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Background
4

The growing number of lunar missions and
limitations in Moon-Earth communications create the
need for a DPU capable of processing at least some of
the data on the lunar surface, thereby reducing data
transfer to Earth and increasing rover autonomy.
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▪ #1 To explore the capabilities of the AI development 
environment from Xilinx and benchmark two architectures 
(Leopard DPU and Versal AI)

▪ #2 To analyse the possibility of running ROS on limited
resources

▪ #3 To perform analogue tests with a DPU and a stereovision
camera

▪ #4 To define the architecture for a future distributed processing
system

Objectives
5
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Work logic diagram
6
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Achieved outcomes
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WP100 – Datasets and algorithms
8

▪ The goals:
• To prepare a dataset for training and validating rock segmentation and detection

• To select and train a deep model for rock detection suitable for further deployment

▪ The algorithms considered in our approach:
• A lightweight U-Net model for rock segmentation

• YOLO v5 models (X-sized, S-sized, Nano-sized)

• A sequential approach (U-Net segmentation maps fed into YOLO)
(an abstract submitted to IGARSS 2023)

• Data preprocessing and augmentation based on adaptive histogram equalization (CLAHE) 
and gamma corrections

▪ The datasets used for training and validation
• Artificial Lunar Landscape Dataset (ALLD) – almost 10k images, split into training, validation 

and test subsets

• Real-world images (several hundreds annotation masks) collected at Lunares Research 
Station (quite different from ALLD images and from actual Lunar images)
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WP100 – Datasets and algorithms
9

▪ The lightweight U-Net architecture
adapted from:

Grabowski, B., Ziaja, M., Kawulok, M., & Nalepa, J. (2021). 
Towards robust cloud detection in satellite images using U-
Nets. In 2021 IEEE International Geoscience and Remote 
Sensing Symposium IGARSS (pp. 4099-4102). IEEE.

▪ Results for ALLD: 

Input image Ground-truth mask Segmentation
outcome

Stage Loss Precision Recall Dice Jaccard Dataset

float 0.3097 0.6764 0.7552 0.6977 0.5678 ALLD

quant 0.3101 0.6929 0.7428 0.7009 0.5722 ALLD

compiled 0.3085 0.6966 0.7399 0.7017 0.5733 ALLD

float 0.8527 0.1724 0.6884 0.2199 0.1291 Lunares

We can appreciate there is no difference in the quality of 
floating and compiled models for the ALLD dataset
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WP100 – Datasets and algorithms
10

▪ The results obtained for images acquired at Lunares Research Station:

▪ Conclusions:
• The segmentation maps produced by U-Net can be used for rock detection

• The model can be easily adapted to different lighting conditions
(Dice coefficient: 0.22 → 0.64)

Input image Ground-truth mask Segmentation outcome
(model trained 

from ALLD images)

Segmentation outcome
(after fine-training)
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WP100 – Datasets and algorithms
11

▪ Quantization-oriented degradation (based on real-life 
Lunares dataset):
• From top to bottom: ground-truth, floating model, quantized 

model, compiled model

• Deployment-oriented degradation is visually negligible, yet it 
can be spotted in metrics

• Results seem to be very consistent between quantized and 
compiled models

Stage PowerJaccard Precision Recall DiceCoeff JaccardIndex Dataset

float 0.4328 0.7932 0.6322 0.6527 0.5290 Lunares

quant 0.4449 0.7607 0.6397 0.6421 0.5160 Lunares

compiled 0.4434 0.7749 0.6339 0.6426 0.5174 Lunares
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WP100 – Datasets and algorithms
12

▪ YOLO v5 (Nano size) fed with input images with U-Net segmentation maps

Results for the validation set during training:

Input image without 
auxiliary information

Input image with U-Net 
segmentation maps

Qualitative results (with U-Net segmentation maps)
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WP200 – DPU Benchmarking
13

▪ The goals and tasks of WP200:
• DPU synthesis and system setup for Versal vck190 device

• Model deployment from pytorch to xmodel

• Benchmarking Versal vck190 and Leopard EBB devices focusing on power 
consumption and inference throughput
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WP200 – DPU Benchmarking
14

▪ Versal system design is based on a Xilinx 
reference design.

▪ A range of DPU configurations integrated:
• 1xC32B1L2S2, 1xC32B2L2S2, 1xC32B3L2S2, 1xC32B4L2S2,

1xC32B5L2S2, 1xC32B6L2S2

• 1xC64B1L2S2, 1xC64B2L2S2, 1xC64B3L2S2, 1xC64B4L2S2,
1xC64B5L2S2

▪ Power consumption estimations were extracted 
and compared with benchmark results.



K P  L A B S  |   C O G N I T I O N  – F I N A L  M E E T I N G
2

0
2

3

WP200 – DPU Benchmarking
15

▪ Deployment of a custom UNet model was done in Vitis AI 2.5 environment.

▪ The quantization step has proven to be error prone. Quantization of some of the model layers 
would compromise inference results or even make compilation impossible. The original UNet
model had to be modified to accommodate Vitis AI restrictions.

▪ The quantized model was compiled for all Versal architectures:
• 1xC32B1L2S2, 1xC32B2L2S2, 1xC32B3L2S2, 1xC32B4L2S2,

1xC32B5L2S2, 1xC32B6L2S2

• 1xC64B1L2S2, 1xC64B2L2S2, 1xC64B3L2S2, 1xC64B4L2S2,
1xC64B5L2S2
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WP200 – DPU Benchmarking
16

▪ Inference throughput
• Initial benchmarks were performed with a 

reference ResNet50 (224x224) network.

• Benchmarks were performed with xdputil
utility tool.

