

Advances in entanglement-based QKD for space applications

Contract No. 4000134348/21/NL/GLC/ov

Sebastian Ecker

21/06/2022

ESA UNCLASSIFIED - For ESA Official Use Only

Outline

- Fundamentals of quantum key distribution (QKD)
 - Why QKD instead of classical cryptography?
 - QKD protocols
 - Sources of entangled photon pairs
 - Distribution of photons over long distances
- Advances in entanglement-based QKD
 - High-performance entangled photon pair sources
 - Integrated photonic entanglement sources
 - Wavelength division multiplexing
 - High-dimensional QKD
 - Adaptive optics for quantum receivers
 - Space-based quantum repeater

Quantum Key Distribution (QKD) – Why?

Secure communication relies on asymmetric cryptography (e.g. RSA) Messages encrypted with public key, decrypted with private key.

Public key cryptography

Han-Sen Zhong et al. Science 370, 6523 (2020)

Frank Arute et al. Nature **574**, 7779 (2019)

Peter Shor, IEEE Comput. Soc. Press (1994)

Security based on computational hardness assumption

Shor's (quantum) algorithm: Massive speedup – breaks cryptosystems!

Until 10-20 years ago this threat was theoretical 2019/2020: first demonstrations of quantum advantage

Programmable quantum computer "around the corner" (20,30,40 years?) IBM, Google, Microsoft, Honeywell, Rigetti, Zapata,...

QKD Protocols

esa

- → Symmetric cryptography
- \rightarrow Assumption-free
- \rightarrow Security guaranteed by the laws of physics (Information-theoretic security)
- QKD relies on one fundamental quantum mechanical principle:
- Outcome of measurement is not predetermined (quantum indeterminacy)
- Copying of quantum states is impossible (no-cloning theorem)
- Preparation in one "basis" makes information in another "basis" inaccessible

C. H. Bennett and G. Brassard, Theoretical Computer Science 560 (2014)

QKD Protocols

Why focus on entanglement-based potocols?

- Party owning the entangled photon source can be malicious (untrusted) Satellites!
- Distribution of entanglement important for many quantum technological applications

E. Wille et al., Free-Space Laser Communications XXXII, p. 21. (2020)
 C. Bennett, G. Brassard, and N. Mermin, Physical review letters 68, 5 (1992)

💳 💶 📕 🛨 🔤 🔤 📕 🗮 💶 📲 📲 📲 🗮 🔤 🔤 ன 🚱 🔽

C. Bennett, G. Brassard, and N. Mermin, *Physical review letters* 68, 5 (1992)

BBM92-protocol

QKD Protocols

Sources of entangled photon pairs

Distribution of photons over long distances

Optical fiber distribution (~0.2 dB/km)

Exponential scaling of loss – absorption limited
→ Maximal distances of a few hundred km

Quantum repeater (first lab demonstrations)

Satellite-based distribution

Quadratic scaling of loss – diffraction limited → Global coverage

S₂

Possible link configurations

Yin, J., et al., Science, **356**, 6343 (2017) S.P. Neumann, arXiv:2203.12417 (2022) O. Lee, T. Vergoossen, and A. Ling, arXiv:1909.13061 (2019)

Micius satellite (QUESS mission)

Launch: 2016 Sun-synchronous 488-584 km 630 kg 97.4° inclination

Science, 356(6343), 1140-1144 (2017)

Satellite-based entanglement distribution over 1200 kilometers

Juan Yin,^{1,2} Yuan Cao,^{1,2} Yu-Huai Li,^{1,2} Sheng-Kai Liao,^{1,2} Liang Zhang,^{2,3} Ji-Gang Ren,^{1,2} Wen-Qi Cai,^{1,2} Wei-Yue Liu,^{1,2} Bo Li,^{1,2} Hui Dai,^{1,2} Guang-Bing Li,^{1,2} Qi-Ming Lu,^{1,2} Yun-Hong Gong,^{1,2} Yu Xu,^{1,2} Shuang-Lin Li,^{1,2} Feng-Zhi Li,^{1,2} Ya-Yun Yin,^{1,2} Zi-Qing Jiang,³ Ming Li,³ Jian-Jun Jia,³ Ge Ren,⁴ Dong He,⁴ Yi-Lin Zhou,⁵ Xiao-Xiang Zhang,⁶ Na Wang,⁷ Xiang Chang,⁸ Zhen-Cai Zhu,⁵ Nai-Le Liu,^{1,2} Yu-Ao Chen,^{1,2} Chao-Yang Lu,^{1,2} Rong Shu,^{2,3} Cheng-Zhi Peng,^{1,2*} Jian-Yu Wang,^{2,3*} Jian-Wei Pan^{1,2*}

