Delay-Tolerant Networks For Earth Observation

Presented by:

- Jeremy Pierce-Mayer GMV INSYEN AG -
- Michael Staub GMV INSYEN AG
- Tomaso De Cola DLR

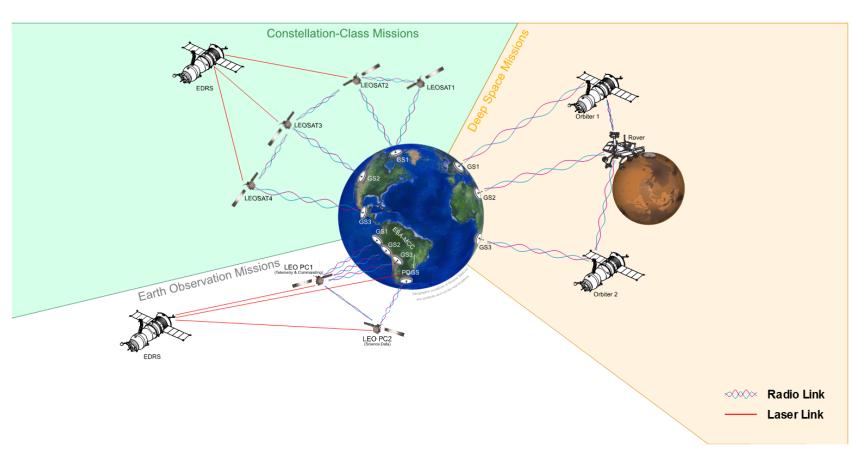
Prepared by:

- **GMV INSYEN AG**
- Solenix Deutschland GmbH
- Deutsches Zentrum für Luft- und Raumfahrt e.V.
- **University of Bologna ARCES**
- GMV S.A.

© GMV, 2018 Property of GMV INSYEN

All rights reserved

UNCLASSIFIED INFORMATION



ZTT

gn INSYEN

STUDY OBJECTIVES

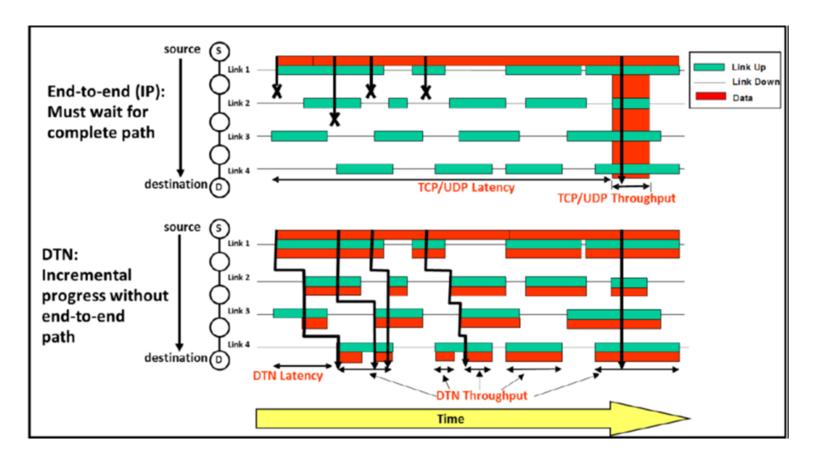
- How to realize the establishment of the Space Internet around Earth.
- Work out possible benefits of DTN.
 - Develop implementation scenarios
 - Maximize resource utilization
 - Reduction of data delivery time using Contact Graph Routing (CGR)
 - Support emergency communication
 - Proof of concept
 - Configuration generation
 - Representative Simulations
 - Rollout strategy
 - Introduction roadmap
 - Investment break-even
 - Implementation Analysis, based upon scenario testing

DTN-EO: Final Presentation

06/09/2018

Page 3

UNCLASSIFIED INFORMATION


DTN – A MODERN MISSION ENABLER

DTN provides a robust protocol suite in order to guarantee reception of data in complex and challenging network environments

- Well-suited to space applications & includes a robust priority system.
- Includes Licklider Transmission Protocol (LTP) A reliable protocol for UDP or space links.

Flown Heritage:

- 2016 NASA enables DTN for ISS Payloads
- 2015 CCSDS approves the bundle protocol specification for space applications
- 2013 The Lunar Laser Communications Demonstration (LLCD) experiment aboard NASA's Lunar Atmosphere and Dust Environment Explorer (LADEE) exercises DTN capabilities between earth and the moon.
- 2012-Today The ESA METERON project controls ground-based robots from the ISS

Page 4

OVERVIEW TASKS

Task 1

Definition of scenarios and collection of scenario data

Task 2

- Simulator Creation and simulation of scenarios —
- Generation of contact graphs for DTN —
- Creation of contact graph generation script/tool for — DTN
- Task 3
 - Simulator analysis report —

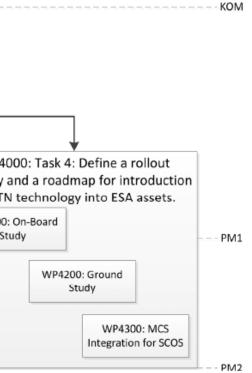
Task 4

High level roadmap and rollout strategy for DTN in — EO satellites

Task 5

- Project Management —
- Reporting

	WP5000: Task 5 Project Management		0: Task 1 entation Scenarios	
		Scenario Sce	1200: enario eration	
T0 + 1M			WP1210: Contact Generation	WP4 strategy of DT1 WP4100
10+114	_			St
			♥ 0: Task 2 DTN Communicatons	
T0 + 4M		WP2100: Proof of Concept -	WP2200: Scenario Testing	
		Software Development	WP2300: Analyze performance results	
T0 + 7M				
			ask 3: Devise of usability of DTN.	
		WP3100: EO Satellite Recommendations		
		WP3200: Constellation Recommendations	WP3400: Collect results for report	
T0 + 12M		WP3300: Exploration Recommendations		


