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Preface 

The project “Evaluation of Algorithms for Retrieval of Rain Rate with Passive Mi- 

crowave Radiometers” has been carried out by the University of Bremen for the Eu- 

ropean Space Agency. Three investigations have been completed under this project: 

1. review, implementation, and evaluation of algorithms for rain retrieval over 

land: 

2. analysis of the spatial and temporal sampling problem including beam-filling 

effects for the SSM/I and MIMR instruments, its impact on rainfall retrieval 

and possible solutions; and 

3. review and comparison of image restoration algorithms for resolution improve- 

ment. 

This Executive Summary presents the results of these investigations in the form of 

two papers to be published in the ES,4 Journal. The first paper “Rain Retrieval 

over Land with Passive Microwave Satellite Sensors: Errors due to Surface Variation 

and Sensor Sampling Characteristics” summarizes the results obtained in the first 

two investigations. The second paper summarizes the work done under the third 

investigation and is entitled “Image Restoration Techniques for Improving SSM/I 

Spatial Resolution”. 
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Part 1 

Rain Retrieval over Land with 
Passive Microwave Satellite 
Sensors: Errors due to Surface 
Variation and Sensor Sampling 
Characteristics 

Introduction 

Algorithms for the retrieval of rain rate using Passive Microwave Imagers (PMI) 

have been investigated in a previous ESA-supported study [Burns et al., 19931. In 

that study presently available algorithms were reviewed with emphasis on how the 

higher frequency (37 and 85 GHz) channels were incorporated into the rain retrieval. 

Several algorithms were then implemented and applied to model-generated data for 

precipitating clouds in order to evaluate the effect of water vapor and cloud liquid 

water variations on rain rate retrievals. It was found that most algorithms still 

depend heavily on the 19 GHz channels which sense the vertically integrated water 

content. Many algorithms make use of the 85 GHz channel for correction of the 

effects of ice particle scattering, but little use has been made so far of its higher 

resolution. The algorithms implemented showed very little sensitivity (< 1 mm/hr 

change) to the atmospheric variations mainly because they had been calibrated with 

model or observational data for rain cloud characteristics different from those used 

to generate brightness temperature data in this study. However the large brightness 

temperature difference found between rain and no-rain clouds or clear air at 37 and 

85 GHz (as much as f20K) indicated that rain detection and retrieval for areas of 

rain cloud much smaller than the PM1 footprint (FOV) would be prone to large errors 

if variations in atmospheric conditions are not accounted for. It was suggested that 

a more meaningful evaluation would require simulation of radiometer measurements 

where rain cells only partially fill the FOV. 

Most of the algorithms investigated in the previous study were for rain retrieval 

over the ocean. Rain measurement over land is more difficult because, in contrast 

to the low background emissivity of the ocean, the emissivity of land is not only 
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generally high but also highly variable. This is illustrated in Figure 1.1 which 
shows model data for ocean and land backgrounds. Brightness temperature contrasts 
between nonprecipitating clouds with varying liquid water contents is greatest over 
the ocean where the emission from the atmosphere constitutes a large fraction of the 
total signal. Over land brightness temperatures are dominated by the contribution 
from the surface and little difference between clear air and thin clouds is seen. On 
the other hand, optically thick rain clouds show distinct signatures and for these 
cases rain retrievals with the same algorithm over land and ocean should be possible 
(see also [Smith et aZ., 19921). 

This presumes that rain areas can first of all be detected, which is hindered by the 
nonuniformity of the land surface. Variations in soil moisture, soil type, vegetation, 
ice and snow cover lead to variations in brightness temperature that are similar in 
magnitude and spatial scale to those caused by rain clouds themselves. At 19 GHz 
soil moisture variability alone leads to brightness temperature contrasts larger than 
that between clear air and the stratiform rain cloud shown in Figure 1.1. At 85 GHz, 
however, emissivity variability is reduced and sensitivity to rain increased, meaning 
better detection potential at the higher frequencies. 

One goal of this investigation is the review, implementation and evaluation of 
algorithms for rain retrievals over land. Algorithms reviewed are mainly those con- 
sidered under the AIP-2 and PIP-l algorithm intercomparison projects [Allam et aE., 
1993; Kniveton et al., 19941. A subset of these algorithms are evaluated for their 
sensitivity to variations in land emissivity and temperature. For this purpose model 
generated brightness temperature data are used. These same algorithms are ap- 
plied to the SSM/I data from the AIP-2 data set and a statistical analysis of their 

performance is carried out. 

Part of the difficulty in determining relative algorithm performance lies in the 
nature of the retrieval error itself, which is contributed to by both the inadequacy of 
algorithm formulation to represent the actual Tb-RR relationship and the deviation 
of surface and atmospheric conditions from those used to develop the algorithm. 
The first factor is essentially what should be determined through intercomparison 
and validation. However because different algorithms are generally calibrated with 
different data sets, and not necessarily with data sets representative of the area 

of interest, the second factor can be responsible for major algorithm-to-algorithm 
variations. A recalibration of the algorithms with the AIP-2 data set is therefore 
carried out in this study. 

Additional errors in both algorithm validation and in the retrievals themselves 
can result from the spatial and temporal sampling characteristics of PM1 sensors. 
Because rain fields and clouds can be patchy on scales much smaller than the foot- 
print of the passive microwave imager, errors are introduced when only part of the 
FOV contains rain (cloud). This is called the beam-filling error, and errors as large 
as 50% have been observed [Short and North, 19901. The magnitude of this error 

is understandable when one considers the large brightness temperature variability 
possible within a pixel encompassing clear air, precipitating and nonprecipitating 
cloud areas (see model data in Figure 1.1). And for rain systems with core sizes of 
l-2 km [Goldhirsh and Musiani, 19921 this is a typical situation. Furthermore rain 
retrieval is based on a “mean” brightness temperature for the pixel that is not a sim- 
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Figure 1.1: Model-generated brightness temperatures (horizontal polarization) ver- 
sus frequency for five atmospheric conditions over calm ocean (top), and land with 
frequency-independent emissivity (bottom). (From [Burns et al., 19931) 
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ple average but a weighted mean (reflecting the antenna pattern) dependent upon 
the spatial distribution of brightness temperatures (scene components) within the 
pixel. Further complicating factors are that the rain rate - brightness temperature 
relationship is generally nonlinear and that most algorithms use multiple channels, 
each with a different FOV. 

The low repetition frequency with which PM1 sensors sample a given point on 
the earth’s surface is also a source of error. For mid-latitude regions this sampling 
rate is approximately twice per day; for low latitudes (tropics) it can be once every 
2 days. Because of the short time scale of variation in the measured quantities, 
in situ and satellite measurements must be closely coincident in order to evaluate 
single retrievals. Clearly agreement will be improved by time averaging, but the 
exact time-space sampling pattern will determine how well estimates can produce a 
usable climatology for a given quantity [Kedem et al., 19901. 

Several studies of the sampling errors in rainfall estimates derived with satellite 
sensors have been carried out in the past few years [Shin and North, 1988; Bell 

et al., 19901. Th e emphasis has been on the TRMM satellite, but these studies 
indicate that the possible error to be even greater for the sun-synchronous orbiters 
such as those carrying the SSM/I and MIMR instruments. The effect of spatial 
averaging by satellite sensors was not accounted for in the sampling simulations in 
these studies. But this averaging effectively modifies the spatial statistics of the 
rainfield as observed by a sensor. Here we investigate the temporal and spatial 
sampling as well as spatial averaging characteristics simultaneously. Both SSM/I 
and MIMR sampling characteristics as well as those of Meteosat and AVHRR are 

considered. Evaluation of the sampling errors for the various satellite sensors is 
carried out on the meteorological radar rainfall observations from the AIP-2 data 

set. The beam-filling error resulting from the spatial averaging effect is examined in 
more detail and corrections are applied to a number of retrieval algorithms. 

Data Sets 

Two data sets are used in this investigation: the first is a data set of model-generated 

brightness temperatures, and the second consists of SSM/I data with coincident 
Meteosat and meteorological radar observations. 

Model-generated brightness temperatures 

The brightness temperature data were generated with a radiative transfer model 
developed by Kummerow and Liberti specifically for precipitating clouds (see also 
[Kummerow and Giglio, 19941 f or a description of the model). Model radiances are 

calculated for a multilayered plane parallel atmosphere using Eddington’s second 
approximation to the equation of radiative transfer. The vertical structure of the 
layered medium (cloud) must be specified in terms of the average relative humidity, 
cloud liquid water content, and precipitation rate of liquid and frozen hydrometeors 
in each layer. The height and temperature at each layer interface as well as the 
surface emissivity also must be specified. 
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The model includes the effects of both single and multiple scattering from pre- 
cipitating hydrometeors with the Mie calculation of the extinction coefficients being 
carried out assuming the Marshall-Palmer drop size distribution for the liquid phase 
and in this study that from Sekon and Srivaastava [1971] for the solid phase. Drops 
of cloud liquid water are assumed to be too small to produce scattering at mi- 
crowave frequencies so that only Rayleigh absorption is accounted for. Absorption 
coefficients for water vapor and atmospheric oxygen are also included in all levels; 
these are the sole contributors in levels not having cloud as well as in the clear sky 
case. 

Model calculations produce top-of-atmosphere brightness temperatures for the 
geometry and frequency/polarization channels of the SSM/I instrument. In view of 
MIMR frequencies of 6.6 and 10.7 GHz are also included. Accuracies of 2-3 K in 
brightness temperature (not including errors due to finite cloud effects) are expected 
with this model. 

Five atmospheric situations have been considered: clear air, stratiform nonprecip- 
itating and precipitating clouds, and convective nonprecipitating and precipitating 
clouds. Information on the heights of the cloud bottom, the cloud top, and the 
boundaries of intermediate layers, as well as the total water content in each layer, 
was taken from Table 5-7 “Properties of Standard Cloud Models” in [Colwell, 19831. 

The total water content must be partitioned between cloud droplets and precip- 
itating hydrometeors. The drop size distribution of the hydrometeors in each layer 
(also given in the table) is described in terms of the mode radius and shape param- 
eters of the modified gamma distribution from Deirmendjan [1964]. Assuming an 
upper cut-off of 100 pm for cloud droplets, this distribution is integrated over the 
small and large drop regimes to obtain cloud water content (CWC) and precipitating 
water content (PWC), respectively. The PWC is further partitioned between liquid 
(RWC) and frozen hydrometeors (IWC) depending on the temperature structure 
T(z) in the cloud: 

T>O”C 1 RWC= PWC I IWC= 0 

-35” C < T < 0" C RWC= PWC . z _;$j3;” “-‘z-o: c IWC= PWC - RWC 

T < -35” C RWC= 0 IWC= PWC 

As seen from Figure 1.2 the resulting CWC, RWC, and IWC profiles show dis- 
tinctly different structures for convective and stratiform cases, the latter having very 
low RWC above the surface rain layer. 

The model requires inputs of rain rate (RR) and of the precipitation rate for ice 
particles (IR). Th ese are obtained from the relationship between RWC (or IWC) 
and the drop size distribution which is parameterized in terms of RR (or IR). 

An internally consistent parameterization of relative humidity and temperature is 
obtained by specifying temperature and specific humidity profiles. The profiles used 
for the model calculations are illustrated in Figure 1.3. For layers without cloud and 

below the tropopause (starting at 10 km), the temperature profile decreases linearly 
from a surface value of Ts with a constant lapse rate of r =-6.56 K/km. Inside the 
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Figure 1.2: Water contents of stratiform and convective rain cloud. 

cloud the profile follows a saturated adiabatic lapse rate, and assumes a constant 
temperature in the tropopause between 10 and 15 km. The specific humidity is 
assumed to decrease exponentially (q = qaexp(-z/o)) with height z. The surface 
value is calculated from the surface relative humidity (25%, SO%, 75%), and for (Y a 
value of 2 km was used (see Figure 1.3). The relative humidity outside the cloud was 
calculated from specific humidity and temperature according to [Rogers and Yau, 
19911, using the same pressure profile as in the radiative transfer program. Inside 
the cloud the relative humidity was set to 100%. 

The land surface types considered include wet soil, rocky soil, short grass, bare 
soil, and a mixture of bare and vegetated soils. The emissivities were taken from 
[Matzler, 19901 and are given in Table 1.1. The surface temperature assumed was 
290 K except for the surface temperature variation where it was varied from 280 K 
to 290 K. 