Nature, 549(7670), 70-73 (2017)

Ground-to-satellite quantum teleportation

Ji-Gang Ren^{1,2}, Ping Xu^{1,2}, Hai-Lin Yong^{1,2}, Liang Zhang^{2,3}, Sheng-Kai Liao^{1,2}, Juan Yin^{1,2}, Wei-Yue Liu^{1,2}, Wen-Qi Cai^{1,2}, Meng Yang^{1,2}, Li Li^{1,2}, Kui-Xing Yang^{1,2}, Xuan Han^{1,2}, Yong-Qiang Yao⁴, Ji Li⁵, Hai-Yan Wu⁵, Song Wan⁶, Lei Liu⁶, Ding-Quan Liu³, Yao-Wu Kuang³, Zhi-Ping He³, Peng Shang^{1,2}, Cheng Guo^{1,2}, Ru-Hua Zheng⁷, Kai Tian⁸, Zhen-Cai Zhu⁶, Nai-Le Liu^{1,2}, Chao-Yang Lu^{1,2}, Rong Shu^{2,3}, Yu-Ao Chen^{1,2}, Cheng-Zhi Peng^{1,2}, Jian-Yu Wang^{2,3} & Jian-Wei Pan^{1,2}

C.M. Imran et al., "Satellite-Based QKD," Opt. Photonics News – OSA (2018)

Physical Review Letters, 120(3), 30501 (2018)

Nature, 549(7670).

Satellite-Relayed Intercontinental Quantum Network

Sheng-Kai Liao, ^{1,2} Wen-Qi Cai, ^{1,2} Johannes Handsteiner,^{3,4} Bo Liu,^{4,5} Juan Yin,^{1,2} Liang Zhang,^{2,6} Dominik Rauch,^{3,4}
Matthias Fink,⁴ Ji-Gang Ren,^{1,2} Wei-Yue Liu,^{1,2} Yang Li,^{1,2} Qi Shen,^{1,2} Yuan Cao,^{1,2} Feng-Zhi Li,^{1,2} Jian-Feng Wang,⁷
Yong-Mei Huang,⁸ Lei Deng,⁹ Tao Xi,¹⁰ Lu Ma,¹¹ Tai Hu,¹² Li Li,^{1,2} Nai-Le Liu,^{1,2} Franz Koidl,¹³ Peiyuan Wang,¹³
Yu-Ao Chen,^{1,2} Xiang-Bin Wang,² Michael Steindorfer,¹³ Georg Kirchner,¹³ Chao-Yang Lu,^{1,2} Rong Shu,^{2,6}
Rupert Ursin,^{3,4} Thomas Scheidl,^{3,4} Cheng-Zhi Peng,^{1,2} Jian-Yu Wang,^{2,6} Anton Zeilinger,^{3,4} and Jian-Wei Pan^{1,2}

Satellite-to-ground quantum key distribution

Sheng-Kai Liao^{1,2}, Wen-Qi Cai^{1,2}, Wei-Yue Liu^{1,2}, Liang Zhang^{2,3}, Yang Li^{1,2}, Ji-Gang Ren^{1,2}, Juan Yin^{1,2}, Qi Shen^{1,2}, Yuan Cao^{1,2}, Zheng-Ping Li^{1,2}, Feng-Zhi Li^{1,2}, Xia-Wei Chen^{1,2}, Li-Hua Sun^{1,2}, Jian-Jun Jia³, Jin-Cai Wu³, Xiao-Jun Jiang⁴, Jian-Feng Wang⁴, Yong-Mei Huang⁵, Qiang Wang⁵, Yi-Lin Zhou⁶, Lei Deng⁶, Tao Xi⁷, Lu Ma⁸, Tai Hu⁹, Qiang Zhang^{1,2}, Yu-Ao Chen^{1,2}, Nai-Le Liu^{1,2}, Xiang-Bin Wang², Zhen-Cai Zhu⁶, Chao-Yang Lu^{1,2}, Rong Shu^{2,3}, Cheng-Zhi Peng^{1,2}, Jian-Yu Wang^{2,3} & Jian-Wei Pan^{1,2}

Advances in entanglement-based QKD

Secret-key rate of Micius: 0.12 bits/s over 1120 km ground distance (entanglement-based protocol)

Operation at maximal capacity - little room for optimization

→ Fundamentally new techniques/methods are required for commercial success!