DTN-EO: **Final Presentation**

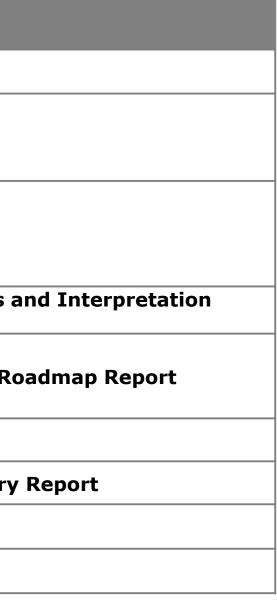
06/09/2018

Page 5

_ _ _

 Mid-
Term

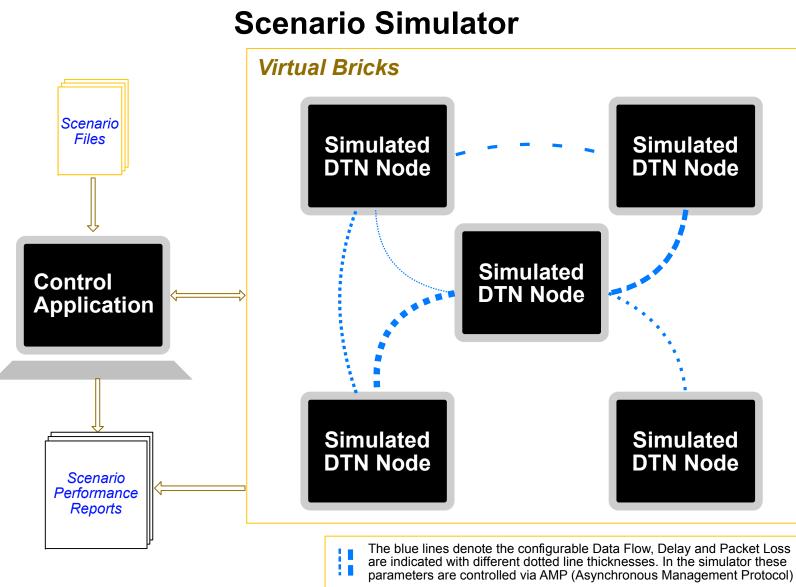
DELIVERABLES


Title	Name
Scenario Report	GMV-INS-DTN_EO-REP-0001 D1 - Scenario Report
Simulator & configurations for all three scenarios implementing DTN	GMV-INS-DTN_EO-REP-1002 S1 - Simulator Report
Test Report – Showing Results from Scenario Emulation	GMV-INS-DTN_EO-REP-1003 D2 - Test Report
Report: Simulation analysis and interpretation	GMV-INS-DTN_EO-REP-1004 D3 - Simulation Analysis a Report
Report: Requirements and Roadmap for DTN in EO	GMV-INS-DTN_EO-REP-1005 D4 - Requirements and Re
Final Presentation	GMV-INS-DTN_EO-PRS-1006 FP - Final Presentation
Executive Summary Report	GMV-INS-DTN_EO-REP-1007 ESR - Executive Summary
Two Illustrations	GMV-INS-DTN_EO-ILL-1008 IL - Illustrations
Final Report	GMV-INS-DTN_EO-REP-1009 FP - Final Report

06/09/2018

Page 6

UNCLASSIFIED INFORMATION



S

gn INSYEN

EMULATOR DESIGN

- **Technical Background The emulator generated as** a result of WP2xxx is designed as a series of modules.
 - Using Free and open-source software (FOSS) and consortia developments.
 - Runs on Linux.
 - Dynamic loading of the scenarios is accomplished via IETF standards (AMP).
 - Performance analysis and data generation performed via DTNPerf

DTN-EO: **Final Presentation**

06/09/2018

Page 8

gnv **INSYEN** SOLEN

UNCLASSIFIED INFORMATION

EMULATOR SCENARIO CREATION AND PROCESSING

- Scenarios are provided to the emulator as a series of JSON & CSV files.
- These files describe the nodes, network topology, reporting, etc. for a single scenario.
 - Bitrates and contact times may be scaled.
- Assets can be configured with DTN & system settings:
 - Base VM images, IP addresses, DTN specific settings.
 - ION Settings are provided with a template file.

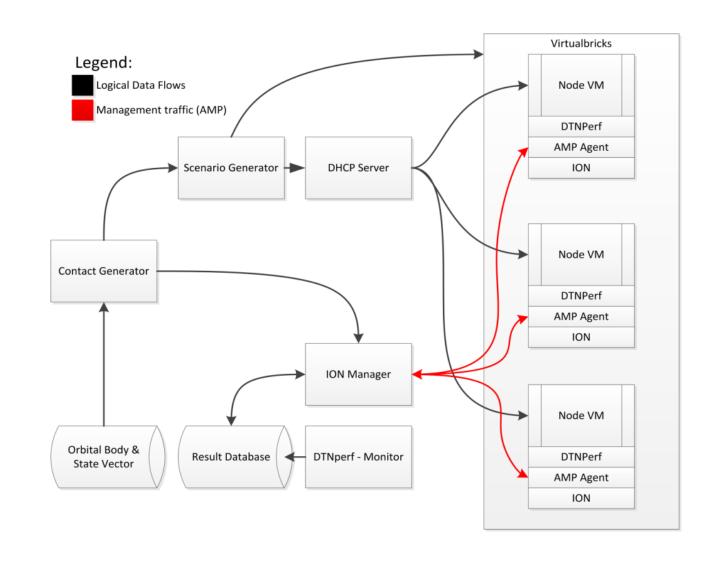
associated with orbital parameters:

- Body (Earth, Mars, etc.)
- Antenna visibility cone & rotation —
- And one of the following additional descriptors:
 - ground station (Latitude, longitude, and • elevation)
 - Orbital entity, using MEE2000: (sma, ecc, inc, • RAAN, perigee and true anomaly)

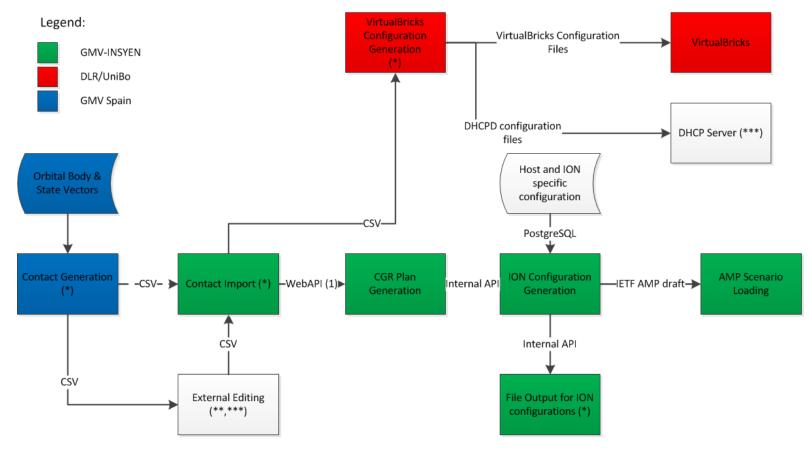
- Upon startup, an initial list of contacts are generated for the user.
 - The user can use these files to refine the potential contacts, before the next step.
 - All contacts are generated as CSV files, in order to allow simple editing.
- After user editing, the emulator is provided with the pre-built scenario inputs, all configuration files are generated.
 - The scenario may be run or shared.
 - Includes ION configuration as well as a VirtualBricks project.
 - Includes a capability to push files into the • Virtualbricks VM images, in order to quickly generate customized virtual machines.

DTN-EO:

06/09/2018


Page 9

- Technical Background The emulator generated as a result of WP2xxx is designed as a series of modules.
 - Using Free and open-source software (FOSS) and consortia developments.
 - Runs on Linux.
- Individual elements are developed by individual consortia members, based upon their strengths.


Page 10

UNCLASSIFIED INFORMATION

SYSTEM ENGINEERING DESIGN

- As the emulator is being developed by different members, well-defined interfaces are critical.
- Many of the individual components use welldefined interfaces.
 - E.g. the ION Configuration generation, etc. is based on internal APIs and a well-defined webAPI.
 - ION configuration file formats are well-known and stable.
 - Dynamic loading of the scenarios is accomplished via IETF standards (AMP).
- The largest interface description will be the CSV file containing the contacts.
 - Used by GMV-ES, GMV-I, and UniBo.

References:

- CSV file format will be defined in WP1100, but may be based on https://cwe.ccsds.org/sis/docs/Forms/AllItems.aspx?RootFolder=%2Fsis%2Fdocs%2FSIS-DTN%2FDraft%20Documents%2FSchedule-Aware%20Bundle%20Routing%20(SABR)
- (1). https://github.com/INSYEN/Sphere Middleware/wiki/Web-Services---API-Description •

Notes:

- * indicates new development and/or a modification on existing software
- ** Selection of the external editing tool (Excel, Open/LibreOffice, etc) may be determined by indvidual users & consortium members.
- *** Open-source tool.

