NUMERICAL SIMULATIONS FOR S/C CATASTROPHIC DISRUPTION ANALYSIS

Final Review - ESA Contract N° 4000119400/16/NL/BJ/zk

Fraunhofer

Martin Schimmerohn Pascal Matura ESTEC, Noordwijk 12 September 2018

AGENDA – FINAL REVIEW

10:00 • Welcome and Introduction

Management Report (WP1000)

Final Report

Introduction

Review, Trade-off, Methodology Selection (WP2000)

Software Tool PHILOS-SOPHIA (WP3000)

Numerical Simulations (WP4000)

Results Evaluation (WP5000)

Project Finalization

17:00 End of Meeting

NUMERICAL SIMULATIONS FOR S/C CATASTROPHIC DISRUPTION ANALYSIS

Final Review - ESA Contract N° 4000119400/16/NL/BJ/zk

Management Review WP1000

Martin Schimmerohn

ESTEC, Noordwijk 12 September 2018

Schedule

ID	Title	Start	Finish					2	017										1	2018	8			
N	Ailestone meetings			2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10
ком	Kick-off via	Videocon	13.02.17	0	ко	M/																		
PM1	Progress Meeting 1 via	Videocon	15.03.17			PN	11		27 (7	1													
PM2	Progress Meeting 2 via	Videocon	12.04.17		-	🖌 🖌	PM2	$2 \rightarrow$	-	V	20.0	9.	-											
PM3	Progress Meeting 3 at	ESTEC	02.08.17					PN	13	•	•	V							1	1	1			
PM4	Progress Meeting 4 via	Videocon	05.10.17								(P 🖌	M4	<u></u>	_		->	04	1.05	V			1	
PM5	Progress Meeting 5 via	Videocon	06.12.17											🖉 P	M5				> 2	0.06	?. / Fi	nal I	Rev	iew
FR	Final Review at	ESTEC	31.01.18														-	-	0.	2.07	•	->-	•	
FP	Final Presentation at	ESTEC	TBD																	2	3-2!	5.10	FF	> (
D	Deliverables			2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10
D1	HV collision model. state	-of-the-art	01.03.17	D1	V																			
D2	HV collision model. trade	-offs	29.03.17)7	V	/																1	
D3	HV collision model. meth	odology	29.03.17		3	\checkmark				11.	08.									1				
D4	Software system specifica	ations	19.07.17							D4	\checkmark													
D5	Software design docume	nt	19.07.17						F	D5	\checkmark		h	D5 I	Ind	ate -			30.0	J5.			-	
D6	Software user manual		19.07.17						Б	D6	\checkmark		Б	D6 1	upd	ate -			-					
D7	Tool simple validation cas	e studies	19.07.17						Б				-							/			1	
D8	Tool validation document		13.09.17						-		D	D8-					-	20.0	4					
D9	Tool results evaluation		17.01.18								-					D9)				1			
D10	Experimental test protoco	ol	17.01.18												Ē	D1C)			1				
ESR	Executive Summary Repo	rt	17.01.18												F	ESR	2-			-	29	.08.		
FR	Final Report		17.01.18							/	02	.03	1		Ē	FR						010		
CCS	Contracts Closure Summ	ary	31.01.18						\checkmark	S	W ((2)	SN	V (3)	C	CS	2	ept	emp	er z	510		
S/W	S/C Breakup software		19.07.17			-	SAW	(1)	•		0		0					>	30	.05.				
v	Vork packages			2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10
1000	Management	01.02.17	31.01.18	-		_	_	_				_		_	_	_		_	_	_	,		1	
2000	Review & trade-offs	01.02.17	22.03.17	<u> </u>	_	-/																	1	
2100	State-of-the-art review	01.02.17	01.03.17			V .,	1																1	
2200	Trade-offs & methodol.	01.02.17	22.03.17		•																		-	
3000	Tool development	22.03.17	15.11.17					-					_	_	_	-								
3100	Adaption of core S/W	22.03.17	31.05.17		-	-	-	Y																
3200	Generation of FE models	22.03.17	31.05.17		+		-	1	/									1						
3300	Devel. of Applic. S/W	22.03.17	15.11.17		+			•				-	Ъ				V							
3400	GUI development	03.05.17	15.11.17			,		-	_			-	-				V							
4000	Numerical simulations	02.08.17	13.12.17							_		_		_	_			-		1	/			
4100	Tool validation	02.08.17	05.10.17						4			1		-					V	V				
4200	S/C collision simulations	30.08.17	13.12.17																					
5000	Results evaluation	27.09.17	31.01.18													_	_	_	_					
5100	Tool evaluation	27.09.17	31.01.18									L												
5200	Experimental test plan	03.01.18	31.01.18												r)	•								
province of the second					-											1.1							1	

