FCS-ATOMIC Final Presentation

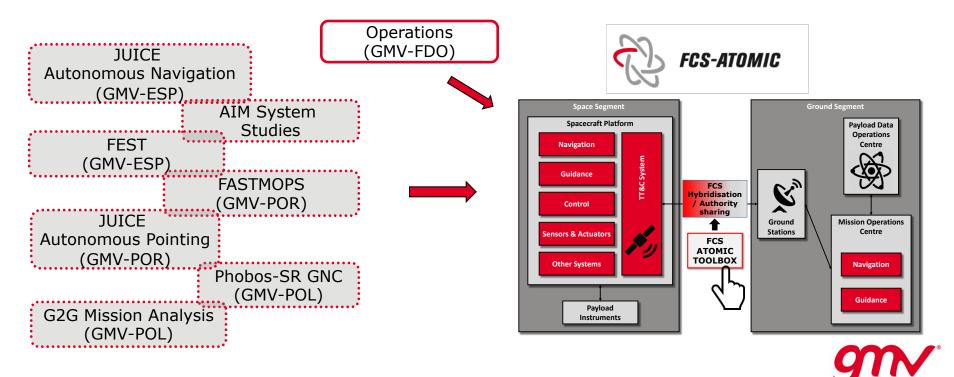
Flight Control System Assessment Toolbox

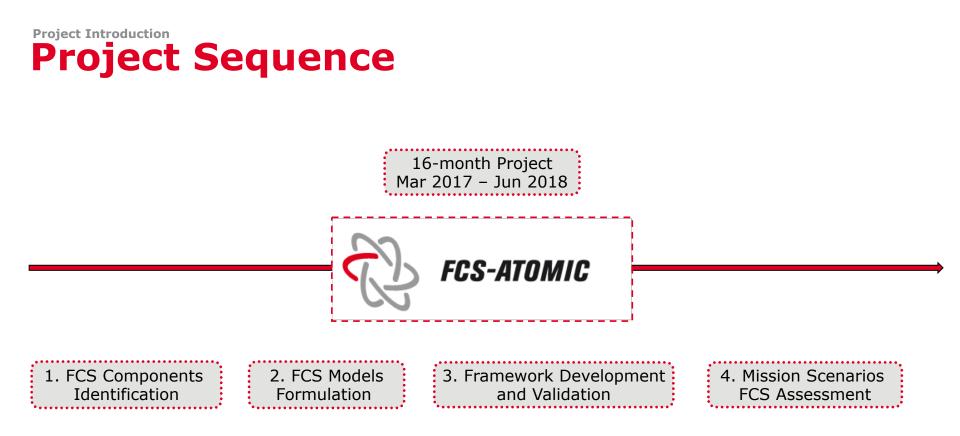
for Optimal Mission Cost and Performance

© GMV, 2018 Property of GMV All rights reserved

FCS-ATOMIC Final Presentation

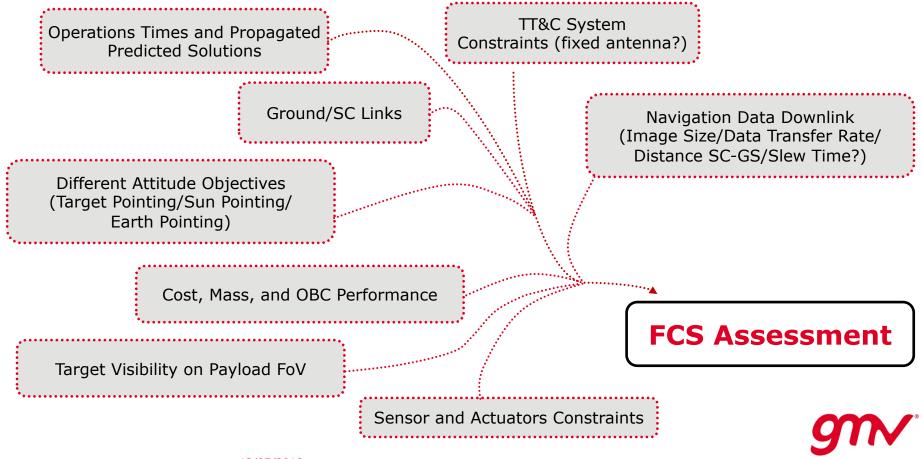
Project Introduction
FCS-ATOMIC Framework
HERA FCS Assessment
G2G FCS Assessment


10:45 - 11:00 Q&A

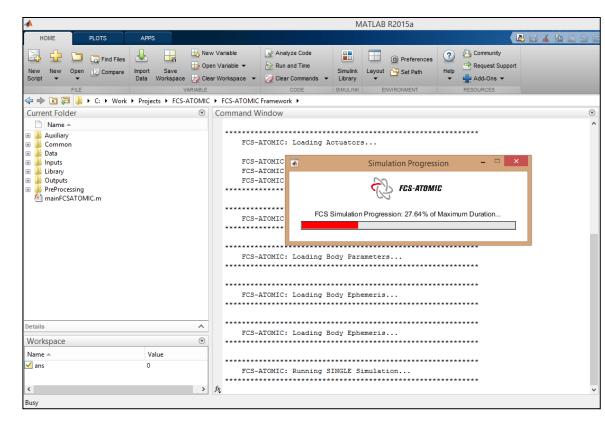

FCS-ATOMIC FP troduction Intr

Project Introduction Project Context and Background

- Flight Control System Assessment Toolbox
 - for **O**ptimal **Mi**ssion **C**ost and Performance FCS-ATOMiC


FCS-ATOMIC FP CS-ATOMIC FP Framework

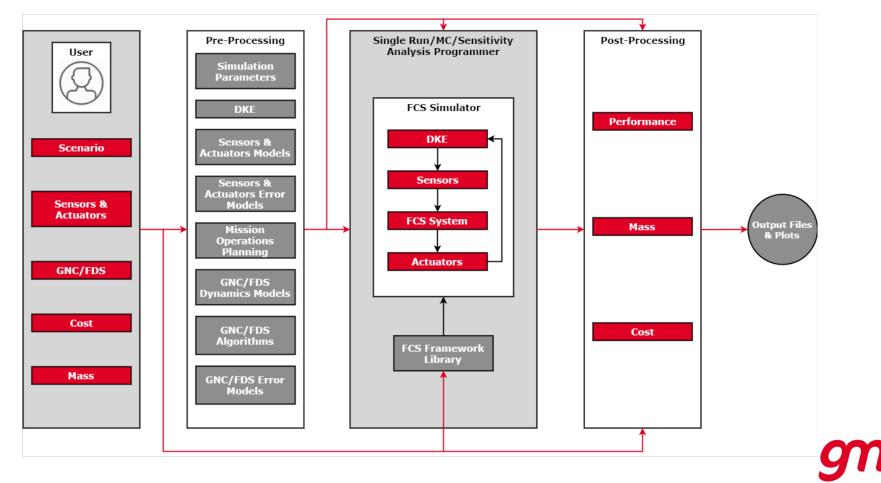
FCS Components and Interfaces


FCS Constraints

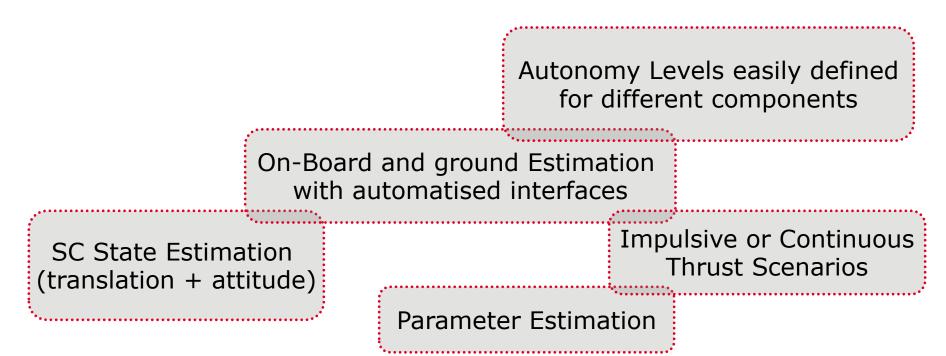
FCS-ATOMIC Framework Framework Philosophy