Advances should:

- Increase the secure key rate
- Reduce SWaP and complexity of quantum payloads
- Decrease the costs per secret bit

High-performance entangled photon pair sources

Lab experiment with SNSPDs

<u>Performance parameters of entangled sources for QKD:</u>

- Fidelity (>99%) no potential
- Heralding efficiency (>50%) no potential
- **Brightness** (>10⁷ pairs/s/mW of pump power) potential?

Higher brightness \neq Higher key rate !

Accidental coincidences

Terrestrial free-space link

Brightness of state-of-the art photon pair sources sufficient!

Increased brightness required for: Lower timing jitter with SNSPDs (<10 ps)

- Multiplexed QKD

S. P. Neumann et al., Phys. Rev. A, 104, 2 (2021) S. Ecker et al., npj Quantum Information, 7, 5 (2021)

Integrated photonic entanglement sources

Photonic integrated circuits (PIC):

- Miniaturisation of table-top bulk optical setups
- Opto-electronic integration
- Primarily used in telecom, biomed and photonic quantum information processing

Integrated sources for space applications:

- Reduce SWaP
- Non-linearity inherent to the materials
- Robustness and phase-stability (misalignment of bulk optical setups)
- Scalability and existing fabs costs (same as for CMOS fabrication)
- Multiple sources on a satellite (no single point of failure / parallelization)

https://www.swissphotonics.net/home?event_id=4065

J. Wang et al., Science 360, 6386 (2018)

PIC for telecom

PIC for photonic quantum computing

Integrated photonic entanglement sources

Two candidate platforms meeting the requirements for QKD (brightness + integration level):

Integrated periodically-poled waveguide sources

- SPDC in a ppLN waveguide
- Hypbrid material assembly
- Brightness ~ 5e6 pairs/(s·nm·mW)
- Dimension: few cm

G. Boucher *et al.*, *Phys. Rev. A*, **89**, 3 (2014) S. V. Zhukovsky et al., Phys. Rev. A, **85**, 1 (2012) A.Vallés *et al.*, *Opt. Express*, **21**, 9 (2013) R. T. Horn *et al.*, *Sci. Rep.*, **3** (2013)

- SPDC in GaAs structures
- Bragg reflection waveguides
- Brightness ~ 1e6 pairs/(s·nm·mW)
- Dimension: 1.2 mm

L. Sansoni *et al.*, *npj* Quantum Inf., **3**, 1 (2017) S. Atzeni *et al.*, *Optica*, **5**,3 (2018)

Integrated photonic entanglement sources

Considerations for space deployment:

- Electrical injection for full integration
- Efficient coupling into SM fibers (mode clean-up / guiding)
- Temperature-stability on 0.1° level must be guaranteed
- Packaging and assembly (launch conditions)

Obvious contender for replacing bulk optical components in space (except for Tx/Rx optics)

Interest in integrated optics for space applications is increasing:

- Integrated photonic source on ISS (SEAQUE) by NASA
- Photonic integrated circuits part of ESAs building missions

https://www.jpl.nasa.gov/news/space-station-to-host-self-healing-quantum-communications-tech-demo https://www.esa.int/Enabling_Support/Space_Engineering_Technology/Space_Optoelectronics/Photonics

Electrically injected pair source

F. Boitier et al., Phys. Rev. Lett., 112, 18 (2014)

SEAQUE on ISS (launch 2022)

Wavelength-division multiplexing

Energy conservation in SPDC: $\omega_{Alice} + \omega_{Bob} = \omega_{pump}$

Frequency correlations!→ no active multiplexing necessary

Realization with VHGs (volume holographic gratings)

J. Pseiner, L. Achatz, L. Bulla, M. Bohmann, and R. Ursin, Quantum Sci. Technology 6,3 (2021)

Detection: Frequency unresolved

> Detection: Frequency resolved

Wavelength-division multiplexing

WDM for telecom: each additional wavelength channel increases the total data rate

WDM for QKD:

all frequencies were detected before, so where is the benefit? rate/ freq. channel lower \rightarrow less accidental coincidences

J. Pseiner, L. Achatz, L. Bulla, M. Bohmann, and R. Ursin, Quantum Sci. Technology 6,3 (2021)

Considerations for satellite implementation:

- No increase in complexity for quantum payloads (only prerequisite: broad SPDC spectrum)
- Quantum receivers can be easily upgraded
- Angle-of-arrival fluctuations in receivers problematic

→ source brightness increased to optimum \rightarrow ~ n-fold increase of secure key rate!