DTN-EO: **Final Presentation**

06/09/2018

Page 11

gn INSYEN SOLEN

UNCLASSIFIED INFORMATION

SYSTEM ENGINEERING Scenario Inputs

- Scenarios are provided to the emulator as a series of JSON & CSV files.
- These files describe the nodes, network topology, reporting, etc for a single scenario.
 - Bitrates and contact times may be scaled.
- Assets can be configured with DTN & system settings:
 - Base VM images, IP addresses, DTN specific settings.
 - ION Settings are provided with a template file.

associated with orbital parameters:

- Body (Earth, Mars, etc)
- Antenna visibility cone & rotation
- And one of the following additional descriptors:
 - ground station (Latitude, longitude, and elevation)
 - Orbital entity, using MEE2000: (sma, ecc, inc, RAAN, perigee and true anomaly)

Scenario/

- General.json
- Assets.json
- Links.csv
- Reports.csv
- Dataflows.csv
- Configurations/
 - ScenarioC.rc

DTN-EO: Final Presentation

SYSTEM ENGINEERING Scenario Operation – Build Mode

- Provided with the scenario inputs, an initial list of contacts are generated for the user.
 - The user can use these files to refine the potential contacts, before the next step.
 - All contacts are generated as CSV files, in order to allow simple editing.

Scenario/

- General.json
- Assets.json
- Links.csv
- Reports.csv
- Dataflows.csv
- Configurations/
 - ScenarioC.rc
- Contacts/
 - EDRS-A.csv
 - ESA-MCC.csv
 - Martian Lander.csv

SYSTEM ENGINEERING Scenario Operation – Create Mode

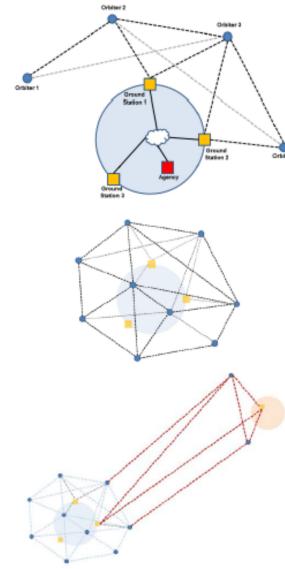
Provided with the pre-built scenario inputs, all configuration files are generated.

- The scenario may be run or shared.
- Includes ION configuration as well as a VirtualBricks project.

Scenario/

- General.json
- Assets.json
- Links.csv
- Reports.csv
- Dataflows.csv
- Configurations/
 - ScenarioC.rc
- Contacts/
 - EDRS-A.csv
 - ESA-MCC.csv
 - Martian Lander.csv
- outputConfigurations/
 - 105_EDRS-A/
 - ScenarioC.rc
 - 231_ESA-MCC/
 - ScenarioC.rc
 - 143_Martian Lander/
 - ScenarioC.rc
 - ScenarioC.vbp

Page 14


Т Z Ø

gn INSYEN

SCENARIOS & RESULTS

3 Scenarios

- Scenario-A (Observation)
 - One EO satellite
 - Relay satellites via DTN
 - Realistic ground station Network
- Scenario-B (Constellation)
 - theoretical globe-spanning fleet of DTN satellites
 - one relay satellite with optical inter-satellite communication
 - Sat-to-sat communication
 - X-Band up and downlink
- Scenario-C (Exploration)
 - expansion of Scenario-B to deep space DTN communication (planetary, moon, deep space)

06/09/2018 Page 16

ESA AO/1-8809/17/F/MOS

Scenario-A

Scenario-B

Scenario-C

SCENARIOS & RESULTS ASSUMPTIONS

Basic Assumptions

- Emulations as realistic as possible —
- Whenever possible, rooted in CCSDS best practices for DTN networks in space applications
- All scenarios based on CCSDS variant of the Bundle _ Protocol (RFC 5050)

Link Protocol Assumptions

- TCP for Ground interconnections
- (Red) LTP for bidirectional Space —
- (Green) LTP or UDP for unidirectional Space —
- Links constant or with duty cycle (e.g. contacts) —
- Fixed size packets (segments or bundles)

Telemetry Assumptions

- No division into R/T and Dump TM —
- All generated data directly bundled, buffered and transmitted by the on-board DTN implementation

Link Loss Assumptions

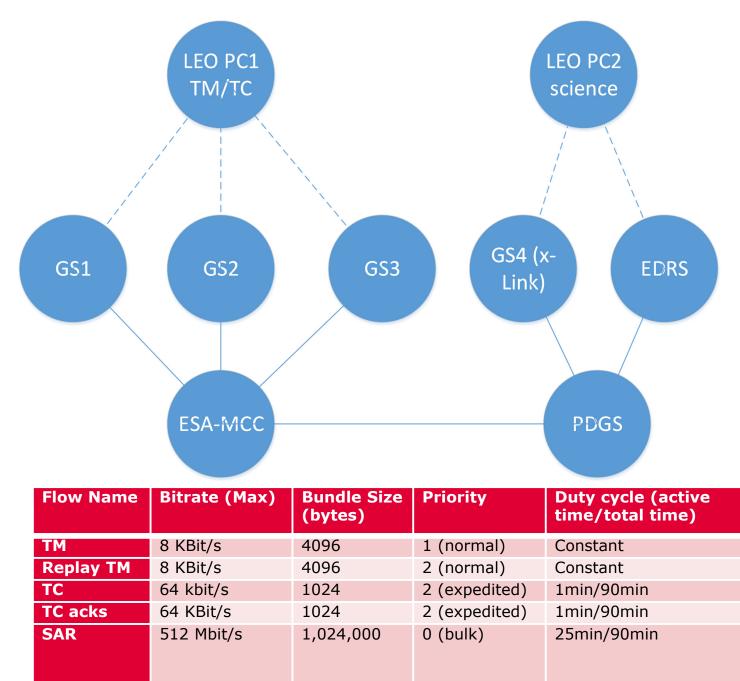
- Using AWGN (Additive White Gaussian Noise) model
- Reliability characterized in Packet Error Rates (PER), derived from reasonable bit error rates experienced in the corresponding scenarios.
- Ground interconnections ideal (TCP)

Data Flow Assumptions

- Different packet types (TM/TC, TC Ack, science data)
- Different data rates, bundle sizes, and priorities for each

Link	Packet Error Rate
S-Band	0.001
X-band	negligible
EDRS downlink to Earth	negligible
Inter-Satellite Links	negligible

06/09/2018


SCENARIOS & RESULTS SCENARIO A

Scenario A (Observation)

- Two on-board computers: LEO PC1 & 2:
- X-Band and EDRS links unidirectional (science)
- S-Band bidirectional (TM/TC)
- EDRS-A link:
 - Modelled as single hop (no storage), but •
 - Presence and constraints influence CGR •
 - Uni-directional optical links assumed •
- Delays below the DTN granularity of 1s

Objective is to acquire knowledge about

- Throughput increase and •
- Delivery time reduction when using DTN ٠
- Verification of BP store-and-forward mechanism •
- Test CGR effectiveness with regards to multiple • paths

