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1. BACKGROUND AND OBJECTIVES



OPS-SAT SPACE LAB

◼ Satellite Experimental Processing Platform (SEPP)
◼ Able to reuse and run open-source software

◼ Support for on-board apps “easily developed, 
debugged, tested, deployed, and updated at any time 
without causing any major problem to the  spacecraft”

◼ OPS-SAT “apps in space” concept supported by the 
Java NanoSat MO Framework (NMF) 

◼ OPS-SAT community platform for experimenters to 
develop and test their apps



MACHINE LEARNING ON-BOARD

◼ ML models typically trained on ground

◼ Models integrated with spacecraft during launch or uplinked later

◼ Both approaches impose limitations on access to on-board data Train
Model
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Data

New 
Data



MACHINE LEARNING ON-BOARD

◼ ML models typically trained on ground

◼ Models integrated with spacecraft during launch or uplinked later

◼ Both approaches impose limitations on access to on-board data

◼ OrbitAI experiment took a different approach

◼ Training and inferencing on-board OPS-SAT

◼ But ML capabilities somewhat restricted

◼ Did not take full advantage of the NMF Java ecosystem

◼ Hardcoded data feed configurations



A USE CASE FOR ON-BOARD ML

◼ OrbitAI experimented with fault detection, isolation, and recovery (FDIR) 

models on-board OPS-SAT

◼ Goal - poll relevant sensor data and train FDIR models to detect events 

which require protecting the on-board camera’s lens against exposure to 

sunlight.



MOTIVATION 

◼ Satellite Platform as a Service (SPaaS) 
app for Machine Learning

∙ Abstract complex data provisioning and ML operations

∙ Support a data subscription service to feed selected training
data from any of OPS-SAT instruments

∙ Take advantage of SEPP’s JVM thread pool implementations
and dual core processor



OBJECTIVES

◼ Provide to experimenters a SPaaS app for ML operations, SaaSyML.

◼ Make ML algorithms accessible to all OPS-SAT experimenters through SaaSyML.

◼ Demonstrate how to interact with SaaSyML via an API. 

◼ Demonstrate a use case for autonomously training and deploying on-board ML models.

◼ Disseminate knowledge through publication in journal or conference proceedings.



SCHEDULE

11th of April 2022 28th of November 2022



2. APPROACH AND DEMO



SOFTWARE STACK

◼ SaaSyML developed with open-source libraries as a NMF app

◼ Eclipse Vert.x toolkit: enables non-blocking ML operations in parallel for multiple app users

◼ JSAT: Java library supporting ML algorithms for different tasks

◼ SQLite: database engine to store both datasets and metadata of trained models

◼ Plugin Framework for Java (PF4J): allows experimenters to inject custom code via plugins to 

compute labels for supervised model training



ARCHITECTURE

• User app uses API endpoints to send requests to SaaSyML (Service Layer)

• User subscribes real operational data from OPS-SAT (Control Layer)

• User may use custom plugin to compute data labels (Control Layer)

• User feeds data sets into predefined ML algorithms for training/inferencing (ML Pipeline Layer)



ARCHITECTURE
Verticle - scalable chunk of code that 
gets deployed and run



API ENDPOINTS AND REQUESTS

◼ API allows users to send requests and receive responses to/from SaaSyML

◼ Endpoints support multiple operations

◼ Subscribe to a data feed

◼ Use a custom plugin to compute label values

◼ Train models on subscribed data

◼ Get model metadata

◼ Make inferences using a saved model on new data points



API USE: SIMPLE ML FLOW

1. Subscribe to data 

2. Train models

3. Fetch model metadata

4. Inference using new data

POST http://<HOST>:<PORT>/api/v1/training/data/subscribe

RESPONSE

Custom 
values



API USE: SIMPLE ML FLOW

1. Subscribe to data 

2. Train models

3. Fetch model metadata

4. Inference using new data

POST http://<HOST>:<PORT>/api/v1/training/regressor

RESPONSE



API USE: SIMPLE ML FLOW

1. Subscribe to data 

2. Train models

3. Fetch model metadata

4. Inference using new data

POST http://<HOST>:<PORT>/api/v1/download/models

RESPONSE



API USE: SIMPLE ML FLOW

1. Subscribe to data 

2. Train models

3. Fetch model metadata

4. Inference using new data

POST http://<HOST>:<PORT>/api/v1/inference

RESPONSE



API USE: SIMPLE ML FLOW

1. Subscribe to data 

2. Train models

3. Fetch model metadata

4. Inference using new data

POST http://<HOST>:<PORT>/api/v1/inference

RESPONSE



DEMO

◼ Run app locally

◼ Demonstrate simple use case

◼ Save data with custom labels from plugin

◼ Train classifier models

◼ Get model metadata

◼ Use trained models for inference



4. RESULTS



EM - TEST CASE 1

◼ EM session 12/10/22

◼ 3 scenarios: increasing thread counts for the “Data Subscription” verticle (1, 5, and 10)

◼ 10 parallel requests are executed representing 10 separate users

◼ Each training data feed fetches data for 5 data pool parameters

◼ Testing the whole ML loop (fetch data, train, inference) for 6 classification algorithms



EM RESULTS
S1 S2 S3

Data Subscription 
Verticle Counts
S1: 1 instance
S2: 5 instances
S3: 10 instances



EM - TEST CASE 2

◼ EM session 21/11/22

◼ Similar 3 scenarios to test case 1 but “Database Persistence” verticle count also increases



EM RESULTS Data Subscription 
Verticle Counts
S1: 1 instance
S2: 5 instances
S3: 10 instances

Database Persistence 
Verticle Counts
S1: 1 instance
S2: 5 instances
S3: 10 instancesS1 S2 S3



FDIR USE CASE RESULTS

◼ OrbitAI experiment successfully replicated locally

◼ 8 binary classifier models trained on 1190 dataset records

◼ Expected label values calculated with a custom plugin

◼ If value from sensor < 1.0472, then label is set to 1

◼ Otherwise, label is 0

◼ Inference on new data points using trained models

◼ Predictions match expected label values



5. SUMMARY AND OUTLOOK



SUMMARY

◼ SaaSyML technology demonstrator for ‘Satellite Platform as a Service’ (SPaaS).

◼ data provisioning service, plugin module for user-defined logic, integration with a ML library, and a service 

interface

◼ EM sessions demonstrated how to interact with SaaSyML via an API

◼ Exhaustive tests of entire ML loop (fetch data, train, inference) in multi-thread scenario suggest app 

scales without increase in resource utilization

◼ Code repository: https://github.com/visionspacetec/opssat-saasy-ml

◼ Paper accepted for peer-reviewed publication at IEEE Aerospace Conference 2023

https://github.com/visionspacetec/opssat-saasy-ml


OUTLOOK

◼ SaaSyML deployment on-board OPS-SAT for FDIR use case

◼ Possibility of using SaaSyML for outlier detection use case 

◼ Invite OPS-SAT experimenters to use SaaSyML

◼ Enhancements

◼ Inference feed subscription (ongoing)

◼ Plugin-based algorithm integration

◼ Extend training requests to customize algorithm parameters

◼ Evaluation of supervised models



5. DISCUSSION



THANK YOU!
VisionSpace Technologies GmbH
Robert-Bosch-Strasse 7
64293 Darmstadt
Germany

https://www.visionspace.com/

https://tanagraspace.com/

https://www.visionspace.com/
https://tanagraspace.com/
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