• Versal's maximum throughput reached 15 
times higher value, than Leopard's.
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WP200 – DPU Benchmarking
17

▪ Power consumption per fps
• Initial benchmarks were performed with a 

reference ResNet50 (224x224) network.

• Power was measured with vck190 Power Tool.

• Versal's minimum power consumption per 
fps was 7 times lower than for Leopard EBB.
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▪ A python module for inference was developed 
and tested with a standalone application.

▪ The application yielded correct inference 
results.

▪ Inference throughput and power consumption 
was measured for the application in modes 
with and without pre- and postprocessing.

WP200 – DPU Benchmarking
18
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WP300 – Rover framework
19

▪ The TR#3 states the goals for WP300:
• To perform an analysis of existing lightweight ROS 2 variants (forks), possibly 

designed to run on embedded hardware (micro-ROS, riot-ros2). The forks will be 
analyzed in the context of the feasibility of running on the selected DPU platform. 
To test the integration of deep learning coprocessors implemented using 
programmable hardware as ROS2 endpoints within the ROS-native publisher-
subscriber communication model.

▪ So, to meet the requirement, we need to satisfy two output goals:
• Make ROS2 run on the DPU processors

• Integrate the capability of using the deep neural network models running in 
accelerated mode using the programmable logic part of the DPU as ROS 2 native 
mechanisms
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WP300 – Rover framework
20

▪ ROS 2 integration - obtained results:
• It was possible to run the fully functional ROS 2 

without problems, so other variants were not tested

• The Petalinux-based image was equipped with 
Robot Operating System (ROS 2 Foxy) and 
successfully handle all sanity checks on the VCK190 
prototype board.

• ROS components such as publishing, subscribing, 
script running and launch executing were verified.

• Petalinux's ROS-compatible meta-layers for the 
Husky robot, Luxonis camera, and their 
dependencies have been created.

▪ This satisfies the requirements for the first 
stated goal
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WP300 – Rover framework
21

▪ DPU coprocessor integration - obtained results:
• Wrappers facilitating the use of neural network 

hardware coprocessors running inference as native 
ROS 2 services were prepared.

• They can use the camera publisher as the source of 
image data for neural network inference.

• ResNet50 wrapper was developed for initial testing, 
and UNet wrapper was developed as a key part of the 
final application.

• Final goal was to detect and segment rocks on the 
simulated lunar surface during analogue mission, so all 
the components (sensor input, rover control, DPU 
hardware coprocessors) were integrated into a 
complete application.

▪ This satisfies the requirements for the second 
stated goal
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WP300 – Rover framework
22

▪ Everything worked as intended during the analogue mission, as confirmed by the 
preview from the developed visualization tools

▪ All the goals and technical requirements envisioned for WP300 were met
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WP300 – Rover framework
23

▪ Lessons learned:
• A dedicated machine for embedded Linux and ROS 2 

development is very useful; in some cases, 2 or 3 such 
machines would be a welcome addition to test multiple 
approaches simultaneously.

• Neural networks prepared specifically for embedded 
hardware introduce an additional interface layer due to 
optimizations. This calls for careful handling of data 
types, output activations, input and output data 
normalization and denormalization and digging deep in 
VITIS AI documentation.

• ROS 2 provides a significant upgrade when compared to 
ROS 1 in terms of development tools and 
standardization, but still lags in terms of several readily 
available components.
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WP400 – Hardware integration
24

▪ The main goal for WP400:

Preparation of a mobile platform with the necessary sensors and devices to 
perform analog tests.

▪ This task consists of several parts:
• modification of the Clearpath Husky A200 robot to mount the necessary 

devices, connect and power them

• preparation of software to control robot remotely using ROS2

• preparation of software for sensors: stereo camera and IMU
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WP400 – Hardware integration
25

▪ A frame was built on the robot to 
mount the following devices: Wi-
Fi/Ethernet router, orange 
emergency light, antennas, receiver 
for remote safety button and 
stereo camera.

▪ Additional power outputs were 
prepared, for all mounted 
components .

▪ The new software stack of Ubuntu 
20.04. with ROS2 Foxy was set up to 
meet the project requirements.
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WP400 – Hardware integration
26

▪ Stereo camera:

• Two stereo cameras were tested.

• ROS2 nodes were prepared to publishing RGB 
and depth image, and point cloud.

• For analog tests, the OAK-D-Lite camera was 
used.

• Camera was calibrated to determine cameras' 
intrinsic parameters and relative positions of 
lenses.

• In order to speed up the operations on images, 
some of them were performed on the VPU on 
camera.

• RGB image was resized and compressed, which 
allowed to eliminate delays in data transfer.

• The prepared stack ensures continuous and 
stable image transmission and worked 
well during tests.
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WP400 – Hardware integration
27

▪ The XSENS 300MTI IMU was 
mounted on the robot base, and 
the data from the unit were fed 
into an Extended Kalman Filter 
alongside the wheel odometry to 
improve localization in sloping 
and unstable terrain.

▪ During tests proved that IMU 
sensor is resilient in the sloppy 
terrain and keeps track of the 
localization of the rover.
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WP400 – Hardware integration
28

▪ Lessons learned:
• The software stack requires a proper startup 

procedure, considering the difference in booting 
times of different components and dependencies 
between them. It is also important to avoid 
undervoltage on the router and sensors.

• It is important to adjust frequency, resolution and 
format of images to provide smooth data transfer.

• To get a better quality of depth image, it 
is necessary to ensure proper lighting 
(passive stereo camera), so additional lighting 
was mounted on the robot.

• The rover performed well during the tests in the 
LunAres Research Station– no issues with 
locomotion in rough terrain.

• The software of robot, camera and IMU worked 
flawlessly.



K P  L A B S  |   A B O U T  U S
2

0
2

3

29

Q&A
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