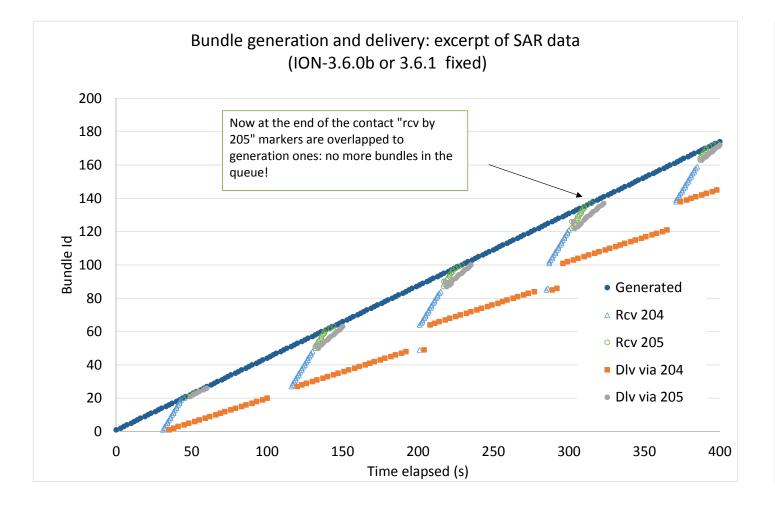
SOLEN

DTN-EO: **Final Presentation**

06/09/2018

Page 18

UNCLASSIFIED INFORMATION





SCENARIOS & RESULTS SCENARIO A - RESULTS

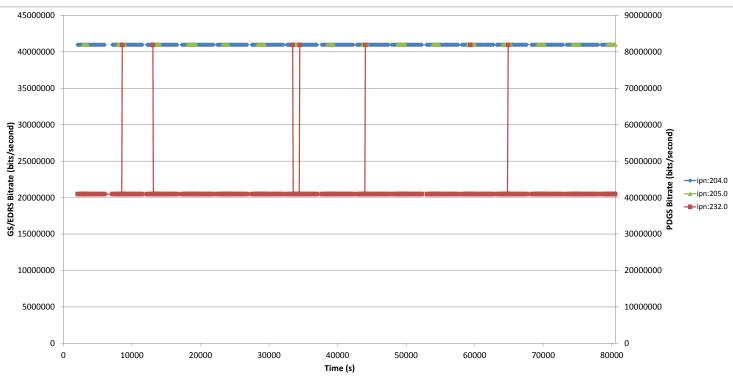
Analysis of SAR Flow

Analysis of TM/TC Flows

DTN-EO: Final Presentation

06/09/2018

Page 19


MINSYEN SOLENIX

UNCLASSIFIED INFORMATION

SCENARIOS & RESULTS SCENARIO A - RESULTS

- A comparative analysis of throughputs was performed
- It was found that DTN efficiently utilized the entire contact duration for scientific data & TM/TC
 - DTN-based transmission used 94% of the maximum possible contact duration, equaling 53,400MB per day of additional data.

				Delta data volume
Downlink	Theoretical Max (MB)		DTN Max. (MB)	(between safe and DTN) (MB)
EDRS	552,960	475,520	497,512.5	21,992.5
X-Band	868,352	817,152	848,559.375	31,407.375
Total	1,421,312	1,292,672	1,346,072	53,400

DTN-EO: Final Presentation

06/09/2018

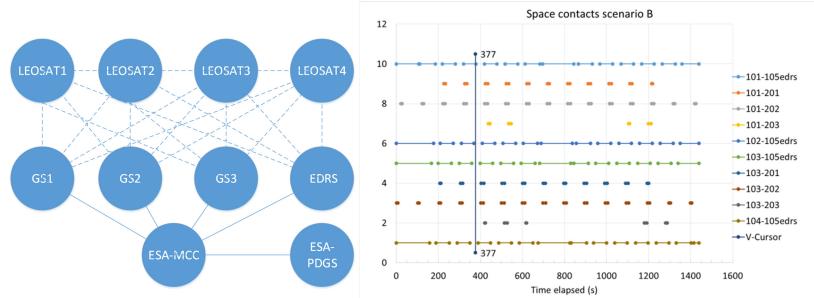
Page 20

UNCLASSIFIED INFORMATION

ESA AO/1-8809/17/F/MOS

Analysis of High-Rate Throughput

SCENARIOS & RESULTS


Scenario B (Constellation)

Same as Scenario A (data rates, contact plans...), but:

- Theoretical convoy of DTN LEO satellites
- Two kinds of science instruments (1&3, 2&4)
- Geometrical simulation (orbital data)
- Exclusive use of DTN Bundle Protocol
- X-Band links bi-directional, no S-Band
- Bi-directional Inter-Satellite Links (ISL)

Objective is to investigate:

- Effects on data delivery time using data balancing between satellites
- Virtual extension of Space-to-Ground connections
- Link capacity gain with increasing number of assets
- Optimal path selection with CGR

Flow Name	Bitrate (Max)	Bundle Size (bytes)	Priority	Duty cycle (active time/total time)		
ТМ	64Kbit/s	4096	1 (normal)	Constant		
ТС	64 kbit/s	1024	2 (expedited)	1min/90min		
TC acks	64 kbit/s	1024	2 (expedited)	1min/90min		
Science 1	32 Mbit/s	1,024,000	0 (bulk)	15min/90mi n		
Science 2	cience 2 32 Mbit/s		0 (bulk)	15min/90mi n		

DTN-EO: Final Presentation

06/09/2018

Page 21

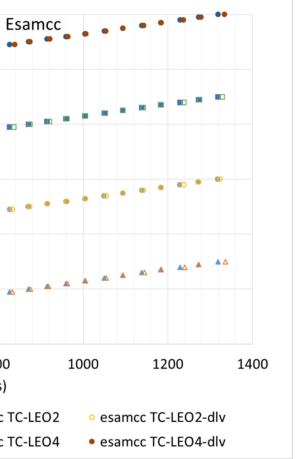
m INSYEN SOL

UNCLASSIFIED INFORMATION

SCENARIOS & RESULTS SCENARIO B - RESULTS

Downlink Flows (LeoSAT1)

Uplink Flows



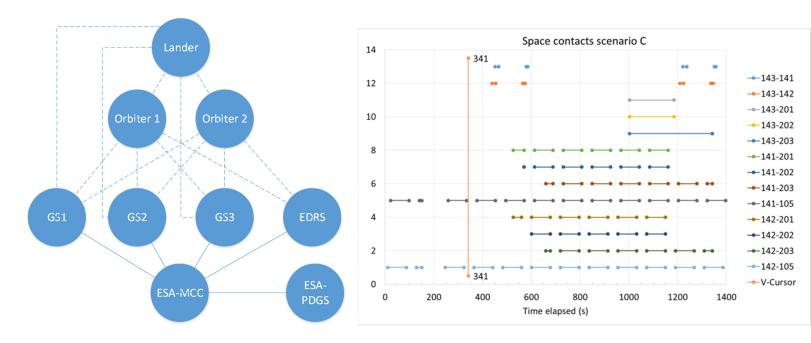
06/09/2018

Page 22

MINSYEN SOLENIX

UNCLASSIFIED INFORMATION

SCENARIOS & RESULTS


Scenario C (Exploration)

Same assumptions as Scenario B (data rates, contact plans...), but:

- Mars Lander/Orbiter combo replaces convoy of LEOs
- Lander-Earth connection dependent on Earth/Mars positions and position of Lander on Mars
- Lander-Orbiter connection
 - Visibility \sim 8min/sol with a cycle time of \sim 8h
- Orbiter-Earth connection
 - Visibility ~16h/day
- Very high delays between 3 and 22 min

