq \epsilon$

- Parallel proximal algorithm (PPXA) discarded \rightarrow no advantages
- Primal-dual with forward backward iterations (PD-FB) chosen
- Computational challenges:
 - sensing operator and its adjoint (transpose) at each iteration
 - sparsity operator and its adjoint (inverse transform) at each iteration for all channels
 - perform SVD decomposition of X at each iteration: O(n1^2 n2+n2^3)
- The total complexity per iteration is: $O\left(\frac{2n_2mn_1}{L}+6n_2n_1+n_1^2n_2+n_2^3\right)$
- \rightarrow Reconstruction shall be made on powerful computer

CSem

Reconstruction with transform domain chosen

Reconstructions performed using a MATLAB on a i7 quadcore processor at 3.6GHz with 64Gb of RAM

CS implementation consequences

- Transform domain/Orthonormal basis sparse representation
 A priori knowledge of the signal/image of interest is needed
 → SSE instruments where signal/image content cannot be known a priori not appropriate
- Incoherence transform domain/sensing matrix \rightarrow random measurement
 - Several measurements required
 - \rightarrow situations where capturing sample/image in allocated time is challenging \rightarrow not appropriate
 - challenge: determine where to introduce randomness in the measurement system
 - \rightarrow component presents in standard architecture \rightarrow low impact
 - \rightarrow additional component \rightarrow impact
- Reconstruction to take place where no limitation on processing resources exists
 - \rightarrow On-board reconstruction not recommended

EBB demonstrator concept for practical assessment

- Keep practical **comparison option with an existing standard instrument** leads to costly solution (spare parts, reproduction, etc.)
- → build a **breadboard configurable as standard and CS instrument**
- Focus on parts ONLY related to CS implementation challenges, not on other engineering fields (optics, detector, etc.)

Development roadmap

- EBB concept:
 - same hardware to compare standard and CS to address all factors discussed
 - Set EBB parameters as existing instrument (e..g. FCI VIS 448x4, 224x4, 112x4)
 - Not looking to increase TRL of building-blocks
 - Breadboard built with off-the-shelf components (DMD, DMD driver, foreoptics, etc.)
 - Limitation on engineering constraints → spectral channels limitation (no cryogeny)
 3-5 spectral channels (e.g. min/max and central)
 - CS transform domain, measurement matrix and reconstruction already identified
 - Activity: ROM Cost 1.45 kEuro 24 months

Findings

- For large instrument such as FCI or MIPAS, introduction of SLM → negligable impact on mass and volume
- Large instrument + No need to on-board reconstruction \rightarrow CS is competitive
- The project shows CS advantages in term of:
 - 1. compression ratio: 94% with 5% undersampling or 69% with 25% undersampling (target 5%)
 - 2. image capture time: 97% with 10% undersampling or 83% with 75% undersampling (target 5%)
 - 3. processing time: 100% (= 0)
 - 4. power consumption: 85% with 5% undersampling or 27% with 25% unders. (target 40%)

For SEVIRI like dataset and DMD as SLM

transform domain, measurement matrix and reconstruction algorithm are identified

- CS = lossy compression \rightarrow degradation depends on transform domain, measurement matrix, undersampling and reconstruction algorithm \rightarrow can be predicted and algorithms improved
- EBB designed
- EM development roadmap proposed based on developments for critical building-blocks

How to go for CS for other optical instruments ?

- PI or main user to be convinced that even with loss of information during measurements, predictable results can be exploited
- + practical consequences of CS precepts addressable within optical instrument architecture
- Receipt for CS:

Step	Description
1	Acceptance by the concerned scientific community to use «degraded» signal/image
2	Sparsity precept of the signal/image of interest ?
3	Availability of time to make several measurements ?
4	Low spatial resolution of detector in the spectral band of interest ?
5	Randomness introducible in the system architecture ?
6	Can reconstruction be where no limitation on resources is present ?

Thank you for your attention!

Follow us on

www.csem.ch