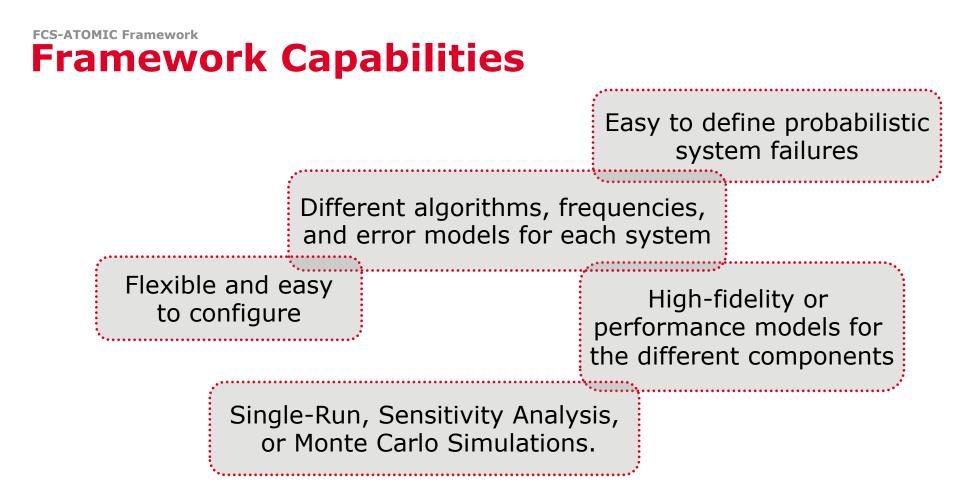
- No installation required
- Scenario and Models configured by input files
- Modular: Each FCS Component defined by its input file

No GUI

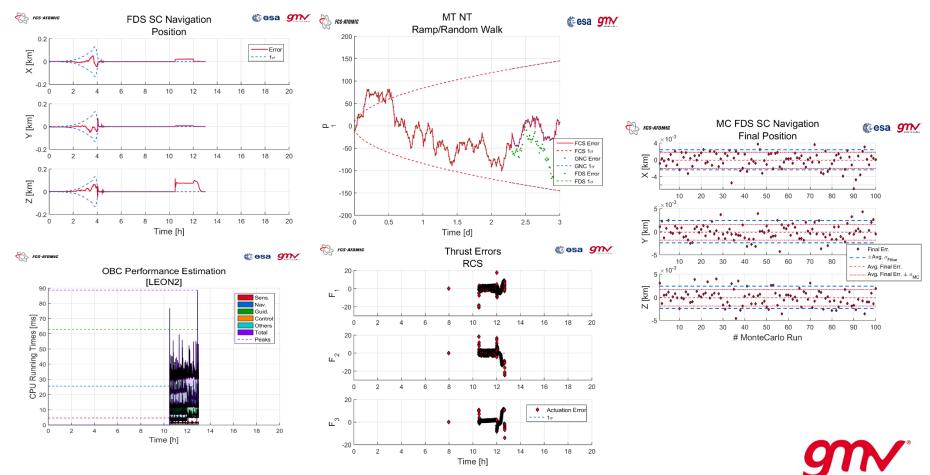

FCS-ATOMIC Framework Framework Language

- MATLAB selected for the flexibility and accesibility
- The user has the possibility to use MEX functions for increased speed


Programming Language/Concept	Flexibility	Extensibility	Computational Speed	Accessibility
MATLAB	****	****	**	****
MATLAB with MEX functions	****	****	***	****
Simulink with S- functions	****	***	***	****
MATLAB/Simulink Hybrid	***	***	***	****
FORTRAN	*	**	****	**


FCS-ATOMIC Framework High Level Architecture

FCS-ATOMIC Framework Framework Capabilities

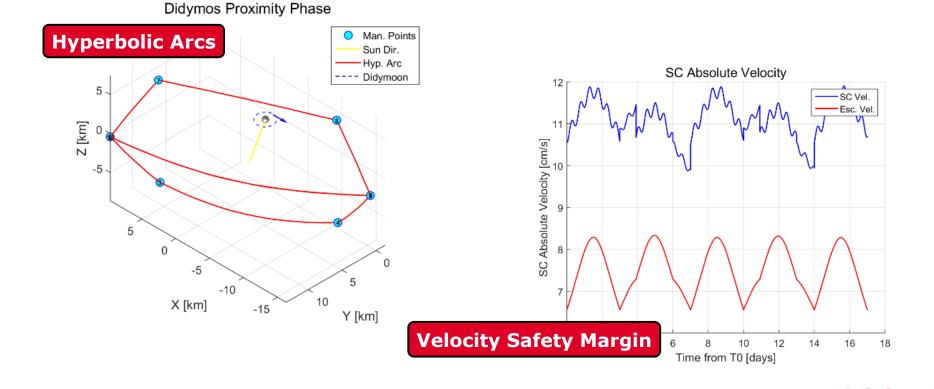


FCS-ATOMIC Framework

12/07/2018

ASSESSMENT ASSESSMENT

HERA Mission



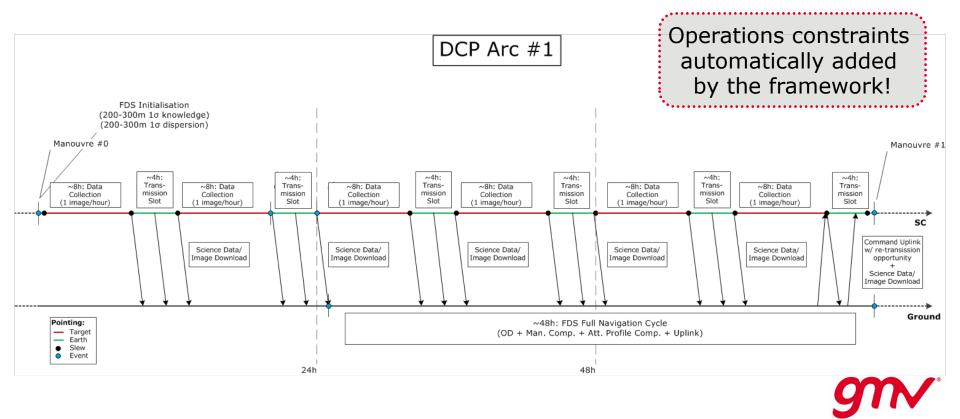
Mission Phase	Key Events	Date / Duration
Launch and Early	Launch	22/10/2023 (LPO) - 12/11/2023 (LPC)
Operations	Early Operations / Commissioning	1-2 months (TBC)
Cruise	Deep Space Manoeuvre and Interplanetary transfer	~3 years
	Arrival at Asteroid System	02/09/2026
Asteroid System	Insertion Manoeuvres	~28 days
Rendezvous	Early Characterisation Phase (ECP)	~6 weeks
Proximity Operations	Detailed Characterisation Phase 1 (DCP1)	~6 weeks
	Payload Deployment Phase (PDP)	~4 weeks
	Detailed Characterisation Phase 2 (DCP2)	~6 weeks
	Detailed Characterisation Phase 3 (DCP3)	~6 weeks
	End of Life Phase (ELP)	12/07/2018
	End of Life (EoL)	Jun 2027