Objective is to study:

- Influence of long delays
- Very limited connection opportunities
- DTN's Multipath behavior
- Different planetary bodies

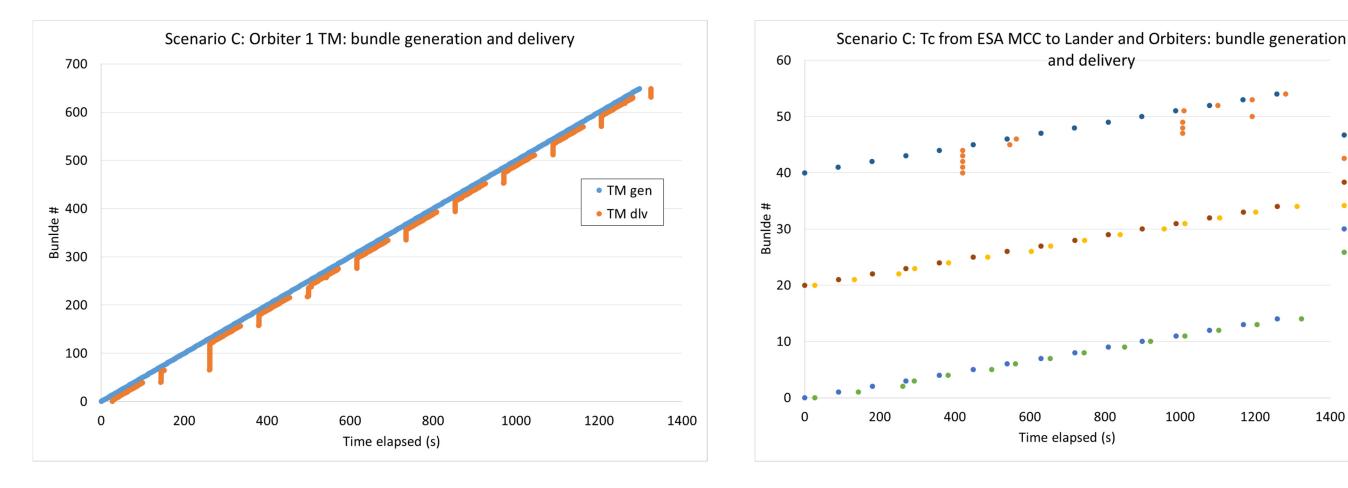
Flow Name	Bitrate	Bundle Size (bytes)	Priority	Duty cycle (active time/total time)	
ТМ	16Kbit/s	4096	1 (normal)	Constant	
тс	8 kbit/s	1024	2 (expedited)	1min/90min	
ТС-АСК	8 kbit/s	1024	2 (expedited)	1min/90min	
Science 1	16Kbit/s	256,000	0	25min/90min	
Science 2	32Kbit/s	512,000	0	15min/90min	
Science 3 - DEM	128Kbit/s	512,000	0	10min/90min	
Science 4 - Video	2Mbit/s	64,0000	0	10min/90min	

DTN-EO: Final Presentation

06/09/2018

Page 23

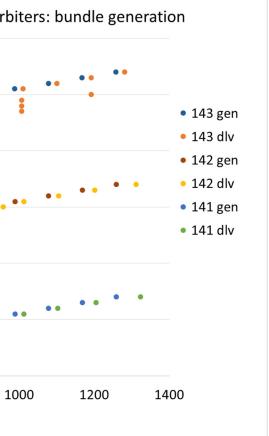
UNCLASSIFIED INFORMATION



SCENARIOS & RESULTS SCENARIO C - RESULTS - ORBITERS

TM: from Orbiter to MCC

Uplink: Telecommand to Orbiters

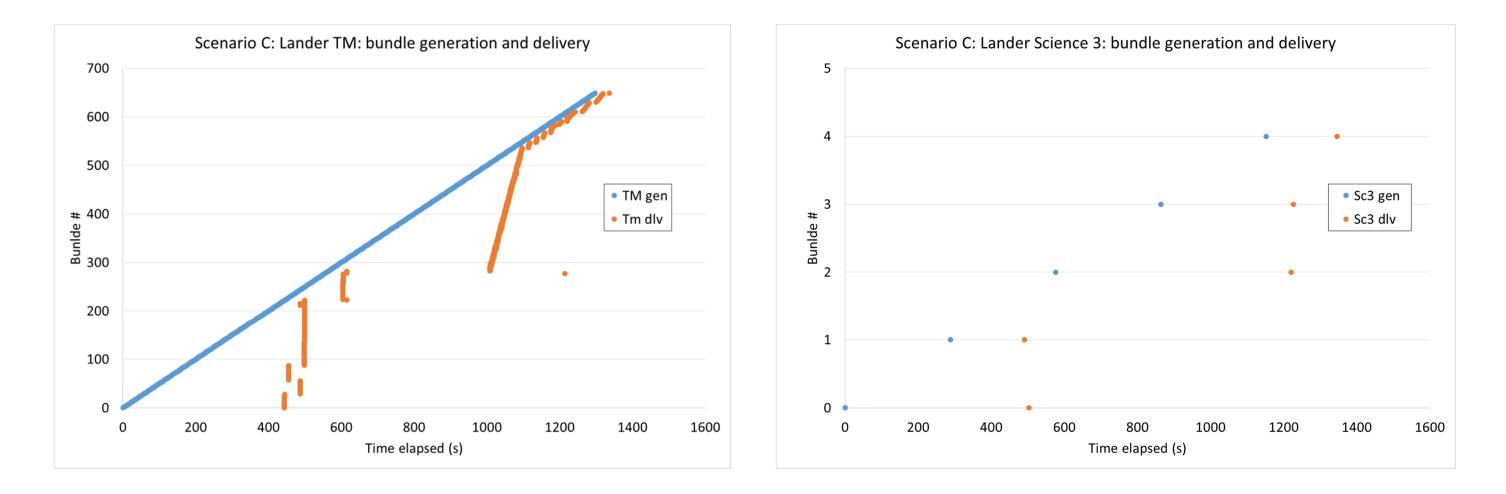

DTN-EO: **Final Presentation**

06/09/2018

Page 24

gnv **INSYEN** SOLENIX

UNCLASSIFIED INFORMATION



SCENARIOS & RESULTS SCENARIO C – RESULTS – LANDER

TM: from Lander to MCC

Science Data – 512kb bundles, to Earth

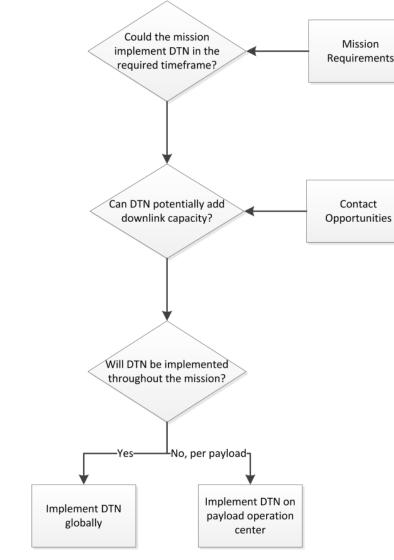
DTN-EO: Final Presentation

06/09/2018

Page 25

gnv **insyen** Solenia

UNCLASSIFIED INFORMATION



gn/ INSYEN

ROLL-OUT Roll-Out Analysis - General

- Question: What would be involved in the introduction of DTN into a mission?
- Factors which were considered:
 - Cost & Cost Savings —
 - Staffing Requirements —
 - Additional hardware/software —
 - Ease of installation _

