
Solar Pumped Optical Cryocooling (SPOC) with electrical power recuperation

a system and feasibility analysis

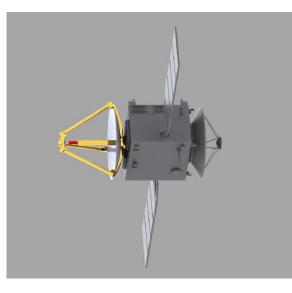
Final Presentation – 23 November 2021 ESA project 4000130761/20/NL/GLC OSIP-2019-02729 ESA technical monitor: Thierry Tirolien (ESTEC)

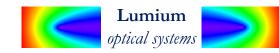
Author / PI: Bauke Heeg

Solar Pumped Optical Cryocooling (SPOC) with electrical power recuperation

project details

Start date Original end date Work completion date Budget

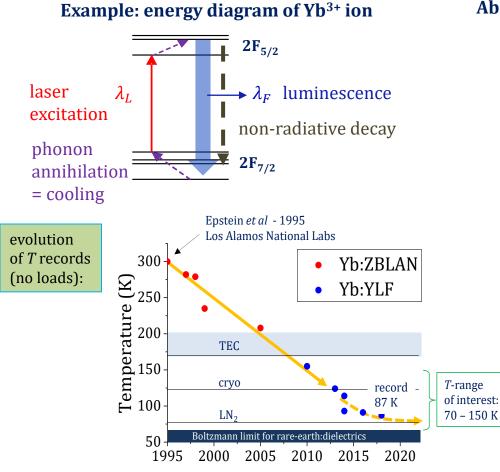

Work carried out by


Other involvement

June 1st 2020 June 1st 2021 September 21st 2021 65 k€ (Lumium original budget request) +10 k€ additional purchase order to Vexlum (Finland)

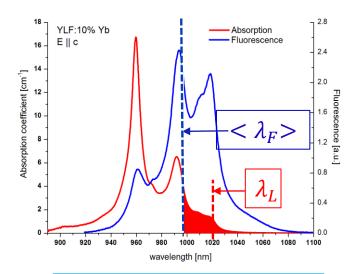
B. Heeg (Lumium, sole-proprietor business)

Walker V.O.F., Delft – Solidworks drawings and thermal analysis



Dronryp, The Netherlands <u>bheeg@lumium.nl</u> <u>www.lumium.nl</u> (under construction)

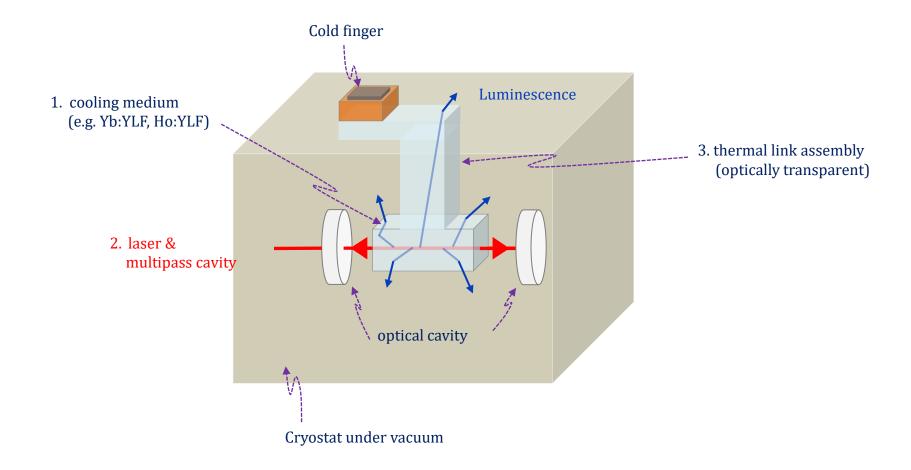
Background of optical cryocooling


The anti-Stokes luminescence cooling process:

- 1. Cooling medium absorbs laser photons at single wavelength λ_L
- 2. Re-emits spectrum of photons λ_F with on average higher energy
- 3. Equilibrium is restored by annihilation of lattice vibrations (phonons)
- \rightarrow Leading to cooling *if* non-radiative processes are at a minimum