Satellite and ground-based data 

This data set is that used in the 2nd Algorithm Intercomparison Project (AIP-2) 
and was received from the U.K. Met Office (courtesy R. Allam). It is summarized in 
Table 1.2. It includes SSM/I and Meteosat image data as well as radar data from the 
FRONTIERS (F orecasting Rain Optimized using New Techniques of Interactively 
Enhanced Radar and Satellite) system [Browning, 19791 collected by the U.K. Met 
Office, and COST radar data from the European Radar Network developed under the 
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Figure 1.3: Model profiles for clear air (left) and convective rain cloud (right). 

Table 1.1: Land Surface Emissivities 

Channel Wet Soil Rocky Soil Short Grass Bare Soil Mixed Surface 

6.6 H 0.73 0.80 0.93 0.75 0.84 

6.6 v 0.87 0.90 0.95 0.89 0.92 

10.7 H 0.81 0.86 0.95 0.84 0.90 

10.7 v 0.89 0.92 0.96 0.90 0.93 

19 H 0.87 0.89 0.94 0.90 0.92 

19 v 0.90 0.93 0.94 0.92 0.93 

22 H 0.87 0.89 0.94 0.90 0.92 

22 v 0.90 0.93 0.94 0.92 0.93 

37 H 0.90 0.91 0.95 0.91 0.93 

37 v 0.91 0.94 0.94 0.92 0.93 

85 H 0.93 0.91 0.94 0.93 0.94 

85 v 0.94 0.94 0.95 0.94 0.95 

COST project [Collier, 19921. Th e t wo sets of radar data differ in that the British 

FRONTIERS system data contain quality controlled instantaneous rain rates at 

15 min intervals over the British Isles, whereas data from the European COST-73 
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system consist of instantaneous hourly data covering all of western Europe. Both 
datasets were supplied as pixel values in the AIP-2 Grid, with a spatial resolution 
of approximately 2.5 km. Hourly infrared data from the METEOSAT satellite (also 
in the AIP-2 grid) were supplied but not used in our analysis beyond selection of 

scenes. The SSM/I data were in Wentz Tape format (one tape for each sensor) that 
had to be divided into single scenes and projected to the AIP-2 grid for comparison 
with the radar data. Coordinate transformation was done only after brightness 
temperature specific analyses (for example, deconvolution, rain rate retrieval) had 
been carried out. 

Table 1.2: AIP-2 data set 

Period # of Time Interval Grid Format 

Scenes 

FRONTIERS 01.02. 5613 15 min 2.5 km AIP-2 

Radar - 09.04.91 (720 x 600 pixels) 

COST-73 01.02. 1556 1 hr 2.5 km AIP-2 

Radar - 31.03.91 (720 x 600 pixels) 

METEOSAT 01.02. 1498 1 hr 5 km AIP-2 

IR - 09.04.91 (360 x 300 pixels) 

SSM/I 01.02. 195 - 12 hr 25 km Wentz Tape 

F8 - 08.04.91 (- 1:45 hr) 12.5 km (85 GHz) 

SSM/I 12.02. 78 - 12 hr 25 km Wentz Tape 

FlO - 26.03.91 (- 1:45 hr) 12.5 km (85 GHz) 

Description of Algorithms 

Most algorithms for rain retrieval over land rely on the scattering signature of rain 

for its detection and measurement. As seen in Figure 1 .l, the presence of rain 

clouds over land primarily leads to a decrease of the Tb compared with a cloud free 
atmosphere which is greatest at the highest frequencies (e.g 85 GHz). This results 
from scattering of microwave radiation by rain drops and ice particles. Because 
scattering is not unique to rain and ice clouds, so called “screening” algorithms have 
to be applied before rain rate can be calculated. The purpose is to separate rain 
clouds from other surfaces such as desert and snow-covered terrain, which can also 
result in low values of Tb at 85 GHz. These algorithms are independent of the rain 

rate algorithms and therefore are treated separately. 

Screening algorithms 

Before calculating the rain rate, rain areas first have to be detected. The methods 
used for this detection of “screening” can be divided into three categories: 

1. Small polarization difference (Tb v - Tbn <TbThreshold)) is used successfully 
over ocean for rain detection. This method depends on the attenuation of the 
polarized surface signal by the overlying cloud, and is therefore not satisfactory 
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over land because the signal emitted by the surface is not necessarily polarized. 

Also small polarization differences need not be caused by clouds alone. 

2. Absolute Tb can indicate the presence of precipitation. Lower frequency Tb 

are less reduced by scattering in the cloud than those of the higher frequency 

channels. However, determining absolute Tb thresholds does not always ac- 

count for surface temperature influences, so regional and seasonal temperature 

variations may lead to misclassification. 

3. Tb scatterplots using two or more channels can be used in a classification pro- 

cess. Land, ocean or precipitation pixels can be identified from their positions 

in the plot. 

A screening test often used is that of Grody [1991] which is a combination of 

methods 2 and 3. Grody defines a Scattering Index (SI) by fitting the no-rain 

antenna temperatures (Ta) of the other channels against the 85 GHz Ta: 

Tassv = a - b . Tarsv - c - Tazzv - d - Ta;,, (fitting with no rain cases) (1.1) 

5’1 = a - b - Tarsv - c. Tazsv - da Ta?& - Tas5v (1.2) 
If SI is below a certain threshold, i.e. scattering effects are too small, then there is 

no surface scattering and no cloud. If Tb 22~ is below a threshold temperature and, 

at the same time, too cold compared with Tb s5, a snow or ice surface is indicated. In 

case of a cloud-free situation over a desert sand surface, This is expected to exceed 

a certain value. If none of the tests is true, precipitation is detected. 

Smith et al. [1992] modifies the Grody screening algorithm by suggesting latitude 

dependent tests. So the desert test is done only between 30” N and 30” S. They 

also give latitude-dependent upper limits on SI for detection of precipitation. In 

addition they calculate the “Polarization Corrected Temperature (PCT)” [Spencer 

et al., 19891 for Tbss 

PCT = (1 + t) . Tbssv - ta Tbssn (1.3) 

where t is an empirically determined constant. If the PCT is too large, i.e. the Tbss 

too warm, there is no precipitation. 

Method 3 is used by Adler et al. [1993] who identify precipitation with a Tbs7 

vs Tbss scatterplot (method 3). Certain areas in this diagram are identified as land 

surfaces (high Tb XT and high Tbss), ocean (low Tba7, Tbss low but considerably 

higher than Tbsr) and precipitation (Tbs7 increased, Tbss decreased compared with 

no rain situations). 

The determination of a rain/no-rain threshold and the land/ocean test are im- 

plicitly done in the rain rate algorithms of Barrett, Barrett and Kidd and Barrett 

and Todd [All am et al., 19931 h w en determining the algorithm coefficients. Only 

the Grody snow/ice surface screening test is applied. Likewise the inversion tech- 

niques of Kummerow and Giglio [1994] and Marzano et al. [Basili et al., 19931 

do not require an additional screening algorithm. By including model situations for 

various land and water surfaces without precipitation in their comparison data sets, 

screening is done implicitly. 
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Rain rate algorithms 

The description of rain rate algorithms given here are based primarily on documen- 
tation from the AIP-2 and PIP-l algorithm intercomparison projects [Allam et al., 

1993; Kniveton et al., 19941 with supplemental information in cases where the al- 
gorithm has been published in the open literature. Only those algorithms used in 
our further investigations, i.e. those easily implemented and for which coefficients 
are available, are described. For more information the reader is referred to the 
documentation cited or the review article of Liberti [1994]. 

As mentioned earlier the strongest signal for rain is in the Tbss, and therefore 
all algorithms use the Tbss for rain rate retrieval over land. An algorithm that uses 
the 85 GHz channel alone for rain rate calculation is that from Adler et al. [1993] 

(adler algorithm). 
RR = 59.9 - 0.239 * TbsSH. (1.4) 

The Tbs7 are needed only to select precipitation areas (see Screening above). After 
finding the areas with precipitation the coefficients for the RR-Tb relationship are 
derived from high resolution model calculations averaged over a SSM/I footprint. 
Thus the beam-filling effect is simulated. The process was developed using data 
from the first Algorithm Intercomparison Project (AIP-1) over Japan. Hence the 
input for the model calculations are clouds typical for conditions around Japan. The 

influence this has on the quality of the algorithm results for different geographical 
regions remains to be investigated. 

The influence of surface temperature and emissivity on Tbss can be compensated 
for by including the other SSM/I frequencies in the calculations. Hence Barrett 
[Allam et al., 19931 uses an “Adjusted Frequency Difference (AFD)” 

AFD = a. Tbs7v - Tbssv - b (l-5) 

for rain rate calculations (barrett algorithm) 

RR=c.AFD+d.AFD2. (1.6) 

Here Tbs7 is effectively modified so that it equals Tbss for no rain cases (i.e. AFD = 
0). An AFD different from zero is then caused by precipitation. The coefficients a 

and b are determined from a $k histogram. The histogram is either made for each 
37v 

SSM/I scene and therefore varies temporally or it is calculated for each pixel from 
a time series of different scenes and then varies spatially. The rain rate coefficients 

c and d come from a non-linear regression of Tb against FRONTIERS radar data 
over the British Isles. However neither numeric coeffficients are available for this 
algorithm nor are the differrent means for the determination of the coefficients at 
our disposal. 

The algorithm of Grody and Ferraro makes use of the influence of scattering by 
clouds on Tbss as estimated by the Scattering Index (5’1) [Grody, 19911 (see Screen- 
ing above). Rain rate is assumed to depend linearly on 5’1, and two relationships 
are suggested, one valid globally 

SIG = [256.17 - 0.375 . Tarsv - 0.200 . Taz2v -+ 0.0237 . Ta;,,] - Tass (1.7) 
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RR = -1.65 + 0.289 - SIG, (1.8) 

and one valid over land only (ferraro algorithm) 

S1, = [438.5 - 0.46 . T arsv - 1.735 . Tazxv + 0.00589 . Ta&] - Tassv (1.9) 

RR = -2.71 + 0.362 - SIL. (1.10) 

The coefficients are derived from regressions of SSM/I data against AMeDAS radar 
data over Japan and FRONTIERS data over Great Britain. By cornpositing these 
data sets the effect of regional variations on derived rain rates is supposedly reduced. 

Ferriday [Allam et al., 19931 suggests an algorithm that uses all four vertical 
polarization channels of the SSM/I. Ch oosing vertical polarization reduces influences 
of different surface wetnesses. Equal numbers of channel additions and subtractions 
reduce the bias introduced by surface temperature or emissivity variations. The 
lower frequency Tbs are increased by precipitation because of emission effects, the 
two higher frequency Tb are reduced by rain clouds because of scattering. This 
leads to the ferriday RR-Tb relationship 

1 
RR = a * (Tbisv + Tbzzv - Tbs7v - Tbssv) + b. (1.11) 

Calculations with model clouds using the Kummerow radiative transfer program 
showed the best algorithm results for a = 7 and b = 0. 

Before the launch of the first SSM/I a D-Matrix rain rate algorithm had been de- 
veloped by the sensor manufacturer. During the first year of operation this algorithm 
was tested against radar data from tropical latitudes [Olson et al., 19911. It was 
found that a linear relationship between rain rate and Tb did not give satisfactory 
results. Hence an exponential relationship (calval algorithm) was chosen: 

as + 2 a; - Tbi - c 
i=l 

(1.12) 

Regression of tropical radar data against SSM/I Tb-data led to the following two 
algorithms for over land use, the second being valid when the 85 GHz channel is not 
available: 

RR = exp(3.29716 - 0.01290 - Tbssv + 0.00877 - TbssH) - 8 (1.13) 

RR = exp(-17.76849 - 0.09612 . TbsTv + 0.15678 . Tbisv) - 1 (1.14) 

The coefficient c depends on latitude and longitude. It remains to be seen whether 
the coefficients for tropical areas (shown here) give optimal results in mid-latitudes. 