FCS-ATOMIC FP – Final Presentation

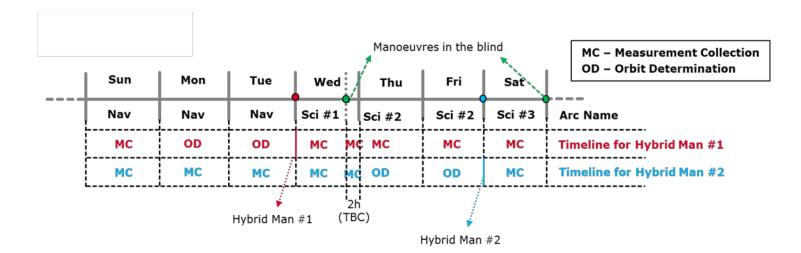
12/07/2018

FCS Feasibility Study

- Close Proximity (~10-18 km) is a challenge given the large manoeuvre errors (from AIM SS)
- Ground Operational Turnaround Times have a negative impact on the navigation performance

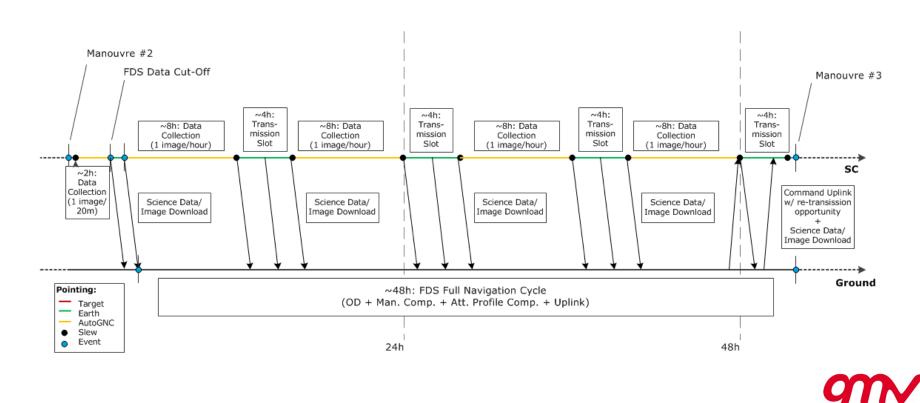

Question:

- Can the spacecraft be safely controlled from ground?
- Does autonomy make the strategy feasible? And what autonomy level/strategy delivers the optimal performance/safety/cost?


No Autonomy

- 8h Earth communication slot / day with non-steerable HGA

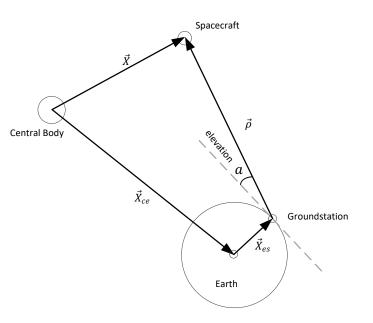
No Autonomy


- No weekend or night shifts
- 48h turnaround time

Medium Autonomy

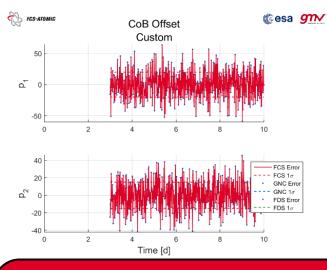
DCP Arc #3

Dynamical Uncertainties


<i>FC</i> 2 FC	5- <i>атоміс</i> 8 ×10 ⁻⁸		SRP Con ECR			Cesa	gn∕
	6			d.	M		
	4			N	1	 k,	
p, [%]	2 -		h	N	1	1	
	0		WY, N	N ^V	-	FCS Erro	
	-2		MM		-	GNC Err GNC 1σ FDS Err FDS 1σ	
	-4 -						
	0	2	4 Time [d	6 d]	8	10	

Dynamical Parameter assumptions	1-Sigma
Didymain ephemeris position error [m]	1000
Didymain ephemeris velocity error [m/s]	0.001
Didimain Centre-of-Mass/Centre-of-Gravity	[1,1,1]
Offset [m]	
Didymoon orbital elements error	10m, 0.01, 0.1deg, 0.1deg,
(SMA,ECC,INC,RAAN,OMG,TRUEAN0)	0.1deg, 1deg.
Didymain gravity parameter error [%]	0.1
Didymoon gravity parameter error [%]	1
Didymain Orientation [deg]	[1, 1, 1]
Solar radiation Pressure Constant	1% (ECRV, 1 day autocorrelation
	time)
Landmarks Position	1 pixel
Ground Station Location Error	1m in each coordinate
Didymain Scale Factor Error	0.1%
Non-gravitational accelerations [m/s ²]	1x10 ⁻¹¹ (ECRV, 1 day
	autocorrelation time)

12/07/2018


Radiometric Measurements

Measurement errors	1-Sigma
	Noise: 3
Range [m]	
	Bias: 5
Range acquisition frequency	Every hour
	Noise: 0.1
Doppler [mm/s]	
	Bias: 0
Doppler acquisition frequency	Every 10 min
Ground station position [m]	Bias: 1m
Ground Station considered	Cebreros, New Norcia, Malargüe

Optical Measurements

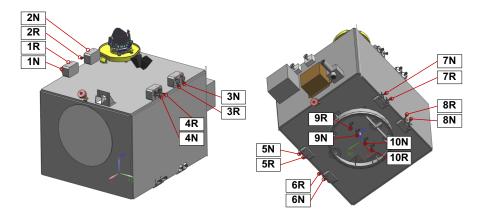
Centroiding:

- 1pxl White Noise
- 1pxl Bias (camera misalignment)
- CoB Offset
- CoM Offset

Dynamical Parameter assumptions	1-Sigma
Didimain Centre-of-Mass/Centre-of-Gravity Offset [m]	[1,1,3]
Landmarks Detection	1 pixel
Didymain Scale Factor Error	0.1%
Landmark Position [m]	1
Didymain Orientation [deg]	[1, 1, 1]

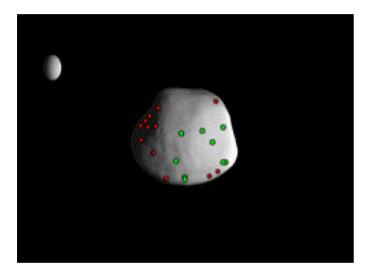
LMs Uncertainties:

- CoM Offset
- LM Detection Performance
- LM Position


•

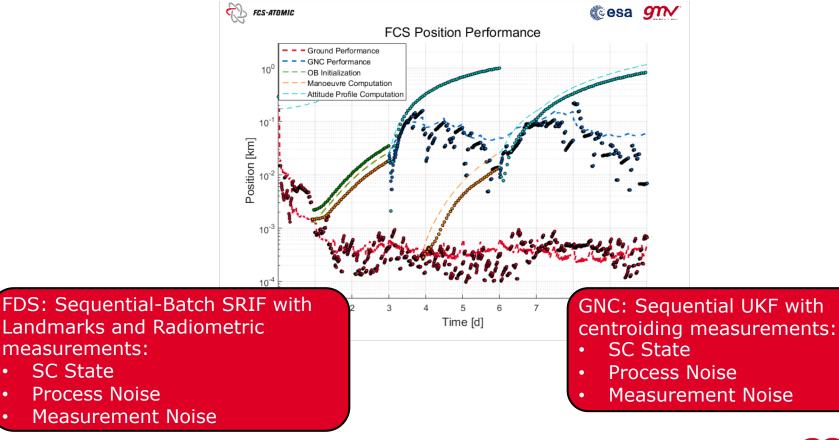
- Body Scale Error
- **Body Orientation**

Actuator Errors


- RCS Use 10N thrusters
- Sensitivity analysis on the manoeuvre error

Scenario	1σ Errors
Optimistic Case	Manoeuvre Magnitude Error: 0.3%
	Manoeuvre Direction Error: 0.5 deg
Baseline Case	Manoeuvre Magnitude Error: 1%
	Manoeuvre Direction Error: 1 deg
Pessimistic Case	Manoeuvre Magnitude Error: 3%
	Manoeuvre Direction Error: 1.5 deg