Schedule

ID	Title	Start	Finish					20)17										2	2018	3			
N	Ailestone meetings			2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10
КОМ	Kick-off	via Videocon	13.02.17		ко	M																		
PM1	Progress Meeting 1	via Videocon	15.03.17			PN	/11	2	27.0)7.	/													
PM2	Progress Meeting 2	via Videocon	12.04.17			_	PM2	$2 \rightarrow$	-	V	20.0	9.	8											
PM3	Progress Meeting 3	at ESTEC	02.08.17					PM	3	-	•	V							\checkmark		/			
PM4	Progress Meeting 4	via Videocon	05.10.17									🏉 P	M4					02	1.05		. ,			
PM5	Progress Meeting 5	via Videocon	06.12.17										(🖉 P	M5				> 2	0.06	?' Fi	nal	Rev	iew
FR	Final Review	at ESTEC	31.01.18														-	-	0	2.07		-		
FP	Final Presentation	at ESTEC	TBD																	2	3-2	5.10	. FF	> 🔶
D	Peliverables			2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10
D1	HV collision model. s	tate-of-the-art	01.03.17	D1	V		~																	
D2	HV collision model. tr	rade-offs	29.03.17		2	V	/																	
D3	HV collision model. m	nethodology	29.03.17)3	V				11.(08.									1			ŝ.	
D4	Software system spec	cifications	19.07.17							04	\checkmark								20					
D5	Software design docu	ument	19.07.17							05	\checkmark			D5 ι	upd	ate			50.0	J S .				
D6	Software user manua	al	19.07.17							06	V,			D6 เ	Jpd	ate			-					
D7	Tool simple validation	n case studies	19.07.17)7	V)									1				
D8	Tool validation docun	nent	13.09.17									08-					>2	20.0	04 . ✓					
D9	Tool results evaluation	n	17.01.18													D9					1		ł.	
D10	Experimental test pro	otocol	17.01.18													D10				2	20	00		
ESR	Executive Summary R	leport	17.01.18													ESR	_				29	.08.		
FR	Final Report		17.01.18							-	02.	.03.	/			FR	J	c	ont	amh	or	015	2	
CCS	Contracts Closure Su	mmary	31.01.18						\checkmark	S/	W (2)	SN	V (3)	C	CS	5	ept)		
S/W	S/C Breakup software	2	19.07.17				S/W	(1)	0		\bigcirc							>	30.	05.				

Deliverables Reports

- 10 Technical Notes
- Since last meeting:
 - D9 Tool results evaluation
 - D10 Experimental test protocol
 - Final Report
 - Executive Summary

Deliverables Software

PHILOS-SOPHIA (3 releases)

- Executables files + source code (GUI, GeometryMaker)
- 14 predefined scenarios
 - 2 oblique cylinder impacts
 - 12 LOFT collision scenarios
- Predefined finite element models
 - Generic Satellite Model
 - 1U and 12U CubeSats
 - ESA LOFT S/C (standard and fine mesh)