UNCLASSIFIED INFORMATION

ESA AO/1-8809/17/F/MOS

Page 27

Roll-Out Analysis - Avionics

Metrics used for this portion of the study:

- Communication Windows & Contact Durations
- Utilization of legacy equipment
- A set of requirements for DTN systems was developed:
 - Focused on high data-rate systems
 - Designed to be implemented on avionics systems, in one or more of the following areas:
 - CD&H system
 - Payload Processing
 - RF/Optical Communications Systems
 - Analyzes security, performance, etc.
- Incompatibilities were found between standard commanding (COP-1) and DTN-based systems:
 - May be mitigated by commanding via file (CFDP)

ID	Re
DTN-OB-REQ-1	High-speed, high band
	Aerial and ground node rates in the gigabit ran
DTN-OB-REQ -2	Vast mass memory all
DTN-OB-REQ -3	The avionics shal communication function HW, or module IPcore,
DTN-OB-REQ -4	The avionics shall includriver for manager communication function
DTN-OB-REQ -10	The avionics DTN imp band key reception me subset of network man
DTN-OB-REQ -12	The DTN shall implen CCSDS standard. Her CCSDS TM/TC module programmable logic.
DTN-OB-REQ -15	Other mitigation- scrub

06/09/2018 Page 28

ESA AO/1-8809/17/F/MOS

UNCLASSIFIED INFORMATION

<u>equirement</u>

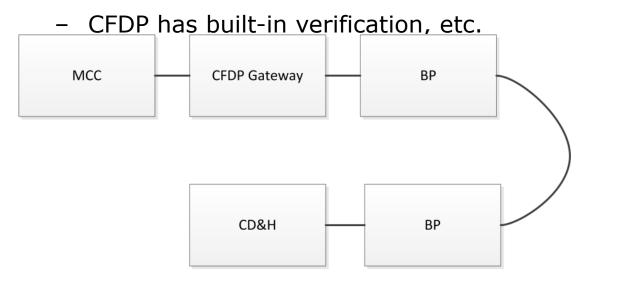
dwidth high-rate link.

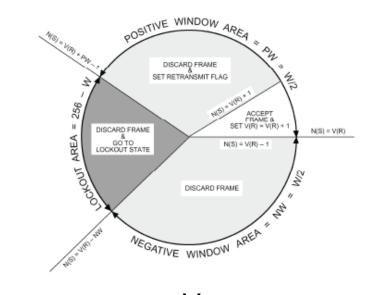
les capable of handling data at nge.

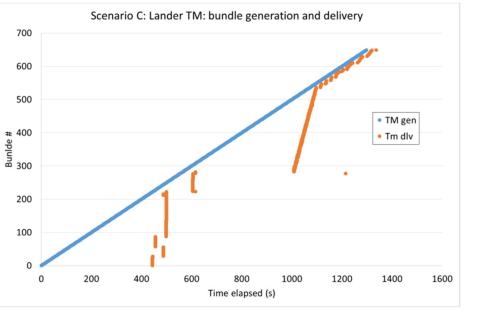
location and fast access to data

II include low-level stack ons, physically implemented in , for TCP-UDP-LTP

lude processing unit running SW ement and high-level stack ons


plementation shall allow Out-ofechanism. Key management as a nagement.


ment communication built upon ence, the avionics shall include es or implement the ip-cores in


bbing, mitigation.

Roll-Out Analysis – COP-1 and DTN

- The COP-1 FARM has a built-in retransmission mechanism for out-of-order frames.
 - Prevents the simple encapsulation of TC transfer frames in DTN bundles
 - DTN arrivals may be out-of-order, by default (unless Delay Tolerant Payload Conditioning is used)
 - Therefore, encapsulating TC transfer frames into DTN bundles may cause unexpected results (excessive retransmits, etc.)
- Inserting TC into CFDP "files" solves these problems:

DTN-EO: Final Presentation

06/09/2018

Page 29

UNCLASSIFIED INFORMATION

ESA AO/1-8809/17/F/MOS

Vs.

Roll-Out Analysis - Ground Segment

Metrics used for this portion of the study:

- International Collaboration use of foreign assets (DSN, etc.)
- Integration into MCS systems
- Cost
- Several potential DTN Network Topologies have been evaluated, each with unique benefits and shortcomings...

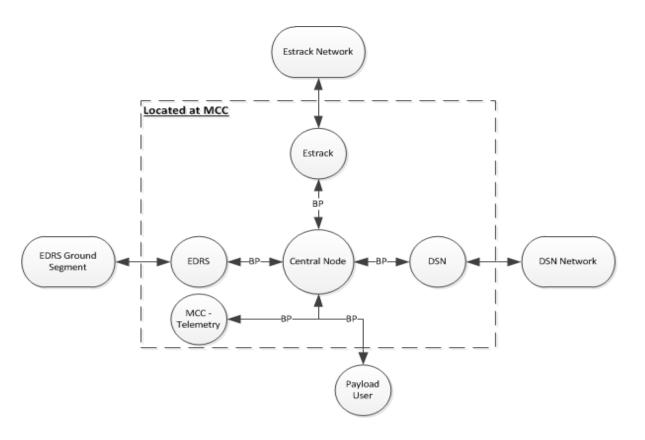
UNCLASSIFIED INFORMATION

DTN-EO:

UNCLASSIFIED INFORMATION

Roll-Out Analysis - Centralized

Pros:


- Easy to implement.
- Can be reused across missions.
- Minimal additional hardware (1 ESx server, 4 virtual machines)

Cons:

- Subject to MCC availability.
 - No remote buffering possible, connection between ground stations and MCC must be highly available.
- Must stay in a trusted environment, with connections to all networks.

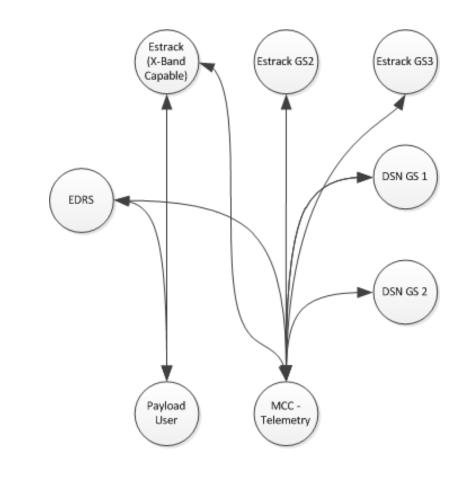
Optimal For:

- Multiple Missions utilizing the same MCC.
- Missions with many space-to-ground connections.

06/09/2018 Page 31

Roll-Out Analysis - Distributed

Pros:


- Extremely robust
 - As nodes are distributed across the ground segment, no individual point of failure.
- May be distributed across multiple locations (ground segments, etc.)
- Rapid to spin up.

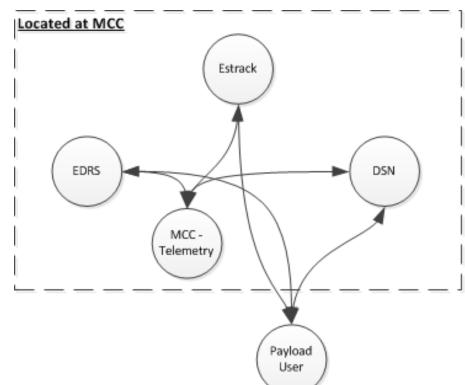
Cons:

- Difficult to manage
- Does not scale across missions

Optimal For:

- Research Demonstrator Missions
- Missions with many space-to-ground connections.