vear

Absorption and luminescence spectra of Yb:YLF

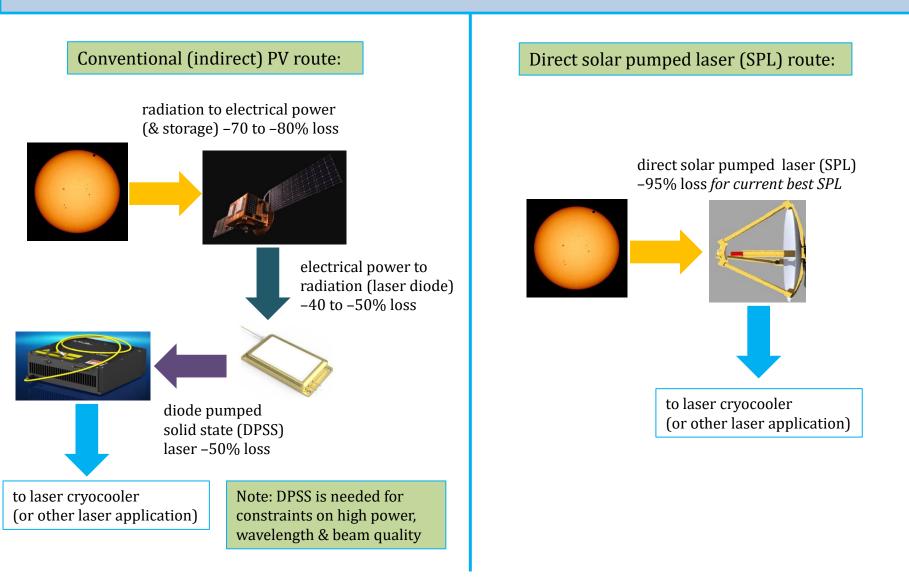


Yb:YLF

Yb³⁺ doped LiYF₄ crystal
today's best class of cooling media, developed at University of Pisa:

Schematic of optical cryocooler components

Optical cryocooling is the *only* stand-alone and active cryocooling technology that is fully free from micro-vibrations, due to absence of moving parts *and* moving mass.


Advantages	Specifics
	 Zero μ–vibrations
True all solid-state cooling	Zero liquid or gas handling
\rightarrow no moving parts	 Zero μ–gravity effects
or mass	Potentially very long life
Active and stand-alone	Potential high temperature control
	No pre-cooler needed
Cryogenic and	• Temperature range of interest: 100 – 180 K
intermediate temperatures	 Filling the gap between thermo-electric–, radiative– and mechanical cryocoolers
Allows miniaturization	Suitable for on-chip cooling
Other benefits	Zero electromagnetic interference
	Efficient separation of hot and cold parts

Competitive with other vibration-free cryocooling methods:

•	thermo-electric coolers	cut-off $T \sim 180$ K
•	radiative coolers	cut-off $T \sim 90$ K in low-earth orbit (LEO) and orientation contraints
•	stored cryogens	limited operation duration
•	sorption / dilution	requires precooling, gravity constraints
•	adiabatic demagnetization	requires precooling

→ However, wall-plug efficiency of practical optical cryocoolers is projected to be relatively low with current approaches, e.g., a factor factor 10 – 15 difference at 150 K in comparison to pulse tube cryocoolers

Potential advantage of using solar pumped lasers: #1

The use of an SPL **avoids 2 conversion losses**, i.e., radiation \rightarrow electrical, and electrical \rightarrow back to radiation

> The vast majority of losses occur via *heat production*: reduction of losses also reduces thermal management constraints

> Other losses are *electrical and optical* coupling, transmission, conversion, reflection losses at multiple elements in the chain

Potential advantage of using solar pumped lasers: #2

Electrical power generation / consumption & thermal management

Conventional (indirect) PV route sequence:

- 1. *P*_{electric} generation with PV arrays
- 2. laser radiation generation & conversion
- 3. optical cryocooling
- Non-optimal power generation
- Significant heating effects

Direct solar pumped laser (SPL) sequence:

- 1. concentration
- 2. selective spectral splitting
- 3. radiation conversion to laser
- 4. optical cryocooling

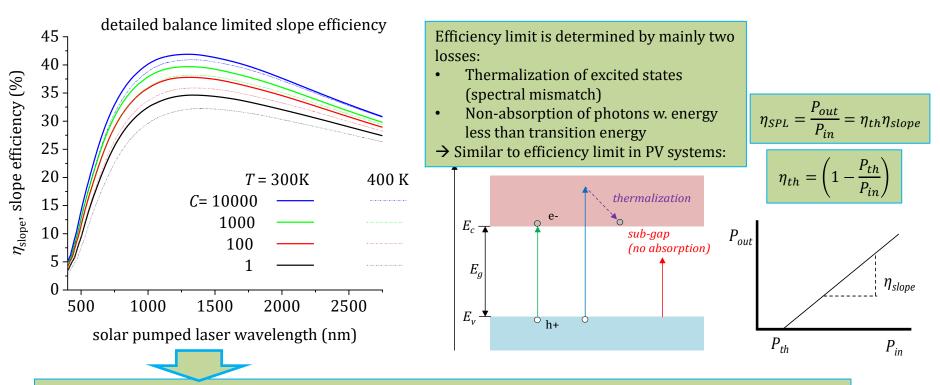
P_{electric} generation in all stages

Potentially more effecient P_{electric} generation, via

- spectrally matched PVs
- reduced surface area as result of concentration
- high intensity radiation
- As a result of better matched P_{electric} generation, also reduced thermal managament requirements