Scenario	Object Geometry	
Generic Satellite 20	Select Geometry:	select
	Name:	select [-]
		Generic Satellite 20
		LOFT_fine_mesh_2_tons
		LOFT_standard_mesh_2_tons
		cubesat 120
	Structural Components	Aluminium
	Tank	Titanium
	CFRP- 20	CFRP-20 (analog. model)
	Copper	Copper
	Adhesive	Adhesive (analog. model)
	TZM- Molybd	TZM Molybdenum
	Electronics	ilectronics (analog. model)
	CFRP- 15	CFRP-15 (analog. model)
	CFRP- 10	CFRP-10 (analog. model)
	CFRP- 50	CFRP-50 (analog. model)
	Object Settings	
		X Y Z
	Location:	0 0 [mm]
	Velocity:	0 0 [m/s]
	Angles:	0 0 0 [°]
	Scale Factor:	1 [-]
	New Object	Delete Object Preview

Conclusions – Management Report

All activities accomplished

- 6 successful progress/review meetings
- Final Presentation intended for Clean Space industrial Days (after project finalization)
- 7 months delay accumulated (within margin as agreed with ESA)
- All deliverables issued
 - 8 Technical Notes accepted, 4 documents to be discussed in this meeting
 - Software tool PHILOS-SOPHIA delivered in three releases
- All management requirements fulfilled

AGENDA – FINAL REVIEW

10:00 • Welcome and Introduction

Management Report (WP1000)

Final Report

Introduction

Review, Trade-off, Methodology Selection (WP2000)

Software Tool PHILOS-SOPHIA (WP3000)

Numerical Simulations (WP4000)

Results Evaluation (WP5000)

Project Finalization

17:00 End of Meeting

NUMERICAL SIMULATIONS FOR S/C CATASTROPHIC DISRUPTION ANALYSIS

Final Review - ESA Contract N° 4000119400/16/NL/BJ/zk

Introduction

Pascal Matura

ESTEC, Noordwijk 12 September 2018

Introduction Spacecraft Collision

Figure 1: Collision of Cosmos 2251 and Iridium 33 as simulated by Lawrence Livermore National Laboratories [WAL09]. Besides the work presented here, this is to date the only published study on hydrodynamic simulations of an on-orbit collision.

Introduction Spacecraft Collision

Extreme physical encounter conditions

- Relative impact velocities up to ~15 km/s
- High altitude / harsh environmental conditions
- Complex structures / materials

Main objectives:

Source: https://cosmosmagazine.com/space/space-junk-catastrophe-horizon

- Information on debris characteristics as number, size distribution, area-to-mass ratio, momentum transfer etc.
- and their dependence on collision scenario (orbit parameter, relative orientation, relative velocity), objects (mass, geometry, materials etc.)
- ...for further analyses

But: How to get data?

Introduction Spacecraft Collision – Objectives of the Study

- Establish a numerical methodology that is capable of characterizing hypervelocity collisions of satellites,
- to use this numerical method to perform simulations with a complex target satellite with varied collision scenarios, and
- to analyze the transition between local damage effects and catastrophic disruption in relation to the traditional 40 J/g EMR definition.

NUMERICAL SIMULATIONS FOR S/C CATASTROPHIC DISRUPTION ANALYSIS

Final Review - ESA Contract N° 4000119400/16/NL/BJ/zk

State-of-the-art review and methodology WP2000

Pascal Matura

ESTEC, Noordwijk 12 September 2018

State-of-the-art review and methodology (WP2000) General Modelling Approaches – Pros and Cons