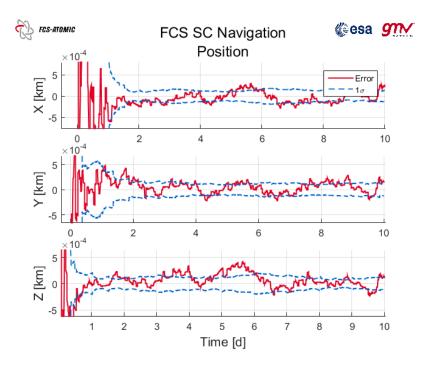
Image Processing Techniques

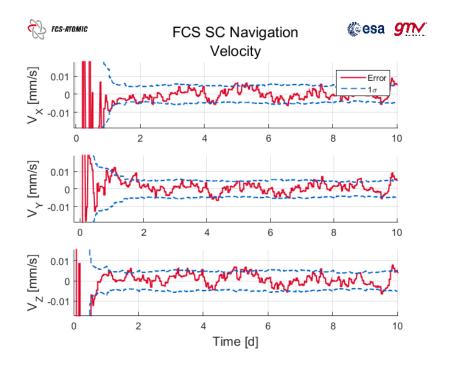

FDS: Landmarks-based Navigation

GNC: Centroiding-based Navigation

Page 26

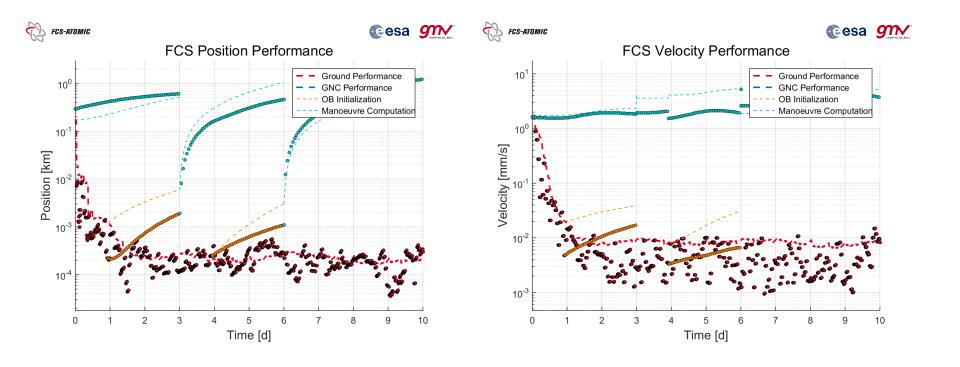
HERA **Navigation Algorithms**

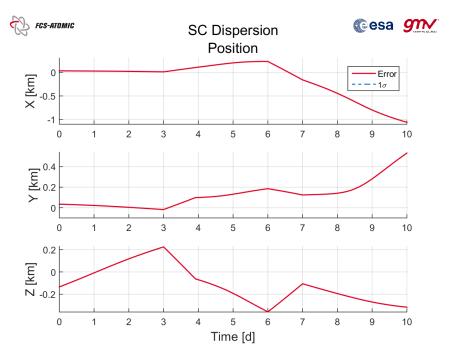


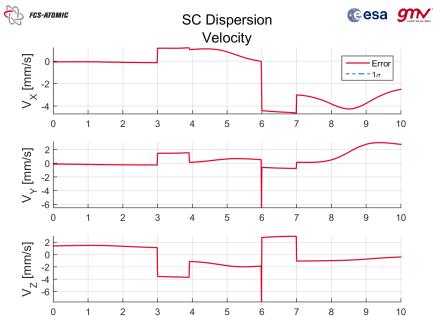

•

•

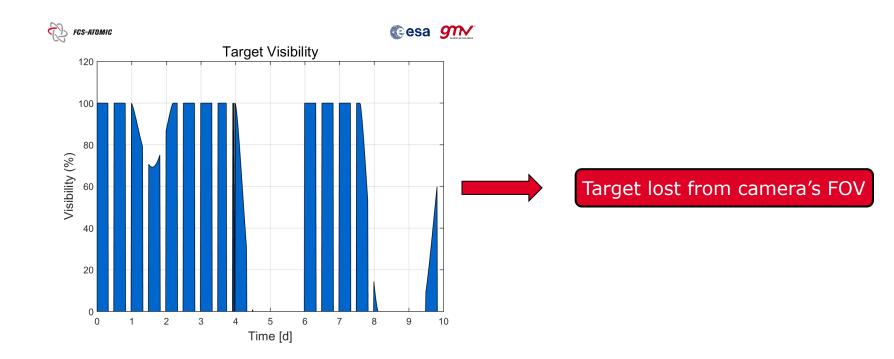
•


Ground-only Reconstructed Performance

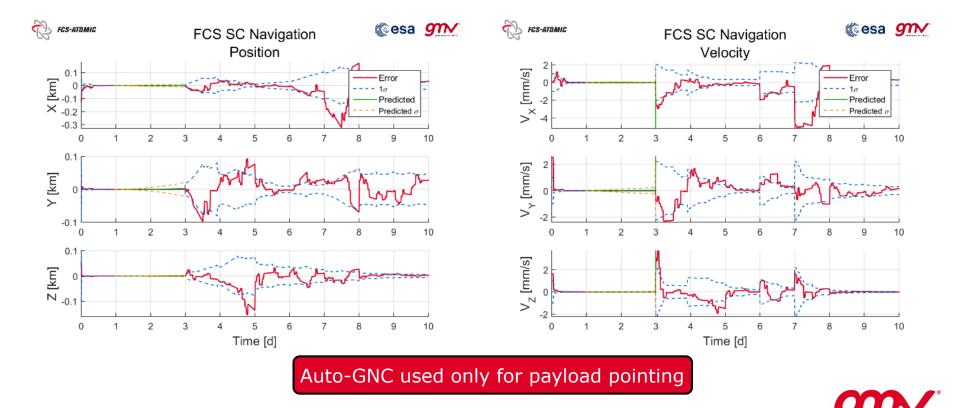



Ground-only Predicted Performance

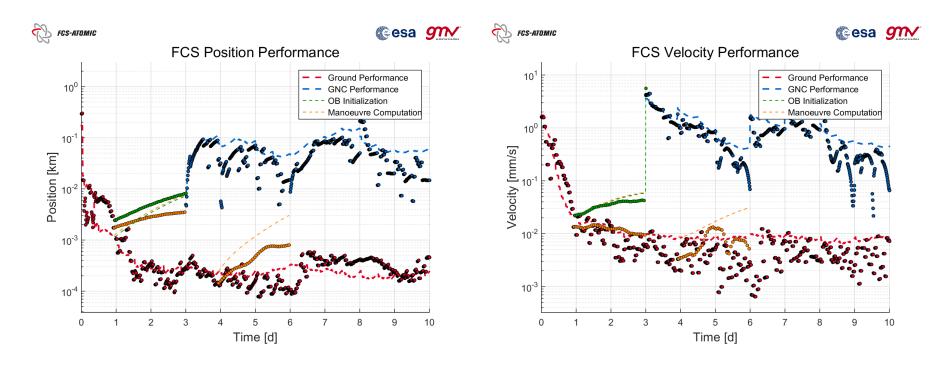
Ground-only Dispersion Performance



Time [d]

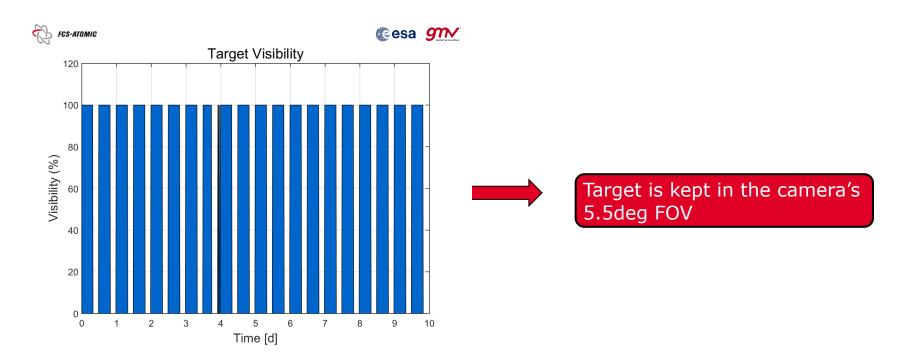


Ground-only Pointing Performance

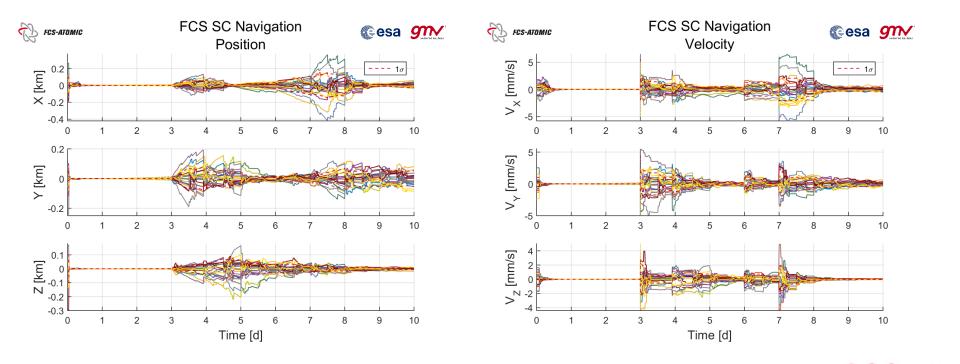


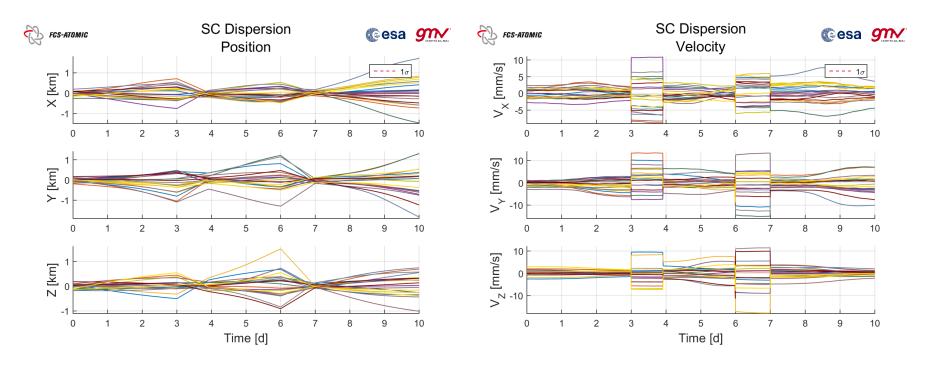
Autonomous Pointing Navigation Performance