Q's:

- \rightarrow efficiency of electrical power generation, distributed over the system ?
- \rightarrow reduction in PV surface area?
- → Electrical power in the conventional PV route is *consumed* by optical cryocooler, but *generated* by the direct SPL route: at what point can cryocooler or other application come "for free" ?
- \rightarrow trade-off in having to use a concentrator instead of PV array?
- \rightarrow constraints on the type of orbit / mission ?


Comparing *state-of-the-art* indirect and direct laser efficiency

conventional indirect PV driven laser:	direct solar-pumped laser:
Estimates from a combination of literature values:	Demonstrated record-solar pumped laser: Liang et al., Solar
PV system: e.g., Azure Space 4J at AM0/25°C BOL: 32% heating loss: -25% PDCU conversion -5% effective BOL: 23%	Energy Materials & Solar Cells 159, 435 (2017). Concentrator: PROMES-CNRS
Laser system:laser diode (LD)70% (near limit, highly cooled)heating loss-10%Degradation-2% (ηLD = 62%, typical < 50%)	Positioning system 59% Solar concentrator efficiency: 59% Laser system: Solar concentration efficiency: Solar concentration of the system • Nd:YAG gain • Additional non-imaging optic • Spheric lens • BRI664nm coating • Conical cavity • Spheric lens • BRI664nm coating
Total (PV + laser) efficiency, BOL6%Assuming PV aging -4%/yr:5 year life PV efficiency:19%	Water in So PR1064nm mirror 1064nm laser emission
5 year life PV efficiency:19%5 year system efficiency5%	Laser efficiency: 5,3%
 neglecting: thermal management, PV orientation, laser system aging 	Total (concentrator + laser) efficiency, BOL 3 %

Some room for further improvement, but very limited; efficiency ceiling considered to be ~ 8 - 10 % @ BOL neglecting aging effects (unknown)

Detailed balance limit of solar pumped lasers (SPLs)

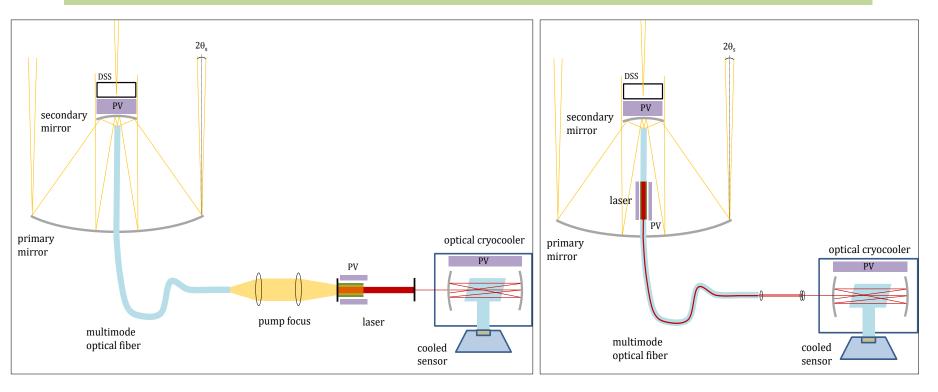
Q: how much room for improvement is there for SPL's ?

- extension of the work of Roxlo and Yablonovitch, "Thermodynamics of daylight-pumped lasers", *Opt. Lett.* 8, 271 (1983), and Nechayev and Rotschild, "Detailed balance limit of efficiency of broadband-pumped lasers", *Sci. Reports* 7, 11497 (2017).
- shape and magnitude of the efficiency curve is very similar to the optimum conditions for solar photovoltaic (PV) optimization, i.e., the Shockley-Quiesser (SQ) limit of PV efficiency
- efficient SPL possible in range of 1 2 μm, of interest to optical cryocooling of Yb (1 μm) and Ho (2 μm)
- room for improvement in solar pumped lasers is significant from thermodynamic POV: possibly > 4 × higher efficiency limit in comparison to indirect PV → DPSS laser route
- Note: total SPL efficiency η_{SPL} approaches slope efficiency η_{slope} when operating far above threshold
- In addition, solar pumped laser can be accompanied by PV power generation subsystem

Main focus of the project was on potential improvements in the state-of-the-art concentrators and solar pumped lasers (SPL), motivated by:

- Large room for improvement in theory
- Broad set of potential space and terrestial applications, besides optical cooling:
 - Laser communication
 - Remote power delivery
 - o Laser-driven fuel generation
 - o Laser-driven in-situ resource utilisation

Questions to address the potential for SPLs for optical cryocooling and other applications:


- What limits current state-of-the-art SPLs?
- What can be done to significantly improve efficiency of SPLs ?
- What are practical limits?
- How does this translate in overall system size / weight?
- What is needed for space implementation ?
- What is the applicability ?