Modelling approach	Pros	Cons
Analytical models	+ very fast computation → para- metric studies in short time	- restricted to very simple geometries and idealized physical laws
	+ relative simple implementation	- restricted parameter range
e.g. models by Schon	berg et al.	- applicability for spacecraft collision questionable
(Semi-) empirical breakup models	 + very fast computation → para- metric studies in short time + relative simple implementation 	 not physics based developed for a specific purpose, limited application range, extrapolations questionable poor empirical basis, raw data not publicly available
e.g. NASA breakup n	nodel	- poor flexibility to include new impact configurations and materials
Sophisticated numerical simulation with hydrocodes (see section 5.3 for more information)	 + based on fundamental physical laws, high fidelity prognosis (if validated) + full scale models and realistic scenarios + full parameter control, parameter studies feasible to a greater extend + insight in physical processes during and after collision + complete and fast automated fragment analysis and fast automated fragment 	 complex modelling (geometry, material) high computational effort, simulation run may last up to several days (depending on available computing power)
Hydrocodes	analysis → data available for further investigations, e.g. fragment propagation	

Increase in

- flexibility and range of applicability
- ability to model scenarios and objects close to reality
- complexity of the models and effort for model setup
- computational effort and time needed to perform analyses, resp.

State-of-the-art review and methodology (WP2000) General Modelling Approaches – Pros and Cons

Modelling approach	Pros	Cons
Analytical models	+ very fast computation → para- metric studies in short time	- restricted to very simple geometries and idealized physical laws
	+ relative simple implementation	- restricted parameter range
e.g. models by Schon	berg et al.	- applicability for spacecraft collision questionable
(Semi-) empirical breakup models	 + very fast computation → parametric studies in short time + relative simple implementation 	 not physics based developed for a specific purpose, limited application range, extrapolations questionable poor empirical basis, raw data not publicly available poor flexibility to include new impact configurations and materials
		sonniger a donb an a materialb
Sophisticated numerical simulation with hydrocodes (see section 5.3 for	 + based on fundamental physical laws, high fidelity prognosis (if validated) + full scale models and realistic scenarios + full parameter control, parameter 	- complex modelling (geometry, material) - high computational effort, simulation run may last up to several days (depending on available computing

Increase in

- flexibility and range of applicability
- ability to model scenarios and objects close to reality
- complexity of the models and effort for model setup
- computational effort and time needed to perform analyses, resp.

State-of-the-art review and methodology (WP2000) Hydrocodes – Continuum Description & Constitutive Material Modelling

State-of-the-art review and methodology (WP2000) Conclusions

Analytical and (semi-)empirical models can be very elaborate and scientifically advanced,

but

they are generally not suitable for modelling more complex situations for which they have not been tailored

Hydrocodes are advanced physics based time-explicit dynamic analysis tools for the numerical simulation of highly dynamic processes covering crash, impact, penetration, explosion etc. allowing

to perform "virtual experiments" with models and loading conditions close to reality

Trade-off considerations for hydrocode modelling: Geometrical details & complex material models (computational effort

NUMERICAL SIMULATIONS FOR S/C CATASTROPHIC DISRUPTION ANALYSIS

Final Review - ESA Contract N° 4000119400/16/NL/BJ/zk

Software tool PHILOS-SOPHIA WP3000

Pascal Matura

ESTEC, Noordwijk 12 September 2018

Software tool PHILOS-SOPHIA (WP3000) Schematic Process Chain by using PHILOS-SOPHIA

Software tool PHILOS-SOPHIA (WP3000) Graphical User Interface – Scenario Definition

0	PHILOS-SOPH	HIA [*Scenario Config6 LOFT mass 0.5 ton.scd]	
File Edit Help			
Scenario Settings Calculation Results			
Scenario	Object Geometry		
LOFT Fine Mesh 0. 5 Ton	Select Geometry:	select	
	Name:	LOFT Fine Mesh 0. 5 Ton [-]	
	X	#type=LOFT fine mesh 0.5 ton	
	Structural Components 1	Aluminium	
	Structural Components 2	CFRP (analog. model)	
	LAD Detector	Silicium	
	Tank	Titanium	
	Object Settings		
		X Y Z	
	Location:	0 0 [mm]	
	Velocity:	0 0 [m/s]	
	Angles:	0 0 [°]	
	Scale Factor:	1 [-]	
	New Object	Delete Object Preview	