UNCLASSIFIED INFORMATION


ROLL-OUT Roll-Out Analysis – Semi-Distributed

Pros:

- Easy to implement —
- Can be reused across missions —
- Robust

Cons:

- More difficult to manage
- **Optimal For:**
 - Multiple Missions utilizing the same MCC. —
 - Missions with many space-to-ground connections. —

ROLL-OUT Roll-Out Analysis – Cost Savings

Metrics used for this portion of the study: €6,00 International Collaboration – use of foreign assets (DSN, etc.) €5,00 Contact Opportunities €4,00 Cost €3,00 It was found that DTN provides a significant potential increase in total data €2,00 €1,00 Additionally, our calculations revealed significant manpower reductions

00,000.00	Т
00,000.00	+
00,000.00	+
00,000.00	+
00,000.00	+
00,000.00	+
€-	-

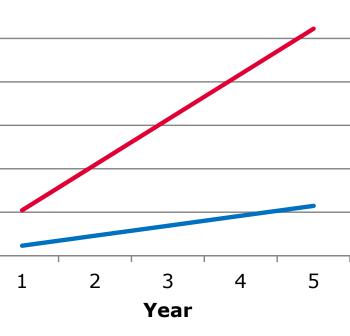
Row Labels	Percentage of data lost	Extra Contacts per Week
EDRS	5.32	3.73
S-Band	21.96	4.61
X-Band	5.90	2.06
Grand Total	33.18	10.40

—

—

_

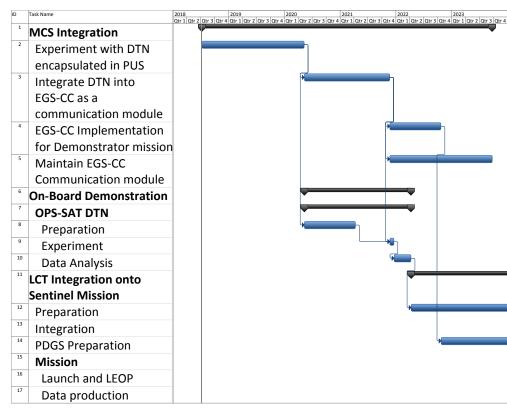
Cost


throughput

Page 34

-Unused capacity loss - per year

Extra Contact Cost per Year

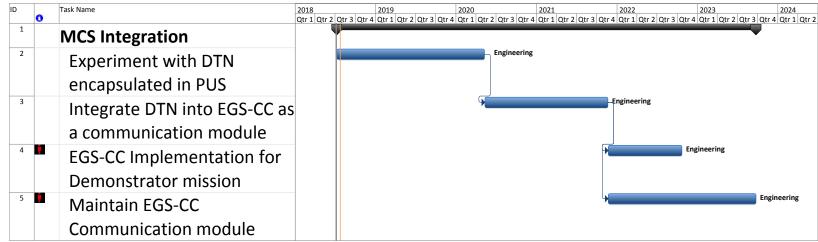


S

gn INSYEN

Roll-Out Analysis – Next Steps

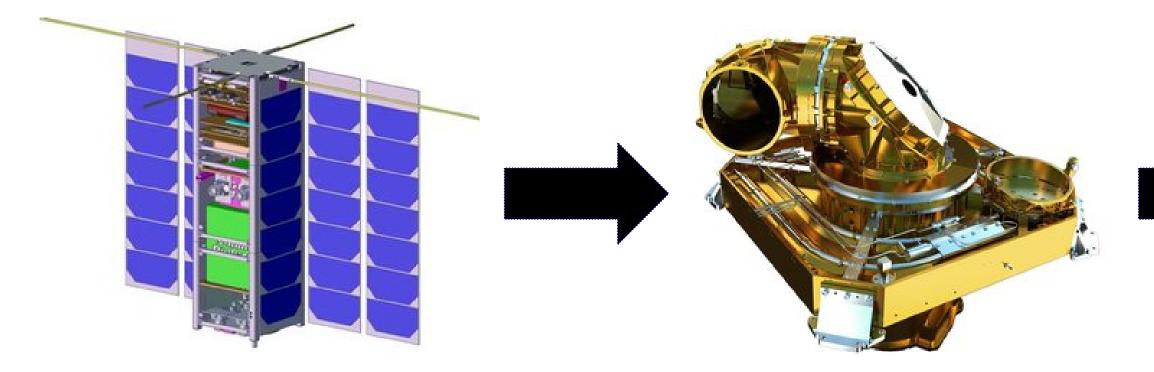
- As part of the roll-out, potential next steps for DTN within ESA were analyzed...
 - MCS Integration
 - On-Board Demonstrations
 - Real Missions and more...


Page 36

_												
	2024 Qtr 1 Qtr 2 Qtr 3 Qtr 4	2025		2026	0		2027		2028		2029	0.0
4	Qtr 1 Qtr 2 Qtr 3 Qtr 4	Qtr 1	Qtr 2 Qtr 3 Qtr 4	Qtr 1	Qtr 2 C	2tr 3 Qtr 4	Qtr 1 C	tr 2 Qtr 3 Qtr 4	Qtr 1	Qtr 2 Qtr 3 Qtr 4	Qtr 1 Qtr 2 Qtr :	3 Qtr 4
												L
												2
		-										
	,			1								
			Г									
	-											
				_			_		_			
												r
				h								
			q									
-												

MCS Integration

- In order to support widespread adoption of DTN on missions, integration into a current or next-generation MCS is required.
 - Not straightforward, questions exist:
 - EGS-CC or SCOS?
 - Commanding format/mechanism?
 - Co-existence with non-DTN missions
 - Mission reuse DTN/MCS as a basic service?



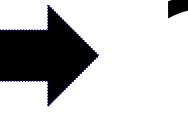
Task Name	Duration	FTE
MCS Integration	1360 days	
Experiment with DTN	24 mons	1
encapsulated in PUS		
Integrate DTN into EGS-CC	20 mons	2
as a communication module		
EGS-CC Implementation for	12 mons	1
Demonstrator mission		
Maintain EGS-CC	24 mons	0.5 (variable)
Communication module		

Page 37

Demonstration Missions

(Photo: ESA)

OCT (Photo: ESA)

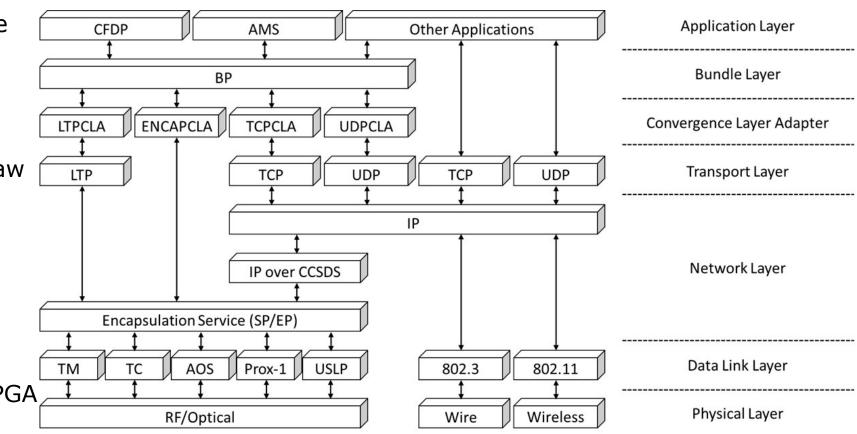

DTN-EO: Final Presentation

06/09/2018

Page 38

gn/INSYEN SOL

UNCLASSIFIED INFORMATION



And More!