12/07/2018

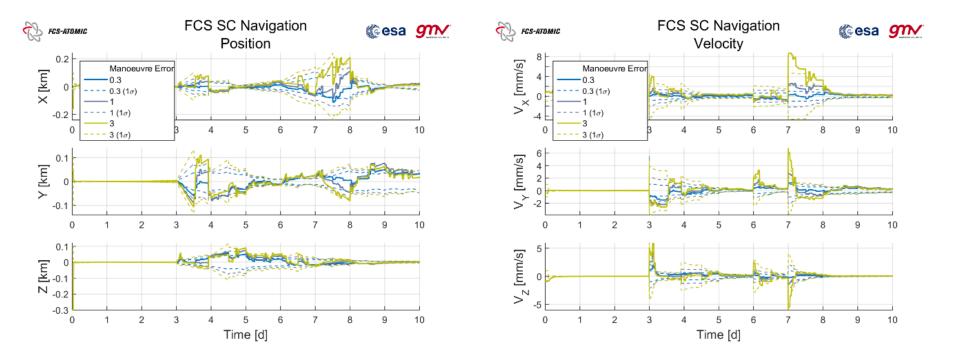

Ground still computing manoeuvres

Dispersion remains unchanged

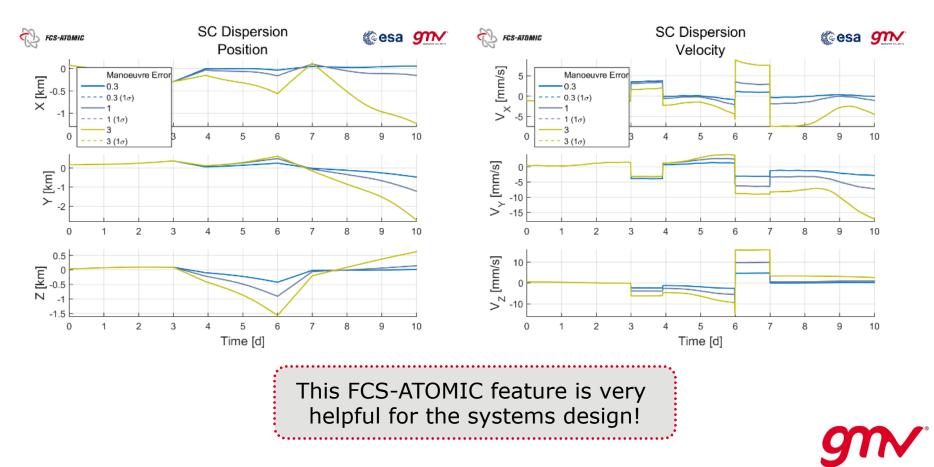

Target is now permanently on the FOV

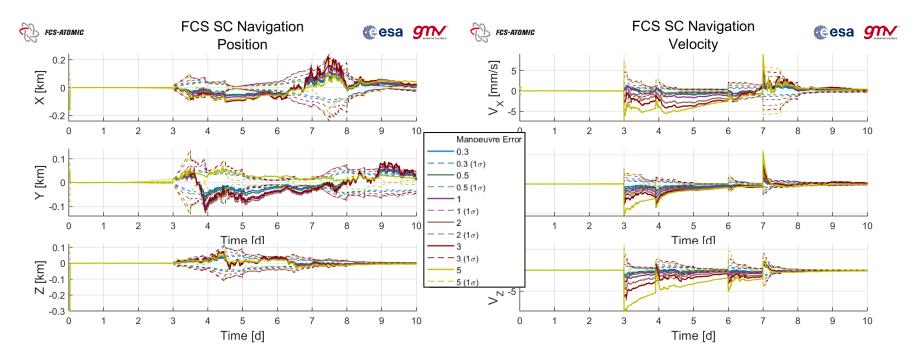

12/07/2018

A reduced MC run suggsts the covariance is indicative of the performance

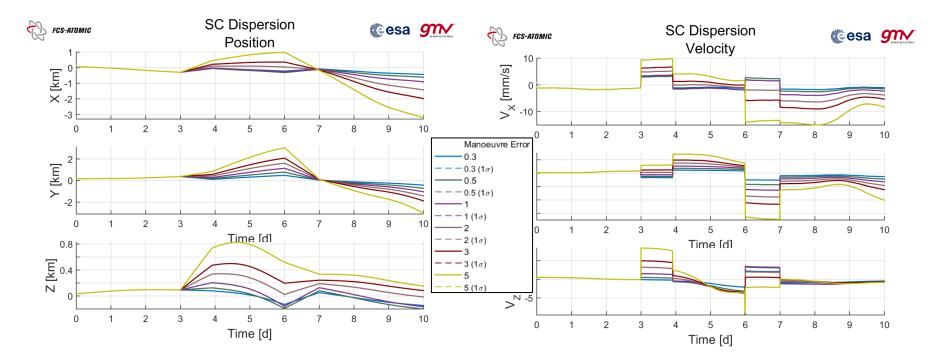

12/07/2018

MC Dispersion Results


Worst Case is used for a sensitivity analysis on the manoeuvre errors

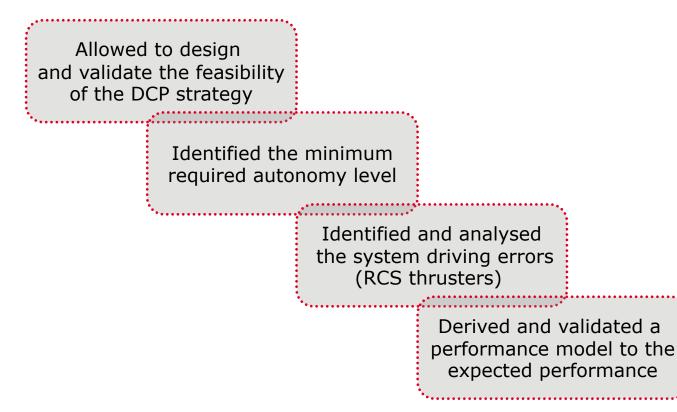

12/07/2018

Manoeuvre erros dominate the dispersion


FCS-ATOMIC FP – Final Presentation

Performance Model Derivation for Simplified Analyses

Dispersion Performance Model


HERA Way Forward

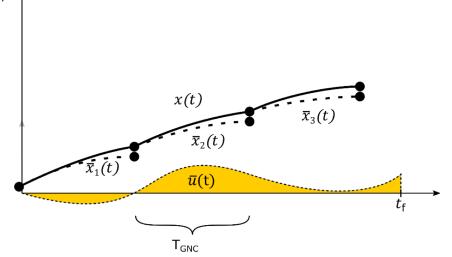
- Develop a higher-fidelity manoeuvres model and assess the performance of IMU closed-looped manoeuvres
- Implement higher-fidelity on-board image processing algorithms
- Assess the possibility of having more precise RCS thrusters
- Assess the possibility of having autonomous correction to the ground-commanded ΔV

Conclusions

The FCS Assessment with the FCS-ATOMIC Framework:

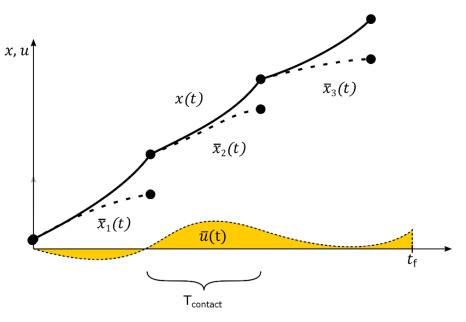
FCS-ATOMIC FD S G 2 G G C G FCS S M E N F ASSI

G2G mission


- Electric propulsion orbit raising
- Assessment of the impact of the increased on-board autonomy

Trajectory Generation	The initial orbit would have an altitude of 3163 km (SMA = 9541 km), and a 56 deg inclination and will be circular. The remainder of the parameters are eccentricity, argument of perigee, RAAN and true anomaly, which are fixed with 12/07/2018 values as those have no impact on the performance. The parameter that will be varied between the simulations is SMA with intervals of 100 km. The final orbit is a circular Medium Earth Orbit (MEO) at an altitude of 23222 km (SMA = 29600 km) above the Earth and at an inclination of the orbital planes of 56 deg .
Autonomy Level	Earth and at an inclination of the orbital planes of 56 deg .
Autonomy Level	
	The autonomy covers the translation guidance function, which can be calculated on-ground or on-board. Thus, the autonomy level can be selected between no autonomy and medium autonomy .
Thrust to Mass Ratio	Autonomy level selection has impact on the cost of the mission and performance goals. Electric propulsion system is the crucial element for the continuous thrust strategy and the selection of the thrust magnitude has a huge impact on the transfer time for the specific configuration of the spacecraft mass.
	The preliminarily selected values for the nominal G2G mission setting is of 180 mN for the thrust (Isp=1,720s) and 1785 kg and 1500 kg for the wet and dry masses, respectively. In order to fulfill the performance goals, different thrust magnitudes are analysed in order to find the values that optimizes the performance/cost ration while fulfilling the required constraints. The thrust values for sensitivity analysis: 80 and 480 mN .
GNSS Receiver Performance	The transfer accuracy and transfer time is dependent on the whole translation navigation chain (from measurements up to navigation solution). Its performance varies with the GNSS receiver performance.
	For the receiver performance, a nominal tracking threshold of 25 dBHz will be assumed. A value of 30 dBHz will also be analyzed to assess a degraded receiver performance.
	These distinct receiver performances will translate to different navigation performances and GNSS outages (unavailabilities) by the formulated performance model.
Thrust Error and Degradation	A nominal initial thrust error of 0.56% is assumed with a degradation of 2% per year following a linear degradation law.
	The analysis will be extended to initial values between 0.1 - 1.0 % with a degradation between 1-10 % per year.
Time step	150s

Scenario 1: medium autonomy

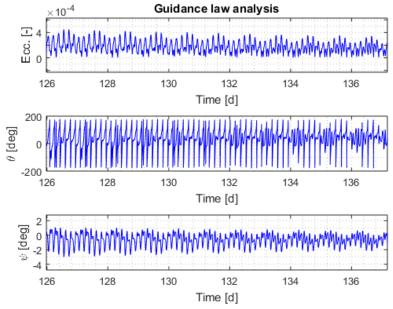

- The guidance law is executed at every x, u time step as it would be executed on-board.
- All relevant error models take into account the on-board knowledge of the process (i.e. can be worse than precise ground-based orbit determination).
- Periodic update of on-board parameters (like actual thrust level, mass) may also be incorporated.