Smith et al. [1992] d erived a simple algorithm from their results of brightness 
temperature calculations based on a numerical model for rain cloud development. 
They tested the relationship 

RR = ao+ai.Tbis+az.[Tbia - Tb22]+us.[Tbig - Tb3r]+u4.[Tbig - Tbss] (1.15) 
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(smith algorithm) and found that Tbrs explained 83 % of the variance found in 
the model data. Based on the statistical significance of each channel, the optimal 
algorithm for the model data was 

RR = 125.5 - 0.455Tbrs + 0.108 . (Tb19 - ~‘b~~) (1.16) 

Tbi = (Thin + Tbiv)/2. (1.17) 

Comparison of rain rates derived with this relationship with the model data the 
coefficients were derived from showed large scatter (deviations up to 18 mm/hr) es- 

pecially at high rain rates. Smith et al. [1992] th ere ore suggest that a multichannel f 
profiling algorithm should be used to derive distinct features of the hydrometeor pro- 
file, and the calculation of the rain rate done as a second step. 

Sensitivity to Surface Variations 

Five of the algorithms (ferraro, ferriday, cabal, adler and smith) were chosen to look 
at the effect of changes in atmospheric and surface conditions on retrieved rain 
rate. These algorithms were applied to the model-generated brightness temperatures 

described above. The results of the calval algorithm are not shown because the 
retrieved rain rates were nearly zero for all raining clouds. 

Most algorithms produced reasonable rain rates in a relative sense only (i.e. 
comparing different cloud models) although the absolute values were not necessarily 
comparable with the model rain rates or between algorithms. This is primarily due 
to the determination of algorithm coefficients with regressions against data or model 
results of which the models used here are not representative. The rain rate values 
were also often very small or negative, which meant that no screening schemes could 
be evaluated. Also most screening algorithms use the signature of an increasing 
depression at 85 GHz and an increasing 19 GHz Tb with increasing rain rate, which 
is not present in our model-generated data. Therefore we restricted our investigation 
to looking at only the changes in rain rates retrieved. Any effect of a bias between 
algorithm results and model rain rates was thus eliminated. 

The changes in retrieved rain rates were calculated from the Tb dataset described 
above assuming first that rain clouds fill the radiometer beam completely and then 
only partially, with either non-raining clouds or clear air as the other component. 

Surface type sensitivity 

The effect of surface type variability on brightness temperatures is shown in Fig- 
ure 1.9. This depicts the change in the Tb induced by a change in surface emissivity 
from that of wet soil to that of short grass for identical atmospheres. The frequency 
dependence reflects that of the emissivities (see Table 1.1). At 22 GHz and below, 
the variability in Tb produced by changes in surface emissivity is greater than that 
due to changing cloud properties (i.e. water content). This leads to ambiguities be- 

tween clear, cloudy, and raining conditions at these frequencies. At 37 and 85 GHz 
surface emissivity variations have little if any effect on the modelled brightness tem- 
peratures of rain clouds. If the cloud is optically thick the satellite cannot measure 
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the change in surface emissivity as all radiation emitted by the surface is absorbed 
by the cloud and the radiation reaching the sensor is that emitted by the cloud. This 
saturation is reached earlier (i.e. for clouds with less water) for higher frequencies 
than for lower frequencies. 

Rain rate changes caused by the variation of surface type and surface temperature 
are shown in Figure 1.9 (right). S ur f ace type variations caused the lowest Tb changes 
at 85 GHz so that the small change in the adler RR could be expected. The 19 and 
22 GHz Tb showed the largest effect with changing the surface type. Thus the large 
ARR for ferraro (which depends heavily on the 22 GHz channel) can be explained. 

The smith algorithm uses 19 and 85 GHz Tb with the same sign to calculate rain 
rates. As both these Tb are changed in the same direction, the resultant RR change 
is the largest of all algorithms. The ARR for ferriday are smaller than for ferraro 

but not negligible, indicating that the algorithm cannot compensate for surface 
type variations though this was explicitly considered in its design, because the Tb 
variat,ions for different channels are not of the same size. Thus using differences 
between Tb to calculate the rain rate is not enough to cancel out surface type 
effects. 

Surface temperature sensitivity 

Brightness temperature variations caused by a change of the surface temperature 
from 280 K to 290 K are shown in Figure 1.10 (left). A surface temperature change 
of 10 K results in a change in the temperature of the whole atmosphere by the same 
amount. Note that surface relative humidity is not changed so that an increase in 
surface temperature causes an increase in water vapor content in all but the cloud 
layers. For thin clouds the Tb variations are of the same size as the temperature 
variation (10 K). The effect on the water vapor content can be observed in the slightly 
larger change of the Tb for 22 GHz than for 19 GHz. Varying the temperature of 
cloud layers changes the partitioning between ice and liquid water content. An 
increase in layer temperature results in an increase of liquid and a decrease of ice 
water content. For the 85 GHz channel this leads to a. decrease in scattering so 
that the Tb is increased even further than by the amount of the actual temperature 
change. For the lower frequencies more water and less ice means more scattering, 
thus those Tbs are increased by an amount smaller than the layer temperature 
increase. Both effects can be seen in the case of the convective 2 mm/hr rain cloud. 

Figure 1.10 (right) h s ows the RR changes caused by the 10 K change in surface 
temperature. Since the Tb were increased for all clouds and all channels, all algo- 
rithms show a reduction of the retrieved rain rate. Algorithms that do not use a 
difference between the Tb of different channels (adler and smith) show the largest RR 
variations, whereas the ferriday algorithm can compensate for surface temperature 
effects very well. The ferraro algorithm shows comparatatively large RR variations 
for the convective cases. This might be caused by the different behavior of the 
85 GHz and the other Tb. The assumption behind ferraro (85 GHz Tb can be ap- 
proximated by a linear combination of lower frequency Tbs) causes the algorithm 
to calculate larger RR when the difference between 85 GHz and the other Tb is 
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increased. For stratiform cases, where the Tb variations are almost the same for all 
channels, ferraro shows much smaller ARR. 

The sensitivity of these algorithms to atmospheric variations has been presented 
in the paper by Burns and Flender [1994]. It was found that Tb variations caused by 

changes in surface relative humidity from 50% to 25% and 75% and total cloud liquid 
water variation of f30% were larger for the lower frequency (19, 22 GHz) than for the 
higher frequency (85 GHz) channels. Algorithms making use only of high frequency 
Tb (adler) therefore showed the smallest variations in retrieved rain rate (5 0.5 
mm/hr) due to atmospheric variations. Algorithms including low frequency Tb 

were especially sensitive to cloud liquid water variations, showing errors in retrieved 
rain rate of up to 2 mm/hr. Sensitivity to variations in relative humdity was found to 
be very low (5 0.3 mm/h r even in partial beam-filling situations. Comparing these ) 
results to those presented above shows that the surface variations have a much larger 
effect on both brightness temperatures and rain retrieval results of most algorithms 
than do variations in the investigated atmospheric parameters. 

Application to SSM/I Data 

The availability of the AIP-2 data set allows evaluation of the rain rate algorithms 
in a statistically significant manner not possible with the limited brightness temper- 
ature data set generated with the radiaitve transfer model. As meteorological radar 
data are included in the AIP-2 data set, the evaluation presented here concentrates 
on comparing actual rain rate retrievals, using the radar data as truth. 

Figures 1.4 and 1.5 show scatterplots of rain rates retrieved from SSM/I data 
with both original and recalibrated (see below) algorithms vs. radar rain rates for 
the scene shown in Figure 1.11. Retrievals using the original coefficients show large 

biases for all algorithms except the calval, but the rain rates retrieved with this 
algorithm almost do not correlate with the radar rain rates. Because of these large 
biases the difference between bias and rms values is small, most of the error being 

due to the bias. These results are representative of those presented in the AIP-2 
pre-workshop [Allam et al., 19931 and the workshop [WMO, 19941 reports. 

As already suggested in the case of applying algorithms to model-generated data 

in this study, one possible source of the large discrepancy between algorithm results 
and ground truth is that the algorithms have been calibrated (i.e. algorithm coeffi- 
cients determined) using data not representative of rain systems in the British Isles 
and western Europe area. In order to compare the rain rate algorithm concepts we 
re-calibrated the rain rate algorithms using the AIP-2 data set. 

Algorithm recalibration 

SSM/I-pixels were projected into the AIP-2 grid. Only pixels with measurements at 
all four SSM/I frequency channels (19, 22, 37 and 85 GHz) were used. If a pixel was 
more than 30 km (12 AIP-2 pixels) inshore and if radar derived rain rates were avail- 
able in the temporally nearest FRONTIERS scene, an average of rain rates within a 
radius of 12.5 km (5 AIP-2 pixels) of the SSM/I p’ ixe was taken as the ground truth 1 
value (see Figure 1.1 lb). The temporal interval between two FRONTIERS scenes 
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Figure 1.4: Scatterplots of retrieved rain rates vs radar rain rate for SSM/I scene 
910302.1850. 
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of retrieved rain rates v’s radar rain rate for SSM/I scene 

was 15 minutes, so the maximum temporal displacement is about 8 min. The worst 

spatial collocation error is one AIP-2 pixel (M 2.5 km). Vectors consisting of seven 

SSM/I bright ness temperatures and an averaged radar rain rate were divided into 

raining and non-raining cases using a threshold of 0.5 mm/hr. In total there were 

5589 vectors, 489 of them with rain (>0.5 mm/hr). 

The coefficients of each rain rate algorithm were determined by multilinear re- 

gression of the brightness tempreatures or brightness temperature combinations, as 

specified in the original algorithm, against the average radar rain rate. Thus the 

value of 

(1.18) 



was minimized where R&dar is the average radar RR, RRdgorithm the retrieved RR, 

and AM&d,, the uncertainty of the radar rain rate. All average RR were expected 

to have the same uncertainty, so the actual value of AR&d,, does not influence the 

quality of the fit. If AR&d, is chosen as 1 mm/hr (which is certainly a large over- 

estimate), the minimized x2 is equal to the squared rms error of the re-calibrated 

algorithm. 

The set of vectors was divided randomly into a training set and a test set. Only 

the rain vectors in the training set were considered for the fits, except where some 

of the algorithm coefficients were determined from no-rain cases (Scattering Index, 

Adjusted Frequency Difference). In this cases the non-raining cases of the training 

set were used for algorithm calibration, too. 

The values of the coefficients for the original and the recalibrated algorithms are 

shown in Table 1.3. Table 1.4 shows the rms error and the correlation between 

retrieved and radar rain rates for the “old” and “new” algorithms. No entry under 

“old” for barrett is shown because no algorithm coefficients were given in the AIP-2 

documentation. 

In addition to the algorithms described above a linear Tb-RR relationship con- 

sidering all frequencies (linear RR = 1 ai - Tb;) was also fitted. 

The effect of the recalibration is to reduce the rms error even for the test set data 

by a factor of between 0.75 and 0.21. The rms error for the training set data is, of 

course, even lower. The very large decrease in the rms error for the adler and smith 

algorithm is due to the large bias (M 4 mm/hr for adler and x 5 mm/hr for smith) 

with the original algorithms. 

The correlation only barely changed with the recalibration of the ferriday, ferraro 

and the adler algorithms, but was significantly improved for calval and smith. Thus 

it is shown that without the recalibration a comparison of algorithm results would 

mainly compare the datasets the original algorithms were fitted to with the actual 

dataset but would not show how well the algorithm concepts could represent the 

actual Tb-RR relationship. 

The worst performance is shown by the barrett algorithm. This is due to the fact 

that there is no offset coefficient used in the RR-AFD relationship. Though this 

coefficient is not necessary if the idea behind the algorithm (AFD = 0 for no-rain 

cases) is right, a small offset coefficient might have reduced the difference between 

retrieved and radar rainrates (especially < lmm/hr). 