SPOC system analysis approach

The project comprised an analysis of 4 system components and the combined system performance

- Concentrator
- Solar radiation pumped laser
- Laser cryocooler
- Electrical recuperation
- \rightarrow Many possible permutations !

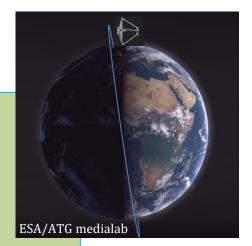
2 examples of possible system concepts:

Orbits

The SPL or SPOC system is preferably operated under continuous solar exposure • Largest advantage due to absense of power storage system and peripherals

Possible missions applicable to SPOC system

- Dawn-dusk LEO
 - provided it can compete with passive radiations (cut-off at ~90 110 K)
- Venus & Mercury missions
 - radiative coolers have higher cut-off temperature, and
 - SPOC should more more efficient then in earth orbits

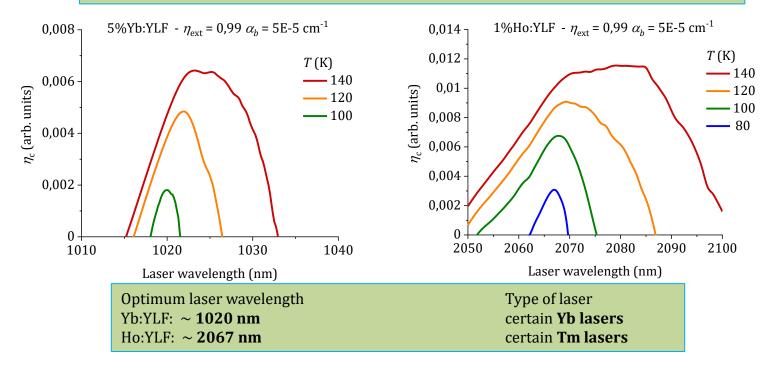

Not applicable:

➤ GEO and L1 missions less suitable, since radiative coolers can achieve lower temperatures (40 K)

Possible missions applicable to SPL system

> E.g., any where localized remote power is needed (Moon, Mars, Earth, other spacecraft)

- > In the analysis, we first assume continuous solar irradation, no need for batteries
- Depending on the eclipse time, mass can be adjusted for addional power storage requirements E.g., approximaly a factor 1,5 for a LEO orbit



I: optical cryocooler constraints on system

2 main candidates for optical crycocooling:

- Yb:YLF current record holding cooling medium
- Ho:YLF potential performance enhancement and currently under investigation

Comparison of *demonstrated* (Yb:YLF) and *potential* (Ho:YLF) laser cooling efficiency η_c based on spectral coefficients for absorption and luminescence, *under similar materials conditions*:

- Not included: role of energy transfer upconversion (ETU) in Ho:YLF comparison, but can be minimized (to be determined)
- > Also not included: potential enhancement in Ho:YLF cooling by means of co-doping

Conclusions

Conclusions:

- → Significant improvement in state-of-the-art SPL efficiency possible on thermodynamic grounds, by reducing heat losses in two conversion steps. This should also reduce thermal management constraints.
- \rightarrow Practical implementation of improved SPLs is feasible via combination of
 - Reduced aberrations in concentrator
 - Laser gain enhancement in compound gain medium
 - Use of broad-band sensitizer
 - Use of spectrally selective mirrors for enhanced matching
- \rightarrow A solar pumped rare-earth laser was identified with potentiallyh 17% solar to laser effiency
- \rightarrow Solar pumped VECSEL appears to have higher laser threshold
- → Electrical power generation can be implemented as an integral part of SPOC, allowing similar power levels to be generated with a fraction of PV surface area, at the expense of using a concentrator
- → Factor 2-3 reduction in mass possible using SPL instead of conventional PV-driven, using lightweigth concentrator materials like CRFP.
- → Factor 2 reduction in mass possible in SPOC system (other things equal)
- \rightarrow System feasibility analysis is based on several assumptions to be demontrated
 - Efficiency of solar pumped laser concept
 - Cooling potential of Ho:YLF
 - Optical cryocooler system efficiency