Scenario 2: No autonomy

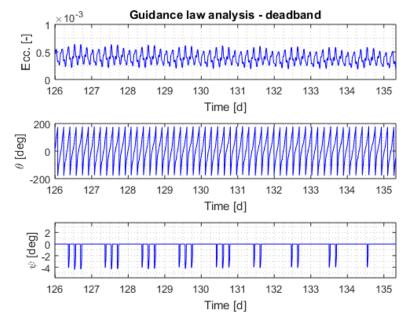
- The same guidance law (as in scenario 1) is used to generate a reference trajectory using the ground based knowledge error models.
- The reference trajectory (thrust) is executed in open-loop until the next ground-update.
- At the next ground update, the trajectory is re-computed and the process iterates.

Guidance law: Thrust direction control

Used as an alternative for the complex trajectory optimization strategies
Guidance law expressed by:


 $\psi = -k\sin(f)\,e$

- f: true anomaly
- e: eccentricity
- k: controller gain
- ψ : thrust direction angle (in orbital plane) wrt along-path axis.
- Introduces stabilizing term into the eccentricity dynamical equation:

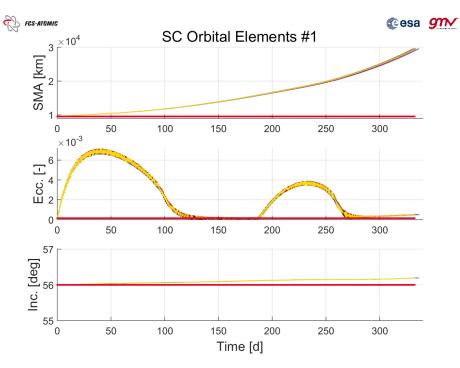

$$\dot{e} = \frac{1}{h} \left(p \sin f \sin \psi F + \left((p+r) \cos f + re \right) \cos \psi F \right)$$

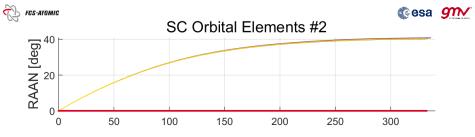
Guidance law: jitter analysis

Element	Nominal MA-1 case mean	Case with deadband		
e [-]	5,26E-04	5,47E-04		
i [deg]	56,1935	56,1933		
RAAN [deg]	40,4688	40,4959		
ΔV [m/s]	2910,2741	2910,1672		
Time [days]	333,7847	333,6857		

Conclusions:

- Nominal control seems to act too sensitively in presence of near-circular orbit
- The deadband correctly neglects small eccentricity variations which are not necessary to be supressed
- No major impact on overall orbit raising performance




Test plan – medium autonomy

Test case	Test description	Batch size	Scenario configuration	Error sources					
Nominal Medium Autonomy Case									
FCS-G2G- MA-1	Nominal case of medium autonomy scenario. The performance of the G2G medium autonomy case (GNC) is assessed in presence of all the expected error sources, in the nominal envelope of conditions. The results of the batch of runs will identify which combination of conditions (navigation and thruster errors) may produce worst cases.	10	Initial parameters: • SMA - 9541 km • Inclination - 56 deg • Autonomy level - medium • Nominal thrust - 180 mN • GNSS receiver performance - 25 dBHz • Initial thrust error - 0.56% • Thrust degradation 2%/year	Performance model of GNSS-based Navigation + Measurement s + Visibility (GNC) Performance model of Error Dispersion + Thrust Performance					
Various Nominal Thrust Tests									
FCS-G2G- MA-2	Different nominal thrust Assessment of impact of different	5	Same as FCS-G2G-MA-1 but: Nominal thrust – 80 mN	Same as FCS- G2G-MA-1					
FCS-G2G- MA-3	nominal thrust on orbit raising time and performance.	5	Same as FCS-G2G-MA-1 but: • Nominal thrust – 480 `mN	Same as FCS- G2G-MA-1					
	Various	Initial S	SMA Tests						
FCS-G2G- MA-4	Assessment of impact of initial semi-		Same as FCS-G2G-MA-1 but: • SMA – 9441 km	Same as FCS- G2G-MA-1					
FCS-G2G- MA-5	major axis on orbit raising time and performance.	5	Same as FCS-G2G-MA-1 but: • SMA – 9641 km	Same as FCS- G2G-MA-1					
	Robustness Testing -	- GNSS	receiver performance						
FCS-G2G- MA-6	Sensitivity to GNSS receiver performance	5	Same as FCS-G2G-MA-1 but: • GNSS receiver performance – 30 dBHz	Same as FCS- G2G-MA-1					
	Robustness Te	sting -	thruster errors						
FCS-G2G- MA-7	Sensitivity to thruster initial error	5	Same as FCS-G2G-MA-1 but: • Initial thrust error – 0.1%	Same as FCS- G2G-MA-1					
FCS-G2G- MA-8		5	Same as FCS-G2G-MA-1 but: Initial thrust error – 1%	Same as FCS- G2G-MA-1					
FCS-G2G- MA-9	Sensitivity to thruster degradation	5	Same as FCS-G2G-MA-1 but: • Thrust degradation 1%/year	Same as FCS- G2G-MA-1					
FCS-G2G- MA-10		5	Same as FCS-G2G-MA-1 but: • Thrust degradation 10%/year	Same as FCS- G2G-MA-1					

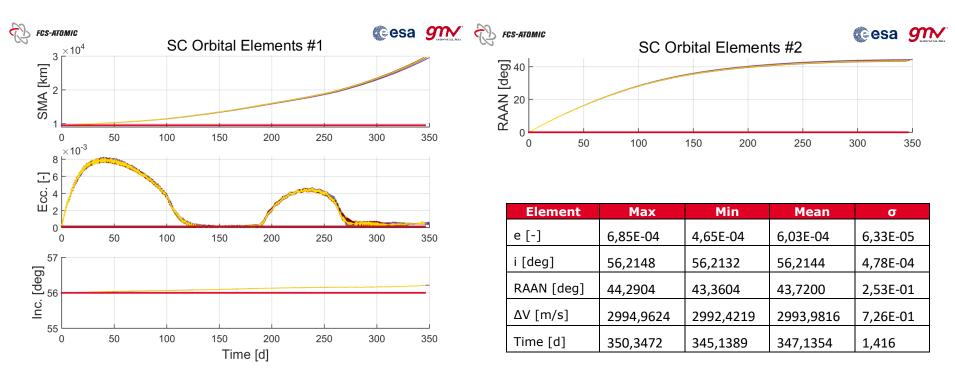
gmv°

Medium autonomy – nominal case

Element	Max	Min	Mean	σ	
e [-]	5,50E-04	4,98E-04	5,26E-04	1,67E-05	
i [deg]	56,1938	56,1930	56,1935	2,22E-04	
RAAN [deg]	40,8031	40,2583	40,4688	1,49E-01	
ΔV [m/s]	2910,8276	2909,8696	2910,2741	3,22E-01	
Time [days]	336,8056	331,9444	333,7847	1,318	