Both barrett and ferraro algorithms require a double fit of two relationships to two 

complementary data sets (rain and no-rain data). The ambiguities between these 

two data sets, which are a consequence of both the necessity to define a rain/no-rain 

threshold and the ambiguities in the Tb-RR relationship due to cloud liquid water 

variability, smear out the theoretical assumption of 5’1 = 0 or AFD = 0 exactly for 

no-rain situations. This might explain the comparatively poor performance of the 

ferraro algorithm. Though it allows an offset coefficient for the SI-RR relationship 

it does not show better results than other “simpler” algorithms. Another reason 

might be the strong dependence of the ferraro algorithm on the 22 GHz Tb. The 

coefficient for this channel in the linear algorithm is rather small, indicating that 

the 22 GHz Tb are not very strongly correlated with the radar rain rate. 
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Table 1.3: Algorithm coefficients 

adler: 

calval: 

orig. 

recal. t 

RR = exp(a + ~1 . TblgH + ~2 - Tblgv + ~3 . Tb22v+ 
u4 . Tb37H + a5 . Tb 37v + a6 * Tbs5H + ~7 *Tbssv)- c 

3.& o".b a".'0 o"."o 04; 04"o -O.& OS&T : 

5.469 0.0020 -0.00519 0.00170 0.00585 -0.00656 -0.00062 -0.00534 25 

ferriday: Rfi = ao + ~1 . (Tbm + Tbm - Tb3TV - Tbssv) 

*I 

linear: RR = a0 + a1 .T~JH + ~2 Jba~ + ~3. Tb22v+ 

~4. Tbm + ~5 'Tb37v + a6. Tbm + ~7. TbBsv 

a0 a1 a2 a3 a4 a5 a6 a7 

cal. 1 56.28 0.04626 -0.1238 0.04352 0.1423 -0.1557 -0.01400 -0.1424 

RR = ao - al . TbssH 

smith: RR = ao + al . Tbm + u2 . [Tb19- Tb22]$ 
~3 . [Tb - Tb] + a4 . [Tb19 - Tbs5] 

a0 a1 

orig. 125.5 -0.455 o”.“o o”.“o 0.L 
cal. 38.2 -0.138 0.1163 -0.116 0.163 

ferraro: SI = ao + ~1 . Tbm + a2 s Tbnv + u3 - Tb;2v - Tbssv 
RR=a,-t-u5-SI 

orig. 4ii.5 O%i 
a2 a3 a4 a5 

-1.735 0.00589 -2.71 0.362 
cal. 1887 -1.303 -11.99 0.0271 1.24 0.133 

barrett: AFD = a,-, + al - Tb37v - Tbssv 
RR=u2.AFD$u3.AFD2 

t 
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Table 1.4: Algorithm performances 

ferraro 

ferriday 

adler 

smith 

calval 

linear 

barrett 

recalibrated 

1.412 1.511 
1.325 1.368 

1.299 1.397 
1.281 1.342 
1.282 1.343 
1.728 1.934 

corr. 

0.450 
0.377 
0.519 

0.518 
0.559 
0.553 
0.389 

ori! 
rms 

2.378 
2.125 
4.041 

5.962 
1.806 

Comparing the two-coefficient algorithms ferriday and adler shows that using one 
85 GHz channel describes the rain rate better than an equal weight combination 
of four channels. The quality of the results of these two and the other algorithms 
increases with the number of coefficients they use. 

The results of the smith algorithm are better than those for the adler algorithm 
for the training set, which is expected since smith uses more parameters, but worse 
for the test set data. Probably the additional channels induce too much scatter 
which increases the rms error for data sets the algorithm is not calibrated for. The 
smith algorithm can be rewritten in the same way as the linear algorithm but using 

the average H and V-P01 temperatures for all but the 22 GHz channels: 

RR = 38.2 + 0.025 . Tbrs - 0.116 . Tbzav + 0.116 . Tbs7 + -0.163 - Tbss. (1.19) 

The 19 GHz coefficient is the smallest, whereas the 85 GHz channel has the greatest 
effect on the retrieved rain rate. 

The linear and calval algorithms show the best performances. Their rms and 

correlation values are almost equal. This can be explained by the large offset co- 
efficient c for the recalibrated calval algorithm. The variation in the value of the 

exp(. . .) term (E 8 mm/hr) is comparatively small compared with the absolute 

value (25-33 mm/hr), thus the exp-function can be easily linearly approximated. 
Both algorithms also show the best rms values for the test set. Here the additional 
scatter induced by the additional channels in total seems to be less than for the 
smith algorithm. 

A major difference between the old and new coefficients for the calval algorithm 
is the fact that the low frequency coefficients are no longer zero, though some are 
small compared to the others. For these coefficients (al, us, us) the uncertainties 
(not shown) are of the same order as the absolute values of the coefficients. The 

same is true for the analogue coefficients (al, as, us) of the linear algorithm. 
The performance of these algorithms calibrated to the training data set but with 

al, us and as set to zero is shown in Table 1.5. The differences in the rms and 
correlation values are still negligibly small. They both still outperform all other 
algorithms in both rms and correlation values, though, as could be expected, they 
do not work so well as their “full” versions. 
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Table 1.5: Modified algorithms 

calval2: RR = exp(as + al . ‘%m + ~2 -Tb37v + ~3 .Tbssv)- c 

linear2: RR = ao + ~1 .Tb3mta2 'Tb37v ta3 .Tbssv 

cal. 5,914 Cl.;;11 -0.LK3 -0.;1:76 

linear2 1 

Note that for both algorithms 

not equal. This explains why the 

1.286 1 1.360 1 0.543 1 

coefficients on the two 37 GHz channels are are 

22 GHz coefficient of the smith algorithm (using 

polarization-averaged Tb) was not small and the algortihm showed a slightly worse 

performance. 

The effect of the recalibration for a single scene is shown in Figures 1.4 and 1.5. 

Bias values are now well below the rms values, except for the barrett algorithm, where 

the recalibration could not compensate for any bias because of the missing offset 

coefficient. The scatterplots for the recalibrated adler, smith and calval algorithms 

and for the calibrated linear, linear2 and calval2 algorithms are all very similar, 

as could be expected because they all mainly depend linearly on high frequency 

(especially 85 GHz) Tbs. The barrett, ferraro and ferriday algorithms do not fall into 

this category, which explains why the scatterplots for these algorithms are different 

from the “linear high frequency” algorithm scatterplots. 

The rms errors for the single scene are smaller than those for the whole training 

set but the overall ranking of the algorithms stays the same: (“linear high frequency” 

best, barrett worst). The relatively poor performance of the adler algortihm is due 

to the large fraction of lower rain rates in this scene, which do not show a signifi- 

cant signature in the 85 GHz channel and thus can not be retrieved with the adler 

algorithm. Note that for this scene the rms errors for all but the barrett algorithm 

are within a range of less than 0.08 mm/hr (X 6% of the mean). 

Spatial and Temporal Sampling Errors 

In this investigation we use the approach of [Kedem et al., 19901 to analyzing the 

errors created by satellite sampling characteristics. The goal of that analysis was 

to study the coherence scale of rain rate data in time and space using different 

satellite sampling designs. This indicates how often a rain field should be sampled 

with satellite measurements so as to estimate the mean (monthly) area rain rate 
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with a given precision. The data set they used was the time series of rain radar 

observations obtained during GATE. Th eir analysis of samples from this space- 

time series showed that the frequency distribution of non-zero rain rates could be 

described by a lognormal probability function with parameters mean and standard 

deviation. Various sampling designs were then evaluated, using a minimum chi- 

squared estimator and the assumption of lognormal distributions, to determine how 

well they reproduced the mean rain rate (i.e. mean of the total distribution). 

The analysis here is based on a subset of the AIP-2 FRONTIERS data set from 

21 February (0:OO) to 22 March (23:45). This time period contains a relatively high 

amount of coincident coverage by the radar and the FlO SSM/I sensor. The scenes 

are temporally spaced at 15 min intervals, and the grid spacing is 2.5 km. For the 

analysis of the spatial aspects alone, the scene shown in Figure l.lla was selected. 

Each satellite is characterized by a sampling design represented by the triple 

(t,x,y) with t = t ime sampling factor, and x,y = space sampling factors. Table 1.6 

gives the sampling designs for the sensors investigated here. The 15 minute time 

interval and 2.5-km pixel spacing of the FRONTIERS data in the AIP-2 grid is 

assumed. The sampling design corresponding to the NOAA AVHRR instrument, for 

example, is specified by (48,1,1) h’ h * pl w lc lm ies sampling every pixel every 12 hours 

(48 x 15 minutes). The AVHRR and Meteosat designs are included to compare the 

errors using microwave satellit,es with those of satellite systems presently used in 

operational rainfall estimation. 

Table 1.6: Sampling Characteristics 

Sensor Design (t,x,y) Time Offset (hrs) FOV (km) 

radar (Ul) 0 1 

AVHRR( LAC) (48JJ) 2, 7.5 2.5 

Meteosat (2,272) 0 7.5 

MIMR (90 GHz) (48,272) 6 4.9 

SSM/I (85 GHz) (48,595) 6 13 

SSM/I (19 GHz) (48,llJl) 6 43 

Also given in Table 1.6 are the effective field-of-views (FOV) used in this analysis 

for the different sensors. For the microwave sensors it is the 3 dB beamwidth of the 

antenna pattern. To simulate the spatial averaging effect, a given scene is averaged 

with a box filter of width = FOV in the case of Meteosat, and with a 101 km x 

101 km array containing normalized antenna pattern weights in the case of SSM/I 

and MIMR. Because of the 2.5-km grid spacing, the AVHRR is simulated with 2.5 

km pixel size and spacing (rather than the nominal 1 km), and the 7.5 km FOV for 

Meteosat (5 km nominal value) is due to the minimum averaging filter of 3x3 pixels. 

Comparisons are based on rain rate statistics (primarily rain probability and 

mean rain rate) derived from sample histograms. Given the time offset and the time 

sampling factor in the sampling design, the correct scene in the radar rainfield series 

is identified. The field is then averaged (if requried) and sampled at the sample 
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Table 1.7: Sampling Design Comparison 

Design Sampling Period Probability (%) (RR) (mm/hr) 

(IJJ) 1 day 21.0 1.38 
30 days 11.3 1.57 

(4UI) 1 day 16.7 1.05 
30 days 11.6 1.53 

(2,212) 1 day 20.8 1.37 
30 days 11.3 1.56 

(4~~2~2) 1 day 25.9 1.49 
30 days 10.4 1.62 

(48?5,5) 1 day 25.6 1.54 
30 days 10.3 1.66 

(48,11,11) 1 day 28.6 1.42 

30 days 10.5 1.66 

spacing of the given design. These samples are then accumulated over 1, 3, 7, 10, 
and 30 day periods and stored as histograms. 

To derive sampling statistics we assume as in [Kedem et al., 19901 that the actual 
rain rate distribution is a mixed distribution with two components: the continuous 
component of lognormal distributed non-zero rain rates and a discrete component at 
zero rain rate. The non-zero rain rate samples can therefore be characterized by the 
mean and standard distribution of the histograms of ln(RR), and the ratio of the 
number of non-zero to number of zero rain samples gives the rain probability. Time 
series of these sample statistics are used to determine how many days of observations 
are needed for the rain rate estimates of one satellite to approximate those of the 
radar data set or of another satellite sensor. 

Sampling comparisons 

Comparisons are first made of the sampling designs only. These results therefore 

represent the ideal measurement case of a 2.5-km wide box filter antenna pattern, 
and are equivalent to the actual sensor sampling only in the case of the radar and 
AVHRR (approximately). Th e sample statistics derived for periods of 1 and 30 
days are presented in Table 1.7. After 1 day rain probabilities for satellite designs 
deviate from the actual value by up to 7.6%; after 30 days deviations for all designs 
are less than 1%. Likewise for the mean rain rate, after 30 days there is only at 
most 0.09 mm/hr deviation from the actual mean. These results would indicate that 
temporal averaging is effective in bringing satellite estimates into better agreement 

with actual rainfall statistics. 

We now wish to consider the effect of spatial averaging by the satellite sensors. 
Table 1.8 presents statistics derived by sampling all points in a single scene averaged 
with sensor-appropriate filters as described above. They indicate a clear increase 
in rain probability and decrease in mean rain rate with increasing FOV. For the 
SSM/I 19 GH z sensor there is a factor of approximately 3 deviation from the actual 
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Table 1.8: FOV Comparison 

Sensor Probability (%) <RR> ( mm/hr) RRmax (mm/hr) 

radar 11.5 1.92 18.0 

Meteosat 14.4 1.30 17.1 

MIMR 90 GHz 14.4 1.29 17.1 

SSM/I 85 GHz 21.1 0.80 12.2 

SSM/I 19 GHz 31.2 0.59 6.1 

Table 1.9: FOV + Spatial Sampling Comparison 

Sensor Probability (%) <RR> ( mm/hr) RRmax (mm/hr) 

radar 11.5 1.92 18.0 

Meteosat 14.5 1.29 16.4 

MIMR 90 GHz 14.4 1.29 16.6 

SSM/I 85 GHz 21.2 0.80 10.6 

SSM/I 19 GHz 29.7 0.59 5.9 

value for all statistics. The identical statistics for Meteosat and MIMR 90 GHz are 

somewhat misleading because of the larger than actual FOV used in the Meteosat 

simulation. 