(n...number of wavelength channels)

Wavelength-division multiplexing

Fully-connected 4 user-network via wavelength de-multiplexing and selective multiplexing of ITU channels

S. Wengerowsky, S. K. Joshi, F. Steinlechner, H. Hübel, and R. Ursin, 564, 225–228 (2018)

Realization for space-based scenarios:

- 1. n-user network multiplexed on satellite (as above) n simultaneous downlinks – all ground receivers are fully connected
- 2. De-multiplexing and selective multiplexing on ground (right figure) all users between two remote cities are simultaneously connected

High-dimensional QKD

2-dim:
$$\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$$
 e.g. $\frac{1}{\sqrt{2}}(|H\rangle + |V\rangle)$
d-dim: $\frac{1}{\sqrt{d}}\sum_{i=1}^{d}|i\rangle$ e.g. $\frac{1}{\sqrt{3}}(|\omega_1\rangle + |\omega_2\rangle + |\omega_3\rangle)$

High-dimensional QKD protocols offer:

- **Noise resilience**: higher noise levels are tolerated (sun, light sources, detector dark counts, errors,...)
- Increased key rate: log₂(d) bits/photon important in photon-starved scenarios

Many different high-dim QKD protocols are known

S. Ecker *et al.*, *Phys. Rev. X*, **9**, 4 (2019) L. Sheridan and V. Scarani, *Phys. Rev. A*, **82**,3 (2010)

High-dimensional QKD

High-dimensional entanglement in spatio-temporal properties comes "for free" in SPDC:

Energy conservation → Energy (time) entanglement

Momentum conservation → Momentum (spatial) entanglement

Spatial mode Entanglement

 $\sum_{l=1}^{d} c_l (|l\rangle_A |-l\rangle_B + |-l\rangle_A |l\rangle_B)$

Time-bin Entanglement

Frequency Entanglement

High-dimensional QKD

Free-space transmission of spatiotemporal properties

Spatial mode (OAM) transmission

M. Krenn, et al., *Proc. Natl. Acad. Sci.*, **112**, 46 (2015) A. Sit *et al.*, Optica **4**, 1006-1010 (2017) Not robust Decoherence due to atmospheric turbulence

> Robust Energy and temporal encodings can be used for satellite links

Temporal mode transmission

F. Steinlechner *et al., Nat. Commun.*, **8**, 15971 (2017) L. Bulla *et al.*, arXiv: 2204.07536 (2022)

Adaptive optics for quantum receivers

AO systems long history in astronomy

Increasing relevance for optical comms
→ loss mitigation + single-mode operation

E.Fischer et al., 017 IEEE International Conference on Space Optical Systems and Applications, ICSOS (2017)

https://www.eso.org

Benefits for space-based QKD:

- Loss reduction in up-or downlinks (geometrical loss)
- Multi-mode free-space beam converted into single spatial mode beam (compatibility with fiber networks)
- Avoidance of transverse spatial decoherence (for encoding in transverse spatial modes)

Quantum repeater – only way to overcome direct transmission limit in optical fiber (**polynomial** instead of **exponential** scaling)

Entanglement swapping

Nested entanglement swapping

The quantum repeater scheme:

- Division of long-distance links into elementary links
- Entanglement distribution between elementary links
- Storage of photons in quantum memories (QM)
- Nested entanglement swapping through all levels

Even for most optimistic estimates, fiber-based quantum repeater limited by a few thousand km

 \rightarrow Truly global quantum networks require space-based quantum repeater!

Single-node quantum repeater

M. Gündoğan et al., npj Quantum Inf., 7,1 (2021)

Single satellite global quantum key distribution

S. E. Wittig et al., Proc. Int. Astronaut. Congr. IAC, 8, September (2017)

*

Hybrid space-based quantum repeater

K. Boone et al., Phys. Rev. A, 91, 5 (2015)

*

Fully space-based quatum repeater

C. Liorni, H. Kampermann, and D. Bruß, New J. Phys., 23, 5 (2021)

Comparison of QR schemes

GG...ground based scheme OG...hybrid scheme OO...fully space-based scheme

Overview of advances and implications

High-performance entangled photon pair sources

- Increasing the secure key rate
- > Only necessary for low timing jitter or multiplexing

Integrated photonic entanglement sources

- Reducing SWaP requirements
- Robustness, Scalability, Full integration

Wavelength division multiplexing

- Increasing the secure key rate substantially
- Enabling complex network topologies

High-dimensional QKD

- Increasing the secure key rate
- Resilience to noise

Adaptive optics for quantum receivers

- Increasing the secure key rate (geom. loss)
- Compatibility to fiber networks
- Wavefront distortions mitigated

<u>Space-based quantum repeater</u>> Essential for global quantum communication

\rightarrow Final report

Thanks for your attention!

Questions?

sebastian.ecker@oeaw.ac.at

→ THE EUROPEAN SPACE AGENCY

*