Medium autonomy - sensitivity

Case	RAAN σ [deg]	Mean ΔV [m/s]	Mean Time [d]	Time σ [d]	
MA-1	0,149	2910,274	333,78	1,318	
MA-2	0,187	-	-	-	
MA-3	0,073	+1,77%	-205,14	0,563	
MA-4	0,177	+1,37%	+5,21	1,491	
MA-5	0,162	-1,35%	-3,99	1,486	
MA-6	0,170	+0,00%	+0,63	1,460	
MA-7	0,030	+0,01%	-0,38	0,263	
MA-8	0,288	-0,01%	+1,49	2,579	
MA-9	0,165	+0,00%	-0,94	1,465	
MA-10	0,177	-0,02%	+13,89	1,608	


Test plan – no autonomy

Test case	Test description	Batch size	Scenario configuration	Error sources					
Nominal No Autonomy Case									
FCS-G2G- NA-1	Nominal case of no autonomy scenario. The performance of the G2G no autonomy case (FDS) is assessed in presence of all the expected error sources, in the nominal envelope of conditions. The results of the batch of runs will identify which combination of conditions (navigation and thruster errors) may produce worst cases.	10	Initial parameters: SMA – 9541 km Inclination - 56 deg No autonomy Nominal thrust – 180 mN GNSS receiver performance – 25 dBHz Initial thrust error – 0.56% Thrust degradation - 2%/year Ground update period – 7 days	Performance model of Ground GNSS-based OD (FDS) Performance model of Error Dispersion + Thrust Performance					
	Various No	minal	Thrust Tests						
FCS-G2G- NA-2	Different nominal thrust Assessment of impact of different	5	Same as FCS-G2G-NA-1 but: • Nominal thrust – 80 mN	Same as FCS- G2G-NA-1					
FCS-G2G- NA-3	nominal thrust on orbit raising time and performance.	5	Same as FCS-G2G-NA-1 but: • Nominal thrust – 480 mN	Same as FCS- G2G-NA-1					
Various Initial SMA Tests									
FCS-G2G- NA-4	Different initial SMA Assessment of impact of initial semi-	5	Same as FCS-G2G-NA-1 but: • SMA – 9441 km	Same as FCS- G2G-NA-1					
FCS-G2G- NA-5	major axis on orbit raising time and performance.	5	Same as FCS-G2G-NA-1 but: • SMA – 9641 km	Same as FCS- G2G-NA-1					
	Robustness Testing -	- GNSS	receiver performance						
FCS-G2G- NA-6	Sensitivity to GNSS receiver performance	5	Same as FCS-G2G-NA-1 but: GNSS receiver performance – 30 dBHz	Same as FCS- G2G-NA-1					
	Robustness Te	sting -	thruster errors						
FCS-G2G- NA-7	Sensitivity to thruster initial error	5	Same as FCS-G2G-NA-1 but: Initial thrust error – 0.1%	Same as FCS- G2G-NA-1					
FCS-G2G- NA-8		5	Same as FCS-G2G-NA-1 but: • Initial thrust error – 1%	Same as FCS- G2G-NA-1					
FCS-G2G- NA-9	Sensitivity to thruster degradation	5	Same as FCS-G2G-NA-1 but: • Thrust degradation 1%/year	Same as FCS- G2G-NA-1					
FCS-G2G- NA-10		5	Same as FCS-G2G-NA-1 but: • Thrust degradation 10%/year	Same as FCS- G2G-NA-1					
	Various gro	und up	date periods						
FCS-G2G- NA-11	Sensitivity to ground updates frequency	5	Same as FCS-G2G-NA-1 but: • Ground update period – 3 days	Same as FCS- G2G-NA-1					
FCS-G2G- NA-12	1	5	Same as FCS-G2G-NA-1 but: • Ground update period – 5 days	Same as FCS- G2G-NA-1					

Framework prototype

No Autonomy – nominal case

No autonomy - sensitivity

Case	RAAN σ [deg]	Mean ΔV Mean [m/s] Time [d]		Time σ [d]
NA-1	0,253	2993,982	2993,982 347,14	
NA-2	0,310	-	-	-
NA-3	0,018	+8,38%	-203,66	0,155
NA-4	0,296	+1,54%	+6,27	1,603
NA-5	0,237	-1,50%	-4,67	1,491
NA-6	0,275	+0,00%	+0,64	1,550
NA-7	0,053	-0,01%	-0,47	0,258
NA-8	0,506	-0,01%	+1,65	2,794
NA-9	0,282	+0,09%	-0,68	1,491
NA-10	0,360	-0,66%	+12,38	2,037
NA-11	0,185	-0,85%	-2,45	1,536
NA-12	0,241	-0,88% -3,04		1,596

Medium vs no autonomy

In general the medium autonomy approach outperforms the no autonomy scenarios both in deltaV and in orbit raising duration

Case	RAAN σ [deg]		Mean ΔV [m/s]		Mean Time [d]		Time σ [d]	
	MA-x	NA-x	MA-x	NA-x	MA-x	NA-x	MA-x	NA-x
MA-1/NA-1	0,149	+69,62%	2910,274	+2,88%	333,78	+4,00%	1,318	7,45%
MA-2/NA-2*	0,187	+65,84%	-	-	-	-	-	-
MA-3/NA-3	0,073	-74,65%	2961,713	+9,56%	128,65	+11,52%	0,563	-72,40%
MA-4/NA-4	0,177	+67,22%	2950,250	+3,05%	338,99	+4,25%	1,491	7,51%
MA-5/NA-5	0,162	+46,37%	2871,033	+2,72%	329,79	+3,84%	1,486	0,34%
MA-6/NA-6	0,170	+61,83%	2910,391	+2,87%	334,41	+4,00%	1,460	6,17%
MA-7/NA-7	0,030	+75,36%	2910,476	+2,86%	333,40	+3,98%	0,263	-2,20%
MA-8/NA-8	0,288	+75,72%	2909,993	+2,87%	335,28	+4,03%	2,579	8,33%
MA-9/NA-9	0,165	+70,89%	2910,385	+2,96%	332,85	+4,09%	1,465	1,81%
MA-10/NA-10	0,177	+103,83%	2909,782	+2,21%	347,67	+3,41%	1,608	26,68%
MA-1/NA-11	0,149	+24,27%	2910,274	+2,00%	333,78	+3,27%	1,318	16,59%
MA-1/NA-12	0,149	+61,45%	2910,274	+1,97%	333,78	+3,09%	1,318	21,12%

Conclusions and Recommendations

- FCS-ATOMIC tool allowed analysis of a challenging scenario
 - Long duration of scenarios
 - Effective error modelling
 - Easy generation of new scenarios based on the nominal one
- Advantages of medium autonomy approach demonstrated
- Further improvements:
 - Guidance law to incorporate deadband
 - Guidance law with gain changes depending on altitude
 - Increased fidelity of ground processes
 - Increased fidelity of guidance algorithms

THANK YOU

GNVBLOG f ヒ S+ 品 in ふ