Table 1.9 presents the statistics derived from the same scene where FOV averag- 

ing and spatial sampling have been combined. The results change very little from 

those where all points are sampled. 

Integrating FOV averaging into the complete space-time sampling simulation 

produces the results given in Table 1.10. Comparison with Table 1.7 suggests that 

the effect of FOV averaging is to diminish the improvement won through sampling 

over longer periods. This is likewise indicated in the corresponding time series of rain 

probability and mean rain rate shown in Figures 1.6 to 1.8. For the optical sensors 

agreement with the radar data is reached after only 3 to 7 days. However even 

after 30 days the microwave sensors overestimate rain probability by 5 to 30% and 

underestimate mean rain rate by factors of 5 to 20. Based on sampling design alone 

(see Table 1.7), th e microwave sensors should underestimate rain probability and 

overestimate mean rain rate. Note that the finer sampling and the higher resolution 

of the MIMR 90 GHz sensor combine to produce better agreeement with actual 

mean values than obtained with the SSM/I 85 GHz sensor. 

Beam-filling error 

The results presented above show that FOV-averaging is the most important lim- 

itation to obtaining valid rain statistics with microwave sensors. This averaging 

leads to the so-called beam-filling error due to three factors: (1) rain inhomogeneity 

within the sensor FOV; (2) nonuniform instrument sensitivity over the FOV (an- 
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Table 1.10: Sensor Sampling Comparison 

Sensor Sampling Period Probability (o/o) <RR> (mm/hr) 

radar 1 day 21.0 1.38 

30 days 11.3 1.57 

AVHRR 1 day 16.7 1.05 

30 days 11.6 1.53 

Meteosat 1 day 29.9 0.70 

30 days 15.0 0.84 

MIMR 90 GHz 1 day 46.7 0.30 

30 days 17.1 0.33 

SSM/I 85 GHz 1 day 72.1 0.18 

30 days 28.8 0.10 

SSM/I 19 GHz 1 day 87.4 0.19 

30 davs 40.4 0.08 
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Figure 1.6: Time series of rain probability and mean rain rate for radar and AVHRR 

sampling characteristics. 
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tenna pattern); and (3) nonlinear nature of the Tb-RR relationship, especially at 

the lower microwave frequencies. Additional errors in rain retrieval result because 

algorithms typically employ different combinations of channels (footprints of the 

SSM/I channels range from 13 km to 69 km) each of which averages over a slightly 

different area. That the rainfield typically is spatially inhomogeneous over the FOV 

can be seen by comparing Figures 1.11(a) and 1.11(b). 

A major difficulty in estimating the beam-filling error is separating it from the 

total retrieval error. This was attempted analytically by Chiu et al. [1990] and 

Graves [1993] f or single-channel algorithms. The expression derived by Chiu et al. 

for the beam-filling error consisted of two terms: one the variance of the rainfield 

and the other dependent on the nonlinearity of the Tb-RR relationship. Graves 

obtains a similar result and goes further to express rainfield variance in terms of 

the fractional area of the FOV raining per rain rate. Neither of these studies took 

account of antenna pattern weighting. 

Short and North [1990], in their analysis of ESMR data, took a simulation ap- 

proach to this problem based on applying a Tb-RR model to radar-derived rain 

rates and then averaging with appropriate antenna pattern weighting. The beam- 

filling error estimated therefore includes the effect that generally the area “seen” by 

the sensor (i.e. that falls within the antenna pattern) is larger than the nominal 

FOV over which the radar-derived rain rates are averaged. However it may also 

include errors due to a mismatch between assumptions of the algorithm applied and 

assumptions in the model. 

In the analysis here we use a formulation similar to [Chiu et al., 19901 to derive 

an expression for the beam-filling error. We consider a single frequency algorithm 

with a single value Tb-RR relationship which is generally valid for low rain rates. Let 

[Tb] be the measured brightness temperature (i.e. with antenna pattern weighting), 

and (Tb) the average brightness temperature (uniform weighting) over the nominal 

pixel area. Then the estimated rain rate RR, can be written in Taylor expansion 

about (Tb) as 

RR,( [‘I%]) = RR( (Tb)) + 
([Tb] - (‘I%)) . RR’( (Tb)) + 

([Tb] - (Tb))2 . RR”( (Tb)). (1.20) 

Letting (RR) be th e average rain rate over the nominal area (the desired quantity) 

then the total retrieval error &RR = RR, - (RR), or 

6RR = RR((Tb)) - (RR) + 

([Tb] - (Tb)) . RR’((Tb)) + 

([Tb] - (Tb))2. RR”((Tb)). (1.21) 

If the algorithm concept were perfect and the algorithm calibrated with represen- 

tative data (as done above), 6RR would result only from beam-filling errors. If 

in addition the rainfield were uniform, then 6RR = 0. For the more usual case 

of nonuniform rainfields, we can interpret the right hand side of Eqn. 1.21 as 

(RR((Tb)) - (RR)) P re resenting primarily the error due to the nonlinearity of the 
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Table 1.11: Beam-Filling Error &RR, 

Channel (GHz) &RR,,, (mm/hr) 

85 -0.9 to +1.4 

37 -3.5 to +1.6 

22 -4.9 to $1.9 

19 -5.5 to $2.0 

Tb-RR relationship, and the other two terms expressing mainly the error resulting 

from spatially inhomogeneous rainfields, although the two factors are not completely 

separated. 

For linear algorithms Eqn. 1.21 reduces to 

&RR+,,, = al . ([Tb] - (Tb)) (1.22) 

showing that the beam-filling error for linear algorithms is not zero but equal to the 

difference between antenna pattern and uniform weighting over the footprint (hence 

the subscript w). For linear algorithms using N channels, it can be shown that 

SRR, = f z&RR&), i = l,...,N. 
1 

(1.23) 

Correction of algorithm estimates 

In general (Tb) is not known and 6RR, must be estimated either in a statistical sense 

by assuming a rainfall distribution function (e.g. [Short and North, 1990; Graves, 

19931) or with image statistics from the highest resolution channel [Wilheit and 

Chang, 19801. This latter technique has recently been used by Kummerow and 

Giglio [1994] who took th e variance in the 85 GHz channel as an indicator of storm 

system spatial variability. Empirical correction schemes for the beam-filling error 

also have been suggested such as that proposed by [Liu and Curry, 19921 based on 

the work of [Chiu et al., 19901. 

With the availability of coincident radar-derived rain rates it is possible here 

to calculate 6RR, directly by applying the inverse of the Tb-RR relationship to 

Eqn. 1.22, such that SRR,, = [RR] - (RR). Th is as h b een done for the scene shown 

in Figure 1.11 for all four SSM/I channels. As in Figure 1.1 lb (RR) is calculated for 

25 km pixels. The results presented in Table 1.11 include both land and water areas. 

They indicate, as expected, increasing beam-filling error with increasing footprint 

size. They also show that the beam-filling error is not a simple bias in one direction: 

depending on whether the high intensity rain areas are nearer the center or nearer 

the edge of the nominal area, the error can be either positive or negative. 

Because the expressions for 6RR, derived above are for linear algorithms, only 

correction of the algorithms adler, smith, ferriday and calval is considered. The rain 
rate estimates with these algorithms for SSM/I scene 910302.1850 were corrected 
using the radar-derived &RR, for the coincident data points over land shown in Fig- 

ure 1.11(b). For the smith, ferriday and calval algorithms, the expression for 6RR, in 
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Table 1.12: Algorithm Performance: Scene 910302.1850 

Recalibrated Algorithms 

Corrected Algorithms 

Eqn. 1.23 was used, assuming the recalibrated calval algorithm to be approximately 
linear. 

Table 1.12 gives the performance statistics before and after correcting for beam- 
filling. The correction had little or no effect on the adler algorithm results, as 
expected since the beam-filling error at 85 GHz is small. The effect on the other three 

algorithms is to reduce the rms error and increase the correlation between SSM/I 
and radar estimates. However an additional bias of E $0.5 mm/hr accompanies the 
correction. 

Conclusions 

Algorithms for rain retrieval over land with passive microwave imagers have been 
analyzed for possible errors due to variations in surface type and surface temperature 
and for errors resulting from sensor sampling characteristics. The algorithms inves- 

tigated were taken from the AIP-2 and PIP-1 algorithm intercomparison projects, 

specifically those algorithms that are readily implemented with coefficients published 
in the literature. 

For the purpose of evaluating algorithm sensitivity to variations in land emissivity 
and temperature, model brightness temperature data, generated with a radiative 
transfer routine for a number of stratiform and convective rain situations, were used. 
Considering different land surface types and temperatures, it was found that these 
surface variations have a much larger effect on both brightness temperatures and 
the rain retrieval results of most algorithms than do variations in the atmospheric 
parameters previously investigated. The effect of changing surface temperature is 
greatest on algorithms using a single channel (adler) or multiple channels additively 
(smith) with rain rate errors reaching over 10 mm/hr for a 10 K change in surface 
temperature. On the other hand, algorithms using channel differences (ferriday) can 

compensate for temperature effects very well (<3 mm/hr error for a 10 K change). 
Such algorithms cannot compensate for surface type variations, however, because 
the Tb variations for different channels are not of the same size. Results indicate 

that algorithms using the 85 GHz channel have the lowest sensitivity (<lmm/hr) 
to these variations. In future algorithms a channel with a frequency of 10 GHz or 
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below might help to estimate surface conditions and thus reduce the surface type 
effects on the retrieved rain rates. 

These same algorithms were then applied to the SSM/I data from the AIP-2 and 

a statistical analysis of their performance carried out using the coincident FRON- 
TIERS rain rates as “truth”. The results showed large biases and rms errors in the 
retrieved rain rates because the data they were calibrated with were not represen- 
tative for the data used in this study. Also “screening” (rain/no-rain) algorithms 
could not be applied successfully because of large ambiguities in the Tb signatures 
of rain and no-rain pixels. For this reason screening algorithms were not investi- 
gated further. Recalibration of the rain rate algorithms with the AIP-2 data set 
significantly improved algorithm performances. The relationship between averaged 
radar rain rate and brightness temperature for this data set was best represented by 
a linear combination of the 37 and 85 GHz channels; including the 19 and 22 GHz 
Tb in the retrieval process only slightly improved the retrievals. With this algorithm 
rms errors in retrieval of rain rate averaged over a 12.5 km radius SSM/I footprint 
could be reduced to 1.3 mm/hr. 

Investigation of the error due to the spatial and temporal sampling characteristics 
of PMIs was carried out on a subset of the AIP-2 radar-derived rain rates covering a 
one month period. A comparison of the sampling designs of several satellite sensors, 
including Meteosat, AVHRR, SSM/I and MIMR, showed that if resolutions were 
all alike all sensors would produce very similar rainfall statistics (rain probability 
and mean rain rate) after one month of observations. However, when the effect of 
averaging over the FOV is included in the sampling analysis, sensors doing spatial 
averaging overestimate rain probability and underestimate mean rain rate even after 
30 days of temporal averaging. The SSM/I 19 GH z sensor underestimated the mean 
rain rate of the radar data set by a factor of 20; based on its sampling design alone 
(no spatial averaging) it should only slightly overestimate the mean by a factor of 
1.1. Slight improvement over SSM/I in estimating mean rain rate was seen by going 

to the denser sampling and higher resolution planned for the 90 GHz MIMR channel. 
FOV averaging is therefore the most important limitation to obtaining valid 

rain statistics with microwave sensors. The result of FOV-averaging on rain rate 
retrievals is the beam-filling error. It was shown that even for linear algorithms 
a beam-filling error exists due to nonuniform instrument response over areas of 
inhomogeneous rain intensity. This error also varies in sign depending on the actual 
distribution of rain events within the FOV. Correction of algorithm results for this 
beam-filling effect improved retrieval results but not as much as regional calibration. 

In addition to testing the effectiveness of regional calibration of rain retrieval 
algorithms on other areas and in other seasons, further research in this area should 

be done on t’he use of lower frequencies to be available on MIMR to compensate for 
surface type related error in rain retrievals over land, and incorporation of beam- 
filling correction into rain retrieval algorithms. 

35 



References 

Adler, R. F., A. J. Negri, P. F. Keehn, and I. M. Hakkarinen, Estimation of Monthly 

Rainfall over Japan and Surrounding Waters from a Combination of Low-Orbit Microwave 

and Geosynchronous IR Data. Journal of Applied Meteorology, 32(2), 335-356,1993. 