PHILOS: Program for Hypervelocity Impact modeLLing Of S/C collision Scenarios

Software tool PHILOS-SOPHIA (WP3000) Graphical User Interface – Predefined Models

- Generic Satellite Model
- 4 LOFT S/C Models
- 1U-CubeSat Model
- 12U-CubeSat Mode

File Edit Help		PHILOS-SUP	The Price Scenar	10]
Scenario Settings Calculation Results	1			
Generic Satellite 20	Object Geometry			
	Name:	select		
		Generic_Satellite_20		A
		LOFT_fine_mesh_2_tons		
	100	LOFT_standard_mesh_2_t	ons	
		cubesat_12U	<u> </u>	
				\forall
	Structural Components	Aluminium	•	
	Tank	Titanium	-	
	CFRP- 20	CFRP-20 (analog. model)	_	
	Copper	Copper	-	
	Adhesive	Adhesive (analog. model)	-	
	TZM- Molybd	TZM Molybdenum	•	
	Electronics	lectronics (analog. model) 💌	
	CFRP- 15	CFRP-15 (analog. model)	•	
	CFRP- 10	CFRP-10 (analog. model)	•	
	CFRP- 50	CFRP-50 (analog. model)	•	
	Object Settings		-	
	Location:		2 0 [mm]	
	Velocity:		0 [m/s]	
	Angles:	0 0	0 [*]	
	Scale Factor:		1 [-]	
	New Object	Delete Object	Preview	1

Software tool PHILOS-SOPHIA (WP3000) Graphical User Interface – Predefined Scenarios, Examples

12U-CubeSat collision with LOFT S/C

행 행 🤊 🥶 🕐 🔹 🖂 섹 🕨 🕨 🖄 🏷 Time: 0 🐯 🛱 🤌 🕫 🕈 🛊 🙀 🕼 🖉 🕨 🕅 🖏 Time: 0 🗈 沈 😘 📴 Body 🔹 🔹 Surface With Edges 🔹 🐹 🔀 😘 🗱 🕌 🚑 🚑 🚑 🖉 🎯 🚱 22 😳 🕫 🕡 Part 🔹 🔹 Surface 🔹 🔀 🔀 😳 🕰 🚑 🚑 🚑 🚝 🕑 🎯 🔾 BX Layout #1 × + B× □ Layout #1× + Properties Information 10 8 Part Show La Edit 11 Rescale Edit Rescale Styling Lighting Specular Cube Axe Show Axis View (Render View) 8 0 Center Axes Visibility 2 Orientation Axes View (Render View) X Orientation Axes Visibility Center Axes Visibility Stereo Rende **Orientation Axes** Background Color Restore Default lackgroun

Oblique cylinder impact, graded mesh

14 delivered scenarios: 2 oblique cylinder impact sc., 2 x 6 LOFT S/C scenarios

Software tool PHILOS-SOPHIA (WP3000) Graphical User Interface – Starting Paraview for 3D-visualization

Software tool PHILOS-SOPHIA (WP3000) Graphical User Interface – Automated Fragment Analyses

Software tool PHILOS-SOPHIA (WP3000) Graphical User Interface – Object Modeller

Software tool PHILOS-SOPHIA (WP3000) Conclusions

Software framework established including

- Graphical User Interface
 - to easily setup, monitor and analyze collision scenarios
- Model Database
 - with predefined models: LOFT S/C, CubeSats, Generic Satellite Model

Object Modeler

- to create user-defined objects as plates, spheres, cylinders, sandwich panels
- Hydrocode SOPHIA (temporal license)
 - to perform the collision calculation
- Automated Fragmentation Analyzer
 - to investigate the fragmentation process

Software tool PHILOS-SOPHIA (WP3000) Conclusions

Software tool can be extendend by

- New (complex) S/C or sub-scale models (database)
- New Object Modeller capabilities (other object shapes, multilayer/material objects etc.)
- New material models in SOPHIA (more complex strenght and failure models, if needed)