- The roll-out study & scenario analysis evaluated the potential of novel new techniques:
 - Acceleration of routing via GPUs
 - FPGA implementations of core DTN functionality
- These would mitigate some of the issues that we saw in the study:
 - Implementation Issues
 - Performance
 - Ease of expansion/modification
- However, further work must be performed:
 - New DTN implementations, providing for GPU/FPGA capabilities
 - FPGA implementations: CGR, LTP, etc
 - Error correction mechanisms
 - Application Development for future missions & payloads

ESA AO/1-8809/17/F/MOS

Page 39

gn INSYEN

NEXT STEPS Conclusion

- The study was concluded successfully:
 - Scenarios were refined to provide additional knowledge gathering
 - During emulation, problems were encountered with ION Solved, bugfixes to be implemented in ION —
 - VirtualBricks was implemented for SuSE/SLES —
- DTN was found to be a valuable addition to future missions:
 - Although there is still work to be done...
- The DTN-EO project built a strong consortium with a wide range of skills in:
 - Mission Operations —
 - Simulation —
 - Software Engineering
 - DTN! —

UNCLASSIFIED INFORMATION

ESA I1

S

gn INSYEN

GMV INSYEN:

Michael Staub

Project Manager

GMV INSYEN Münchener Straße 20 - 82234 Weßling

E-Mail: mstaub@gmv-insyen.com Phone: +49 (0) 8153 28 1285 (new) Mobile: +49 (0) 176 12141642 Fax : +49 (0) 8153 28 1885

www.gmv-insyen.com

Jeremy Pierce Mayer

System Engineer

GMV INSYEN Münchener Straße 20 - 82234 Weßling

E-Mail: jpmayer@gmv-insyen.com Phone: +49 (0) 8153 28 2774 Fax : +49 (0) 8153 28 1885

ESA Technical Officer:

Sebastian Martin Data Systems Manager

Earth Observation Mission Data Systems Section, OPS-GDE Directorate of Operations

European Space Agency - ESA/ESOC Robert-Bosch-Strasse 5 64293 Darmstadt, Germany

Phone +49 6151 90 3307 Fax +49 6151 90 21 35

UNCLASSIFIED INFORMATION

THANK YOU

Aunt

f in

MINSYEN

S

gn INSYEN

TEST RESULTS **Problems with ION/SABR**

- Screening always ON in ION-3.6.0b and 3.6.1
 - Problem: lack of margin causes segment losses on the first LTP block sent after a contact opens, even on ideal channels.
 - Remedy: Screening was disabled in the code. As screening causes some LTP segments to be lost unless all clocks are synchronized with high-precision, an alternate solution would be to allow LTP to use the existing ION clock accuracy definition.
- UDPLSO inaccurate congestion control led to 20% underutilization of contact volumes
 - Problem: UDPLSO rate control sends LTP segment at a rate significantly lower than the nominal value set by the user.
 - Remedy: Improved version sent to Scott Burleigh to be included in the next ION release (ION 3.6.2).
- Deterministic block of ION at the end of the first contact
 - Problem: We noted a deterministic block of ION at the closing of the first contact.
 - Solution: As the problem seems to derive from the position of the "start command", "s", in the "ipnadmin" section of the .rc configuration file we have modified all configuration files accordingly and informed Scott Burleigh.
- Individual node stops sending LTP blocks for ten minutes before restarting during Science tests
 - Problem: We had deterministic ION blocks, whose cause is still uncertain. —
 - Remedy (temporarily): By shifting forward contacts forward by 1s, the problem disappeared. We have modified the contact plan of — Scenario A accordingly. It might be related to the "priorClaims" bug (discovered later, during tests on scenario C).
- Unidirectional link issues: impossibility of using LTP green on satellite links and TCP on terrestrial ones.
 - Problem: The selection of the green mode requires the setting of "unreliable" flag by the source. "Unreliable" bundles cannot be transferred on TCPCL links, even in the absence of any alternative.
 - Remedy (partial): We abandoned the idea of using LTP green on the unidirectional links, instead opting for UDP.

DTN-EO: Final Presentation	06/09/2018	Page 46	SOLE
UNCLASSIFIED INFORMATION	ESA A0/1-8809/17/F/MOS		

TEST RESULTS **Problems with ION/SABR - Continued**

- Unidirectional link issues: UDPCL causes IP bursts
 - Problem: IP bursts resulting from the encapsulation of a 64kB BP fragment into a UDP datagram, resulted in the loss of most bundles sent, although the channel was ideal.
 - Remedy: Insertion of a "TC-qdisk" traffic shaper in output _
- CGR poor performance: SABR compliance in ION 3.6.1
 - Problem: The new CGR policy of considering only one route for each proximate node, introduced in ION-3.6.1 to make the code compliant with the latest CCSDS draft on SABR, caused a dramatic performance impairment.
 - Remedy: The problem is conceptual and can be definitively solved only by amending the current draft; we informed Scott Burleigh of the problem. In the meantime, we were forced to go back to ION-3.6.0b.
- CGR poor performance: priorClaims bug in 3.6.x.
 - Problem: Because of a trivial bug in "bpclm.c", the waiting time estimation used by CGR was zeroed after the opening of the first contact. In the worst cases this led to estimated arrival times in the past. The consequences were particularly harmful in scenarios with longer delays.
 - Remedy: Bug fixed and the fix sent to Scott Burleigh. —
- CGR logs: bugs and enhancements
 - Problem: a bug prevented additional information of "TRACE" commands from being printed. Moreover, it is extremely difficult to crossmatch CGR log information with other sources of information because of the use of different time references (Linux vs. DTN, absolute vs. differential).
 - Remedy: Bug fixed. Log enhanced with the possibility of printing times on the user preferred reference system.

TEST RESULTS **Problems with ION/SABR - Continued**

- LTP aggregation: impact on radiation time.
 - Problem: Radiation time is calculated by CGR by considering the current bundle dimension. The actual radiation time, however, depends on the dimension of LTP block in which the bundle is inserted, which can be several orders larger. We had 1kB expedited TC-ACKs bundles aggregated to 512k bulk bundles before being sent on very low Tx rates links.
 - Remedy: Amend LTP aggregation (to be done)
- CGR poor performance: other bugs?.
 - Problem: It is likely that other minor bugs are present, as in few cases we have observed suboptimal decisions. —
 - Remedy: Improved CGR logs, as a first necessary step to verify code accuracy. Alternately, and from a purely academic sense, a method to dissect the CGR routing decisions.
- CGR Contact Blocking:
 - Problem: Long contacts with low bandwidth have a large volume, but are sub-optimal for transmission of large bundles. In one scenario, a link was blocked for 128 seconds. This revealed that there isn't really a mechanism to discourage the transmission (or fragmentation) of huge bundles over hyper-constrained links.
 - Remedy (current): Don't do that.
- Due to these problems, several mitigations were required:
 - our requirement for custody transfer proved to be essential; without it, bundles would have been permanently lost. —