Allam, R., G. Holpin, P. Jackson, and G.-L. Liberti, Second Algorithm Intercomparison 

Project of the Global Precipitation Climatology Project AIP-2. Pre-Workshop Report, 

1993. 

Basili, P., P. Ciotti, G. d’Auria, F. S. Marzano, N. Pierdicca, and A. Mugnai, A precipi- 

taion retrieval algorithm by space-borne multispectral radiometry based on cloud radiation 

models and multivariate techniques. In preparation., 1993. 

Bell, T. L., A. Abdullah, R. L. Martin, and G. R. North, Sampling errors for satellite- 

derived tropical rainfall: Monte Carlo study using a space-time stochastic model. J. 
Geophys. Res., 95, 2195-2205, 1990. 

Browning, K., The FRONTIERS plan: a strategy for using radar and satellite imagery 
for very short-range precipitation forecasting. Meteor. Mug., 108, 161-184, 1979. 

Burns: B. A., G. Heygster, and K. Kiinzi, Evaluation of Algorithms for Retrieval of Rain 

Rate with Passive Microwave Radiometers. Final Report, ESA/ESTEC Purchase Order 
120419, 1993. 

Burns, B. A., and F. Flender, Sensitivity of SSM/I Rain Rate algorithms to Variations 

in Water Vapour and Cloud Liquid Water - A Modeling Study. In Specialist Meeting on 
Microwave Radiometry and Remote Sensing of the Environment, 1994. 

Chiu, L. S., G. R. North, D. A. Short, and A. McConnell, Rain estimation from satellites: 

Effect of finite field of view. J. Geophys. Res., 95, 2177-2185, 1990. 

Collier, C. G., International radar networking. Meteor. Mug., 121, 221-239, 1992. 

Colwell, R. N., editor, Manual of Remote Sensing. American Society of Photogrametry, 

Falls Church, VA, 2nd edition, 1983. pp. 196-197. 

Deirmendjan, D., Scattering and polarization properties of water clouds and hazesin the 

visible and infrared. Appl. Optics, 3, 187, 1964. 

Goldhirsh, J., and B. H. Musiani, Dimension statistics of rain cell cores and associated rain 

rate isopleths derived from radar measurements in the mid-atlantic coast of the United 

States. IEEE Trans. Geosci. Remote Sens., 30, 28-37, 1992. 

Graves: C. E., A model for the beam-filling effect associated with the microwave retrieval 

of rain. J. Atmos. Oceanic Technol., 10, 5-14, 1993. 

Grody, N. C., Classification of Snow Cover and Precipitation Using the Special Sensor 

Microwave Imager. Journal of Geophysical Research, 96(D4), 7423-7435, 1991. 

Kedem, B., L. S. Chiu, and G. R. North, Estimation of mean rain rate: Application to 
satellite observations. J. Geophys. Res., 95, 1965-1972, 1990. 

Kniveton, D. R., C. Kidd, E. C. Barrett, B. Motta, F. LaFontaine, M. Smith, and M. Good- 

man, WetNet PIP-l Results Version 2, 1994. 

36 



Kummerow, C., and L. Giglio, A passive microwave technique for estimating rainfall 
and vertical structure information from space, Part I: Algorithm Description. Journal of 

Applied Meteorology, 33, 3-18, 1994. 

Liberti, G. L., Review of the SSM/I-b ased algorithms submitted for the GPCP-AIP/2. 

In Proceedings of the Specialist Meeting on Microwave Radiometry and Remote Sensing of 

the Environment, Rome 14-17 February 94, 1994. 

Liu, G., and J. Curry, Retrieval of precipitation from satellite microwave measurement 

using both emission and scattering. J. Geophys. Res., 97, 9959-9974, 1992. 

Matzler, C., Algorithms for retrieving snowpack properties from a Multichannel Imaging 
Microwave Radiometer (MIMR), Study of Microwave Interaction with the Earth’s Surface. 

Report, ESA Study Contract No. 8447/89/NL/PB/(SC), 1990. 

Olson, W., F. LaFontaine, W. Smith, R. Merrill, B. Roth, and T. Achtor, Precipitation 

Validation. In Hollinger, J. P., editor, DMSP Special Sensor Microwave/lmager Cali- 
bration/Validation, Final Report Vol II, Naval Research Laboratory, Washington D.C., 

1991. 

Rogers, R. R., and M. K. Yau, A Short Course in Cloud Physics. Pergamon Press, 1991. 

Sekon, R. S., and R. C. Srivaastava, Doppler radar observations of drop-size distributions 

in a thunderstorm. Journal of Atmospheric Sciences, 28, 983-994, 1971. 

Shin, K. S., and G. R. North, Sampling Error Study for Rainfall Estimate by Sattelite 

Using a Stochastic Model. Journal of Applied Meteorology, 27, 1218-1231, 1988. 

Short, D. A., and G. R. North, The beam filling error in the Nimbus 5 Electronically Scan- 

ning Microwave Radiometer observations of Global Atlantic Tropical Experiment rainfall. 

J. Geophys. Res., 95, 2187-2193,199O. 

Smith, E. A., A. Mugnai, H. J. Cooper, G. J. Tripoli, and X. Xiang, Foundations for 
Statistical-Physical Precipitation Retrieval from Passive Microwave Satellite Measure- 

ments. Part I: Brightness-Temperature Properties of a Time dependent Cloud Radiation 

Model. Journal of Applied Meteorology, 31(6), 506-531, 1992. 

Spencer, R. W., H. M. Goodman, and R. E. Hood, Precipitation Retrieval over Land with 

the SSM/I: Identification of the Scattering Signal. Journal of Atmospheric and Oceanic 
Technology, 6, 254-273, 1989. 

Wilheit, T. T., and A. T. C. Chang, An algorithm for retrieval of ocean surface and 

atmospheric parameters from the observations of the scanning multichannel microwave 

radiometer. Radio Science, 15, 525-544, 1980. 

WMO, Workshop Report on the Global Precipitaion Climatology Project (GPCP) Second 

Algorithm Inetrcomparison Project (AIP-2) August 1993, 1994. 

37 

















Part 2 

Image Restoration Techniques for 
Improving SSM/I Spatial 
Resolution 

Introduction 

Satellite Passive Microwave Imagers (PMI) are currently being used to obtain infor- 

mation on geophysical quantities important to the hydrologic cycle. Because of their 

broad swath and relatively frequent overpasses, these satellite sensors can provide 

estimates of such quantities as rain rate, cloud liquid water, and atmospheric water 

vapor on spatial and temporal scales compatible with regional weather prediction 

and global climate models. Such measurements are of greatest importance over the 

ocean where in situ observations are sparse. 

However, because rain fields and clouds can be patchy on scales much smaller 

than the field-of-view (FOV) of the PMI, large errors can occur in estimating these 

parameters when only part of the FOV contains rain or cloud. This is called the 

beam-filling error, and errors in rainfall estimates as large as 50% have been observed 

with data from the ESMR instrument obtained during the GARP Atlantic Tropical 

Experiment (GATE) [Sh or and North, 19901. And although data channels with t 

higher frequencies (37 and 85 GHz), and therefore smaller FOV’s, are available on 

present PMIs, most algorithms for rain retrieval over ocean still depend heavily on 

the 19 GHz channels. This means that the effective spatial resolution of the retrieval 

results is limited by the FOV of the 19 Ghz channel: approximately 60 km for SSM/I 

and 20 km (design) for MIMR. 

One possible means of reducing the beam-filling error is to apply post-processing 

techniques that improve the effective resolution of the passive microwave data, at 

least to the extent that all channels used in the rain retrieval algorithms have similar 

FOVs. The purpose of this paper is to investigate the application of deconvolution 

methods for this purpose. 

The typical i maging process in remote sensing involves ‘optics’ with non-delta 

function response characteristics and finite receiver noise such that the resulting 

image is blurred and corrupted in some manner. The objective of image restoration 

is to reduce this degradation, making the restored image as close as possible to 
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the observed scene. This can be done if the antenna pattern is known so that the 

imaging process can be modeled. 

The next section describes the imaging model as well as the restoration tech- 

niques that have been examined. These techniques, a signal adaptive least squares 

algorithm, two entropy based methods as well as the commonly used Wiener filter 

and constrained least squares restoration are first applied to test data where both 

the original image and the degradation process are known exactly. Sample applica- 

tions to SSM/I data are then presented, and the results are evaluated by comparing 

rain rates derived from restored and unrestored SSM/I data to radar rain rates. 

Description 

Modelling the 

Letting p and Q 

of Techniques 

imaging system 

be the row (along scan) and column (along track) indices in the 

image domain, the actual brightness temperature distribution (true image) f(p, 4) 

is related to the measured antenna temperatures d(p, Q) by a Fredholm integral 

equation of the first kind. In the discrete case this reduces to the sum 

M-l N-l 

where h(p, Q, ;,j) is the antenna pattern and n(p, Q) the noise originating from the 

amplifier as well as from the physical signal. The task of image restoration is to 

determine f(p, q) from d(p, 4). 

Traditional image restoration techniques are in most cases applied in the fre- 

quency domain which makes the restoration much faster. These techniques presume 

a linear shift-invariant (LSI) degradation, where the antenna pattern, or more cor- 

rectly speaking, the point spread function, is dependent only on the coordinate 

differences (p - i, q - j) instead of all four coordinates. In this case Eq.(2.1) takes 

the form 
M-l N-l 

(2.2) 

When performing the restoration in the space domain, we need not to make this 

assumption. 

Wiener Filter 

The Wiener Filter is well known in the signal processing literature [Gonzales and 

Woods, 1992; Jain, 1989; Lim, 19901. It considers the true image f(p, q) and the noise 

n(p, q) as realizations of two signal generating stochastic processes and minimises 

the restoration errors 

E { HP7 Q) - f^(PY d12} + Inin* (2.3) 

with j the estimate of f and E{. . .} th e expectation value of the random variable 

in the brackets. 
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The Wiener Filter can be derived from Eq.( 1.3) as in Lim [1990]: 

n D(k 1) IH(k /)I” ~. 
‘(lc’ ‘) = H(k, I) JH(k, I)/” + I’(k, 1) (2.4) 

where 

IV, 1) = %,(k, ~)l@.&, 1) . P-5) 

Qnn( k, 1) and @fj(k, 1) are the power spectral density functions of n(p, 4) and f(p, q), 

respectively. I’( k, 1) is the inverse signal-to-noise ratio of the image (l/SNR) and 

can be estimated from the data. Alternatively, a constant value for I’(k, 1) can be 

evaluated empirically [Wahl, 19891. 

Constrained Least Square Filter (CLS) 

The constrained filter (Constrained Least Squares filter, CLS) minimises the convo- 

lution of the estimate f(p, Q) with a regularization function c(p, q), with the goal to 

obtain an estimation f as smooth as possible: 

M-l N-l 

c c [c(P7 Q) * f^(P> d] 2 -+ min. 
p=o q=o 

under the constraint 
M-l N-l 

(2.6) 

where c(p, q) is a discrete approximation to the first or second derivative. Here, * is 

the convolution symbol and the noise power E, enters in the restoration process as 

a priori knowledge. 

The minimization problem can be solved by using the method of Lagrange mul- 

tipliers 

M-l N-l M-l N-l 

c c [c(P, d * f^k, 41” + X c c [d(p, d - Wp, 4 * .fh 41” - min. (2.8) 
p=o q=o p=o q=o 

where X is the so called Lagrange multiplier. Eq.(2.8) can be solved in the frequency 

domain: 

&k, I) = Q(k, I) - D(k, Z) . (2.9) 
The filter Q(k, 1) can be written as [Wahl, 19891 

1 X]H(k, 1) I2 

‘(” ‘) = H(k, 1) /C(k, l)[” + J+Y(k, l)[” 
(2.10) 

whe:e p(k, l), D(k, l), H(k, I) and C(k, I) are the two-dimensional Fourier transforms 

of f(p,q), d(p, q), h(p,q) and c(p, q), respectively. The filter function Q(k, Z) is 

therefore composed of an inverse filter multiplied with a regularization filter. 