NUMERICAL SIMULATIONS FOR S/C CATASTROPHIC DISRUPTION ANALYSIS

Final Review - ESA Contract N° 4000119400/16/NL/BJ/zk

Numerical Simulations (WP4000)

Pascal Matura Martin Schimmerohn ESTEC, Noordwijk 12 September 2018

Numerical Simulations (WP4000) Overview

"Simple Validation" test cases

- 4 multi-layer shielding configuration scenarios
- 15 simulations showing PHILOS-SOPHIA capabilities
- Reproduction of impact experiments for qualitative validation
 - 2 thin-plate impact scenarios with obliquity and impactor shape effect
 - 4 simulations validating PHILOS-SOPHIA against experimental data and general purpose hydrocode ANSYS/AUTODYN
- Complex collisions simulations with ESA LOFT spacecraft
 - 2 LOFT models (regular and refined mesh, mass criteria), 3 impactors
 - 12 simulations for analyzing spacecraft fragmentation behavior and catastrophic disruption criterion

Numerical Simulations (WP4000)

"Simple Validation" test cases

Multi-layer spacecraft shielding configurations

- Show method capability to study impact fragmentation
- Standardized test cases for comparison with method developed in parallel consortium
- "Simple" → small-scale targets (compared to spacecraft scale)
- "Complex" → complex materials (kevlar, nextel, MLI, sandwich structures)
 - Using analogous models if needed
 - New material models can be included in PHILOS-SOPHIA

Numerical Simulations (WP4000)

Reproduction of impact experiments

Qualitative validation using high-speed videos

- Cloud evolution parameters
- Including obliquity and impactor shape effects

Numerical Simulations (WP4000) Complex collisions simulations with ESA LOFT spacecraft

Finite element models of impactors

12U CubeSat, 10 kg

Numerical Simulations (WP4000) Complex collisions simulations with ESA LOFT spacecraft

LOFT spacecraft model

Numerical Simulations (WP4000)

Complex collisions simulations with ESA LOFT spacecraft

- LOFT spacecraft materials
 - analogous (material) models for CFRP- and aluminum-based sandwich structures
 - Two shell element layers with empty volume in between and thickness adapted according to honeycomb mass

Numerical Simulations (WP4000) Complex collisions simulations with ESA LOFT spacecraft

Numerical Simulations (WP4000)

Complex collisions simulations with ESA LOFT spacecraft

Numerical Simulations (WP4000) Complex collisions simulations with ESA LOFT spacecraft

12U CubeSat impactor

Dimension: 200×200×300 mm³ Mass: 10 kg EMR: 302.5 J/G (1210 J/g)

- 3) Central impact on CoM
- 4) Grazing collision with 20% overlap

Numerical Simulations (WP4000) Complex collisions simulations with ESA LOFT spacecraft

12U CubeSat impactor

Dimension: 200×200×300 mm³ Mass: 10 kg EMR: 302.5 J/G (1210 J/g)

- 5) Impact on LAD vertical
- 6) Impact on LAD with impact vector pointing to CoM

Numerical Simulations (WP4000) Conclusions

- Various finite element models generated
- Scenarios defined
- More than 30 simulations performed
 - Evaluating tool capabilities \rightarrow shielding analysis
 - Validating tool output \rightarrow experiment reproduction
 - Evaluating fragmentation \rightarrow complex collisions

NUMERICAL SIMULATIONS FOR S/C CATASTROPHIC DISRUPTION ANALYSIS

Final Review - ESA Contract N° 4000119400/16/NL/BJ/zk

Results Evaluation (WP5000)

Pascal Matura Martin Schimmerohn ESTEC, Noordwijk 12 September 2018

Results Evaluation (WP5100) Simple validation example

Experiment reproduction

Eroded nodes

- Reasonable results with 402,216 finite elements
- 8.7 hours computation
- FE/SPH coupling
 - More precise results with 68,208 finite elements
 - 210 hours computation
 - Selection of method depends on simulation needs