The noise dependent parameter X controls the regularization and must be esti- 

mated from the data. In the case of high noise energy, X must be small to emphasize 

the regularization. In the case of absence of any noise, a large value of X turns 

Eq.(2.10) into a inverse filter. Note that the regularization part suppresses high 

frequenciesTherefore, the choice of X is always a compromise between resolution 

improvement and reduction of noise amplification. 
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Adaptive Constrained Least Squares Restoration (ACLS) 

In order to reduce the noise amplification of regions in the image with low local 

standard deviation and to improve the resolution of regions with high local standard 

deviation (e.g. edges), Bundschuh [1991] p resented the idea of a signal adaptive 

algorithm by rewriting Eq.(2.6) as 

M-l N-l 

C C 4-3 dkb4 d * 3(pl dl" - min 
p=o q=o 

(2.11) 

with an additional signal dependent weighting function w(p, q). Minimizing Eq.( 2.11) 

constrained by Eq.(2.7) yields 

M-l N-l M-l N-l 

c c 4PT dk(P7 s> * f^(P> 4)12 + x c c MP7 d - &4 d * P(PY dl" - min 
p=o q=o p=o q=o 

(2.12) 

For the regularization function c(p, CJ) the first derivative is used. The partial deriva- 

tives are approximated by the sum of the differences of neighboring pixels in the X- 

and y-directions, respectively. Analogously, the weighting function w(p, q) is split 

into the sum of two directional components W, and ‘wy: 

M-l N-l 

c c u4 4 (h d - f(P - 17 Q))2 
p=o q=o 
M-l N-l 

c c %4h?) (J(P?d - &PA - 1f 
p=o q=o 

M-1 N-l r M-l N-l 

x z. go 
L 
cq-,s)- c Cf^(PGl)h(~-P~s 

p=o q=o 

+ (2.13) 

+ 

1 
2 

q) - min 

The signal dependent weighting function w(p, q) can be calculated from the data. In 

regions with small local standard deviation, the weighting function must have high 

values to emphazise the regularization, whereas at edges the weighting function 

should reduce the influence of the smoothness criterion in order to improve the 

resolution. The weighting function is essentially the normalized inverse of the first 

derivative of f(p,q) [Hunewinkel, 19931. S’ mce the weighting function introduces 

nonlinearity into Eq.(2.11), the resulting Eq.(2.13) must be solved in the spatial 

domain iteratively using the Gau&Seidel Algorithm [Press et al., 19921. 

Maximum Entropy Restoration 

The premise of maximum entropy restoration is that the best result is that with 

the highest probability with respect to the imaging system and the measured data. 

This can be achieved by maximizing the entropy of the restored image 

M-l N-l 

S = - C C h 57) ~~~.b, d>. (2.14) 
p=o q=o 
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The idea is attributed to Jaynes [1982]. A ccording to his imaging model an image 

measures the luminance at each pixel and each luminance quantum has an equal 
a priori chance of appearing at any pixel. If any two distributions have the same 
probability, the one with the most possible configurations is the most probable. 
Maximization of Eq.(2.14) constrained by Eq.(2.7) can be written as 

M-l N-l M-l N-l 

- C C ih 9) Wb d> + X C C Pb7 a> - &+ d * j_CP, d12 - max (2.15) 
p=o q=o p=o q=o 

Because of the nonlinearity introduced by the entropy maximization term, a 
closed solution of Eq.( 2.15) is not known. Many researchers have presented algo- 
rithms to solve Eq.(2.15). In particular Skilling [1985], Skilling [1989], Skilling [1990], 
Gull [1985], Gull [1989] h ave developed a software package, known as MemSys5, 
which has become important in restoration of astrophysical images. A variation on 
this standard algorithm is based on an idea of Kao [Gonsalves and Kao, 1987; Gon- 
salves et al., 19871, who formulated an algorithm (Kao) similar to the Wiener filter 
with an additional entropy maximizing term. 

Backus-Gilbert Restoration and Interpolation 

Recently several papers have been published using Stogryn’s [Stogryn, 19781 ap- 
plication of the Backus-Gilbert inversion [Backus and Gilbert, 19701 to passive 
microwave data for image restoration and interpolation. Poe [1990] proposes an 
interpolation procedure which attempts to maintain the characteristics of the orig- 
inal data (resolution and antenna pattern) in the interpolated values. Although 

resolution improvement was not the goal of the algorithm, fine details in the SSM/I 
85 GHz images shown are clearly better distinguishable. Farrar and Smith [1992] 
use the Backus-Gilbert formalism to obtain a single optimum resolution for all SSM/I 

channels. This is necessary if an inversion algorithm uses different frequencies and 
therefore different resolutions simultaneously. The trade-off between resolution im- 
provement and noise amplification is controlled by setting a tuning parameter y 
and by maximizing the inter-channel correlation, In the examples presented y is 
determined for each image individually. The optimization criterion does not take 
into account the physically different conditions at the different frequencies which 
lead to frequency- dependent details. On the contrary it tends to make the images 
of different frequencies more uniform. 

Rather than attempt to obtain “optimum” resolution for all channels, Robinson 
et al. [1992] standardize the resolution of the 19-, 22- and 85-GHz channels to that of 
the 37 GHz channel, but for the same reasons as Farrar and Smith. Both Poe [1990] 
and Robinson et al. [1992] g a ree that improving the resolution of the 37- and 85 
GHz-channel is not possible, but on different grounds. Whereas Poe, like Seth- 
mann [1992], b o serves the effects of undersampling, for Robinson et al. the problem 
is noise amplification. In the latter the tuning parameter y is determined from the 
results of a test image which had been blurred with the antenna characteristic and 

had channel-specific noise superimposed before restoration. 
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The Backus-Gilbert method used here is that from Robinson et al. [1992]. The 

routine was obtained as part of rain retrieval software from C. Kummerow (NASA 

Goddard). 

Application to Test Images 

The five deconvolution algorithms described above have been implemented and a 

systematic comparison carried out on test data. The test images are derived from 

the Landsat image shown in Figure 2.3. This scene shows the harbor area of Bre- 

merhaven, Germany, and exhibits sufficient detail and contrasts by which to judge 

resolution improvement. 

Image degradation is done by adding Gaussian noise and smoothing with filters 

having Gaussian or box characteristics. The Gauss filters are characterized by stan- 

dard deviations of g = 2 and 5. The box filters used have dimensions 5 x 5 and 

7 x 7 pixels. The bl urred images were corrupted with normally distributed noise 

with standard deviations on = 1,2 and 5. In this way a total of twelve test images 

were generated. Note that the degradation using the Gauss filter with cr = 2 and 

noise standard deviation of on. = 1 is most similar to the SSM/I case. 

Figure 2.4 shows the degraded and restored images for the case with distortion 

characteristics most similar to SSM/I. The Wiener filter restorations show little and 

the CLS restoration more ringing near edges; the ACLS restoration seems somewhat 

blocky. The two maximum entropy restorations are noisy. The MemSys5 restoration 

shows rough and the Kao restoration fine noise. 

Figure 2.1 demonstrates the relative performances with a profile through the 

image. Due to its signal adaptive character, the ACLS algorithm reduces the noise 

amplification in flat regions and improves the resolution at edges. Note the strong 

noise amplification of the entropy-based algorithms. This figure also shows that the 

ACLS filter produces much less but still visible overshooting near edges and peaks 

than the CLS filter. 

To quantify resolution improvement, three measures have been calculated: the 

normalized mean square error (AMsE), change in signal-to-noise ratio A~NR evalu- 

ated in the space domain, and change in edge steepness Srest. 

Since the original image is available, the restoration performance can be measured 

using the ratio of the mean square errors 

AMsE = 10 . log,, 
I I@> d - fb> !7> I I2 
llfb4 !I) - fb, dll” ’ 

(2.16) 

with I]. . . /I2 = C C[. . .I2 where th e sum extends over the whole image. The quantity 

AM~E indicates in decibels to what degree the restoration was able to compensate 

for the degradation. Therefore a larger AM~E is obtained for a better restoration. In 

contrast to the quality measures discussed below, AM~E is a global characterization 

of the restoration. It refers to the entire image and not to specific regions or pixels. 

The noise amplification in space domain A~NR can be written as 

AsNR = 10 - log,, (2.17) 
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Figure 2.1: Profile through Landsat image. Top: comparing restoration results from 
the two least squares techniques to the original image. Bottom: comparing Wiener 

filter and maximum entropy methods to the original image. 
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where grest and fl,-& represent the standard deviation of pixel values derived from 

subareas of low standard deviation in the restored and degraded images : 

(2.18) 

and 

Odes = (((+y q))szlb - ‘+, q))z)sub (2.19) 

where (x)$~~ means the average of the quantity z over the subarea sub of the image. 

A subarea of 8306 pixels was chosen from the inner region of the Weser river in the 

“Bremerhaven” scene where in the original image the standard deviation is equal to 

zero. 

A steepness parameter s,,,. is defined to measure the actual resolution improve- 

ment. For this purpose, a Gaussian fit to a profile through an edge was made in 

the restored and in the degraded image. The ratio of the standard deviations char- 

acterizing the two Gaussians (crest and o&g) is used as a measure of the resolution 

improvement: 

s rest = 
fldeg 

grest 
(2.20) 

flrest and gdeg can be used also to calculate the actual resolution achieved. The 

ability of a system to resolve two closely separated point sources, the two-point 

resolution, is defined according to the so-called Rayleigh criterion in optics as the 

minimum distance which two point sources must be separated so that they are 

barely resolved under incoherent illumination. This is the case when the Airy disk 

generated by one source falls on the first zero of the Airy disk generated by the 

second. The resultant image intensity then shows a central dip which is about 81% 

of the adjacent maxima [Goodman, 19681. T ranslating this criterion by analogy to 

two neighboring Gaussian shapes with equal standard deviations cr, one finds that 

a separation of 

S = 2.640 (2.21) 

is necessary for the central minimum to be 81% of the maxima. The highest mean- 

ingful resolution in a digital image is S = 2 because according to the sampling 

theorem peaks closer than this cannot be represented in a sampled grid. 

The two-point resolution can also be characterized by the width a where the 

image of an ideal point source has dropped off to 3 dB. If again the point image 

is modeled as a Gaussian function, the 3dB width a is related to the standard 

deviation CT of the Gaussian by 

a M 2.3530 M 0.891 S. (2.22) 

The 3dB width a is therefore a good approximation within 11% of the Rayleigh- 

criterion in optics, if the Airy disc may be modeled as a Gaussian function instead 

of the mathematically correct Bessel function Jo(s). 

Table 2.1 presents the average values of the quality measures obtained for the 

twelve degraded test images. The results for the AM~E indicate that the ACLS 

algorithm produces the best overall improvement of the blurred images. The errors 
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Table 2.1: Mean Values of Restoration Quality Measures 

Image: Landsat - Bremerhaven 
Quality Measure Restoration Algorithm 

Wiener CLS ACLS Kao MEMSYS5 

AMSE [dB] 2.88 2.66 3.56 2.86 2.66 
rank 2 4 1 3 4 

edge steepness improvement 1.90 1.80 2.49 2.10 2.21 
rank 4 5 1 3 2 

noise amplification [dB] 4.30 2.82 2.00 4.55 3.06 
rank 4 2 1 5 3 

due to overshooting (seen in Figure 2.1) therefore affect the global image quality 
very little. As next best method is the Wiener filter which is slightly better than the 
Kao maximum entropy algorithm. The less satisfactory results from the maximum 
entropy techniques do not warrant the factor of 100 greater computation time they 
require. 

The results for noise amplification in the spatial domain presented in Table 2.1 
show that again the ACLS filter performs best. This is not surprising because due to 
its local adaptivity, the filter smooths more than it sharpens in this region where the 
grey-level variance in the degraded image originates only from the additive noise. 
In general the noise amplification decreases monotically with increasing standard 
deviation cm of the added noise and increases with the width of the low-pass filter. 
In the “SSM/I- case” (Gauss low-pass with cr = 2 and additive noise with gn = 1) the 
ACLS filter amplifies the noise by the factor 1.74. The ranking of the investigated 
filters, averaged over all cases considered, indicates that after the ACLS filter, the 
next best are the CLS and the MemSys5 filters, while the Kao and Wiener filter 

show the poorest performance. 
The edge steepness improvement averaged over all cases for each considered filter 

is also given in Table 2.1. As the ACLS method is locally adaptive, the results for 
this filter are only valid locally exactly at the edge point considered. In low standard 
deviation regions the edge improvement is less. For the other filters, the steepness 
improvement is valid globally in the entire image. The larger the width of the low- 
pass filter, the greater is the steepness improvement parameter. In all cases the 
ACLS filter delivers the largest edge steepness improvement. The two maximum 
entropy filters Kao and MemSys5 show the next best and similar results, whereas 
the Wiener filter and the CLS filter give the poorest performance. 

Application to PM1 Data 

In the application of restoration methods to the Landsat test image, the relative 
geometry of data samples is assumed to be defined by their pixel positions. This is 
not the case for data from the SSM/I or the planned MIMR which are conical scan 
instruments rotating continuously about the vertical axis. (For more details on the 

SSM/I instrument see [Hollinger et al., 19901). Due to this conical scanning the 
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relative geometry of samples changes over the scan and is no longer represented by 
relative pixel position in the image. In order to restore PM1 data, this locally varying 
geometry must be accomodated, meaning that a linear shift variant restoration task 
must be performed. 

Sethmann et al. [1994] examined this problem for restoration algorithms applied 
in the frequency domain. Their preferred solution is a geometric adaptive procedure 
where the measured image is restored once with each of the 64 antenna patterns 
adapted to the geometry corresponding to the each scan position. The result im- 
age is synthesized by selecting from each of the 64 column-specific restorations the 
columns for which the proper antenna pattern was used. The computation time 
can be reduced with small increase in error if only 5 restorations are calculated 
corresponding to zones of columns instead of one restoration for each column. 

Methods operating in the space domain, such as Backus-Gilbert or the ACLS 
filter, can be applied directly to the PM1 case simply by varying the coefficients of 
the antenna pattern in the system of linear equations [Hunewinkel, 19931. 

Sethmann et al. [1994] also point out that a necessary condition for image restora- 
tion is to sample the brightness temperature on earth close enough so that no aliasing 
in the frequency domain can occur. Or, stated in the space domain, the samples 
must not be independent but show a certain redundancy caused by the overlap of 
the integration regions of adjacent samples. In the case of PM1 sensors, this low pass 

filtering is performed by the antenna gain function. Sethmann [1992] has quantified 
the necessary condition on the antenna pattern for no aliasing in terms of the noise 
temperatures and the maximum signal dynamic. He finds that, for the SSM/I, the 
necessary attenuation of the received signal at the Nyquist frequency (=sampling 
frequency/2) is approximately -50 dB. Examination of the measured antenna gain 
functions (data obtained from J. P. Hollinger, NRL) indicated that attenuation is 
sufficient to prevent aliasing only in the 19 GHz channels. 

An analogous investigation for the planned sensor MIMR has been carried out 
here by modelling the antenna patterns as Gaussian functions, using the latest 
available design specifications for the sample spacing and beam widths of the various 

channels [ACRI, 19931. Th e results indicate that the degree of aliasing expected 
at 90 GHz (worst case channel) is equivalent to that presently found in the 19 GHz 
channel of the SSM/I. 

SSM/I restoration results 

The ACLS and Wiener filter deconvolution techniques as well as the Backus-Gilbert 

method have been applied to SSM/I d a a obtained over western Europe in early t 
February 1991. These data are from the data set used in the second Algorithm 
Intercomparison Project (AIP-2). (See Part 1 and [Allam et al., 19931 for a de- 
scription of the complete AIP-2 data set.) Three scenes were selected which showed 
distinct cloud frontal systems over ocean and land. 

The original brightness temperature image and the restoration results for a scene 
imaged on 7 February 1991 are shown in Figure 2.5 for the 19H channel. All restora- 
tions enhance the weather effects over ocean, especially in the horizontally polar- 

ized channels, and the transition from land to ocean is steeper than in the original 
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Table 2.2: Resolution Improvements,,,t of SSM/I Images. a = measured 3 dB width, 

EFOV = 3 dB width according to Hollinger et al. [1987] 

Channel EFOV Original Wiener ACLS B-G 

a a Swst a %A a ST.& 

Image of 3 Feb 1991. Along-scan profile 

19H 43 58 47 1.2 36 1.6 48 1.2 
19v 43 60 49 1.2 45 1.3 51 1.2 
22v 40 54 43 1.3 41 1.3 49 1.1 
37H 28 46 36 1.3 33 1.4 46 1.0 
37v 29 49 40 1.2 36 1.3 49 1.0 

Image of 7 Feb 1991. Along-track profile 

19H 69 74 64 1.2 48 1.6 58 1.3 
19v 69 72 59 1.2 46 1.6 60 1.2 

22v 50 70 55 1.3 48 1.5 67 1.0 

37H 37 50 41 1.2 30 1.7 50 1.0 
37v 37 51 39 1.3 30 1.7 51 1.0 

data. In the Wiener and ACLS restorations overshooting can be observed near the 

coastline. Here the land shows higher brightness temperatures (green) than further 

inland and the ocean appears colder (dark blue) than the high sea. Overshooting 

is particularly pronounced in the English Channel. Inland areas of the Wiener and 

Backus-Gilbert restorations appear to be more noisy than in the original, whereas in 

the ACLS restorations they appear smoothed. This is a consequence of the smooth- 

ing properties of this filter in low variance regions. 

To quantify the resolution improvement, the steepness measure was calculated 

as described above from several steep edges (coastlines) in the original and in the 

restored images for two different scenes. Table 2.2 presents the results for all channels 

restored. Also shown in Table 2.2 are the 3 dB widths (EFOVs) as given in the 

SSM/I Users Guide [Hollinger et al., 19871 and the 3 dB widths (u) obtained from 

the Gaussian fits to the profiles according to Eqn. 2.22. The ACLS filter yields 

the highest resolution improvement. As already noted, the ACLS filter is locally 

adaptive so that the resolutions calculated here are not valid in the whole image but 

specific to the considered edge. For edges of less contrast or regions of low standard 

deviation, the resolution improvement is smaller. The resolutions in the Backus- 

Gilbert restorations are nearly constant over all channels as the goal of this procedure 

is uniform resolution at all channels equivalent to that at 37 GHz. The results for 

this channel are simply copies of the original data, and the 85 GHz channels (not 

shown here) are smoothed down to the resolution of 37 GHz. According to the 

discussion of sampling rates and aliasing in the last section no attempt is made to 

restore the 85 GHz channels with the other restoration methods. 
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Evaluation in rain rate retrieval 

To evaluate the resolution improved data they have been used in the rain rate 
algorithm developed by P. Bauer for rain retrievals over the ocean [Bauer and 
Schliissel, 19931. Th e ocean case was selected because the 85 GHz channel (needed 
for land retrievals; see Part 1) of the F8 instrument was not functioning at the time 
the AIP-2 data set was acquired. Also the antenna pattern information needed to 
restore the FlO data (which include the 85 GHz channel) is not available. The bauer 

algorithm for the case when no 85 GHz data are available is given by: 

logro(RR) = 14.66 - (0.7448slO’O)T,-,~ 

- 0.04503TZ2, + (0.5064~1O~)T;-,; 

- (0.5992105)T,-,; 

- (O.lI72~1O-~)(T~r~ - &sh) (2.23) 

Figure 2.6 shows the results of rain rates derived from original and restored SSM/I 
images for 7 February 1991 using Eqn. 2.23. The rain rates derived with Wiener and 
ACLS restorations show more pronounced maxima in the rain fronts. The rainfield 
derived with the Backus-Gilbert results is more noisy than the others. This can be 
explained by the noisy character of the Backus-Gilbert restorations, which already 
has been observed in the inland regions. 

Figure 2.2 shows scatterplots comparing the SSM/I-derived rain rates to those 
derived from FRONTIERS radar measurements on 7 February 1991. For this scene 
the Backus-Gilbert method produces the statistically best agreement as reflected in 
the regression line. Restoring the input data with the Wiener filter introduces more 
noise and actually reduces agreement relative to using the original data. Using 
data restored with the ACLS filter results in retrievals lying close to the l-l line 
of agreement. The bias and rms values given in the plots are based on rain rates 
2 0.5mm/h as SSM/I retrievals below this value are unreliable [Bauer and Schliissel, 
19931. 

Table 2.3 summarizes the bias and rms statistics for the three scenes analyzed. 
The bias varies considerably from one date to the next; the rms values are in gen- 
eral greater than the biases. This discrepancy between radar and SSM/I retrieval 
methods is attributed to the poor fit of the SSM/I algorithms to measurements 
over ocean in this region (see Part 1 on algorithm re-calibration). Therefore, the 
comparision is somewhat questionable. However, assuming that the trend if not the 
magnitude of the results is correct, Table 2.3 shows that except for the Wiener and 
Backus-Gilbert restorations of 7 February 1991 data, all restoration methods yield 
lower bias and rms values than the original brightness temperatures. In most cases 
retrievals using the ACLS and Wiener restorations yield very similar results: the 
bias and rms values are reduced by about 10 to 20 ‘%. Th e exception is rain retrievals 
on 7 February 1991 where use of the Backus-Gilbert restoration data produces the 
lowest bias, and the ACLS data the lowest rms value. 
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Figure 2.2: Scatterplots of SSM/I d erived rain rates of 7 Feb 1991 vs. radar rain 
rates. Radar rain rates below 0.5mm/h are marked by a diamond and did not 
contribute to bias, rms and the dashed regression line. 

57 



Table 2.3: Comparision of SSM/I and radar rain retrievals. 

SSM/I Date 

Restoration Algorithm 3.2.1991 4.2.1991 7.2.1991 

bias rms bias rms bias rms 

Number of samples > 0.5mm/h 13 30 16 

measured Tb 0.42 0.44 0.80 1.29 -0.28 0.52 

ACLS 0.38 0.43 0.63 1.23 -0.24 0.47 

Wiener 0.39 0.42 0.64 1.22 -0.39 0.56 

Backus-Gilbert 0.43 0.44 0.75 1.24 -0.17 0.51 

Conclusions 

Five image restoration techniques were applied to test data in order to investigate 

their noise amplification and their resolution improvement charcteristics. A Landsat 

image was degraded using four different smoothing filters and three noise levels. 

Quantitative measures of performance including the normalized mean square error, 

noise amplification in spatial domain and the resolution improvement of sharp edges 

(steepness) were evaluated and compared. Due to its signal adaptive character, the 

adaptive constrained least squares (ACLS) method delivers restorations with the 

overall best results independent of the kind of degradation and noise in the data. 

The next best methods are the maximum entropy algorithm MemSys5 and the 

Wiener filter. 

Application of these techniques to PM1 data requires that the sampling geom- 

etry of the sensor be accounted for. Sampling and antenna pattern characteristics 

also have implications for successful image restoration. Examination of these char- 

acteristics for the SSM/I instrument revealed that the sampling theorem is fulfilled 

within the necessary approximation only for the 19 GHz channels. This means 

that restoring data from the higher frequency (higher resolution) channels would 

result in images with artefacts due to signal aliasing. An analogous investigation 

for the planned sensor MIMR was carried out by modelling the antenna patterns 

as Gaussian functions, using the latest available design specifications for the sample 

spacing and beam widths of the various channels. The results indicated that the 

degree of aliasing expected at 90 GHz ( worst case channel) is equivalent to that 

presently found in the 19 GHz channel of the SSM/I. Based on our experience with 

restoring SSM/I data, it should be possible to successfully restore all MIMR chan- 

nels, although some artefacts (for example overshooting at edges) may be present 

especially in the higher frequency channels. 

Restorations of SSM/I images with the ACLS and Wiener filters were compared 

to those of the Backus-Gilbert method adapted to standardize the resolution in all 

channels. In all restorations image improvement is clearly visible; it is best when 

using the ACLS filter. Slight overshooting near coastlines is seen with the ACLS 

and Wiener filter restoration algorithms but not with the Backus-Gilbert method. 

However global restoration quality is only slightly influenced by single overshooting 

pixels. 
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Using the restored data in an algorithm for rain retrieval over the ocean improved 
agreement with coincident radar measurements, indicating that the beam-filling er- 
ror can, at least partially, be compensated for using image restoration techniques. 
The results also indicate that restoring each channel to the highest resolution pos- 
sible (as done with the ACLS filter) is more advantageous to rain retrieval than 
uniform resolution at all channels (as results from Backus-Gilbert deconvolution). 

Further research in this area should include use of restored SSM/I data in region- 
ally calibrated algorithms for rain retrieval over both ocean and land, and assessment 
of the theoretical restoration success with MIMR data through application of the 
Backus-Gilbert method to antenna pattern models. 
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