Results Evaluation (WP5100) Experiment reproduction

Eroded nodes

- Reasonable results with 102,570 finite elements
- 5 hours computation
- FE/SPH coupling
 - More precise results with 102,570 finite elements
 - 11 hours computation
 - Selection of method depends on simulation needs

Results Evaluation (WP5100) Experiment reproduction

- Cross-validation with commercial hydrocode
- PHILOS-SOPHIA
 - Similar mass distribution
 - Better velocity distribution
 - 9 hours computation time
- ANSYS-AUTODYN
 - Similar mass distribution
 - 27 hours computation time

Simulation results – Fragmentation process Scenario 1 + 2

Simulation results – Damage non-eroded fragments Scenario 1 + 2

1) 0.1 kg plate, EMR 3 J/g

2) 1 kg CubeSat, EMR 30 J/g

Simulation results – Fragmentation process Scenario 3 + 4

Simulation results - Damage non-eroded fragments Scenario 3 + 4

10 kg CubeSat, EMR 302.5 J/g

3) Impact on Center of mass/geometry 4) Grazing impact with 20% offset

Simulation results – Fragmentation process Scenario 5 + 6

Simulation results - Damage non-eroded fragments Scenario 5 + 6

10 kg CubeSat, EMR 302.5 J/g

5) Vertical LAD impact

6) LAD impact pointing to CoM

Results Evaluation (WP5100) Fragmentation Analysis - Approach

Two "types" of fragments to distinguish

- Non-eroded fragments (coherent finite element mesh)
- Eroded fragments (deleted finite elements replaced by mass points)

Fragmentation Analysis – Fragment properties

Results Evaluation (WP5100) Fragmentation Analysis – Scenario 6

Results Evaluation (WP5100) Fragmentation Analysis – Scenario 6

Results Evaluation (WP5100) Fragmentation Analysis – Scenario 6

Results Evaluation (WP5100) Fragmentation Analysis – Scenario 6 – Comparison with NASA SSBM

Fragmentation Analysis – Scenario 6 – Comparison with NASA SSBM

Fragmentation Analysis – Scenario Comparison

Fragmentation Analysis – Scenario Comparison

Experimental techniques for validation - Proposal

Dedicated experimental validation needed for fidelity

- Impact tests on representative targets (CFRP sheets, sandwich, harness)
 - Fragmentation analysis for standard materials
 - Development of simple analogous material models for full scale simulations
- Generic targets with well-known dynamic material models
 - Direct validation of effects of obliquity and impactor shape/design/material

Acquisition of in-situ data for quantitative validation needed

Experimental techniques for validation – State of the art

- Comparing cloud expansion in high-speed videos
- Comparing damage patterns

Experimental techniques for validation – new approach

Measuring spatio-temporal fragment characteristics

Experimental techniques for validation – Image analysis

- Specific algorithms to identify and track fragments

 fragment contour, trajectory and velocity
- 3D-analysis possible

Results Evaluation (WP5000) Conclusions

- Demonstrated PHILOS-SOPHIA capabilities to numerically simulate complex spacecraft collisions
- Evaluation of impact processes and damages
 - fragmentation and incurred damages strongly depend on collision geometry and configuration
- Detailed analysis of fragment characteristics:
 - both agreements and clear deviations to the semi-empirical NASA Standard Satellite Breakup Model
 - EMR-criteria for catastrophic breakups does not reflect collision complexity
- Specific experiments with new particle tracking methods may allow for quantitative validation
 - increasing fidelity of numerical tool for powerful breakup analyses

AGENDA – FINAL REVIEW

10:00 • Welcome and Introduction

Management Report (WP1000)

Final Report

Introduction

Review, Trade-off, Methodology Selection (WP2000)

Software Tool PHILOS-SOPHIA (WP3000)

Numerical Simulations (WP4000)

Results Evaluation (WP5000)

Project Finalization

17:00 End of Meeting

