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Background and Motivation

▪ Field Emission Electric Propulsion (FEEP) is a type of 

propulsion for spacecraft where a liquid propellant is ionized 

and accelerated in one step to produce thrust

▪ The device which allows this process is the emitter, which is 

constituted by a multitude of very sharp needles

▪ The state-of-the-art emitter for FEEP based on liquid metal is 

made of porous tungsten

▪ Manufacturing new porous tungsten emitters is presently 

challenging and expensive, limiting the ability to test and 

optimize new designs

▪ Research into optimized fabrication methods could 

accelerate prototyping, testing, and development of new 

emitters.
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Proposed Idea and Project Objectives

▪ Use magnetic fields to shape magnetic metal powders into 

an array of spikes/needles constituting the emitter

▪ Design and manufacture a variety of emitters with this novel 

method

▪ Design and manufacture a thruster prototype for testing the 

manufactured emitters

▪ Assess the performance and the durability of the newly 

conceived emitters.
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Example of magnetically shaped array of spikes
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Emitter Manufacturing

▪ The process started with the manufacturing of titanium and 

stainless-steel bases, which were then used as support 

structures for the creation of the spikes

▪ After the creation of the spikes using iron powder and 

magnetic fields, the emitter went through the next steps of 

sintering and wetting

▪ 36 emitters have been manufactured, with different 

needle array densities and shapes

▪ Of these, 28 have been wetted with the propellant, 

consisting in a eutectic alloy of gallium and indium, which is 

liquid at ambient temperature
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Emitter Manufacturing

▪ Measured tip radii ranging from 1.5 to 25 µm

▪ Most of the emitters were fabricated as 2D arrays of 

spikes, that is, spikes distributed over a two-dimensional 

surface

▪ The 2D arrays could be roughly grouped into three 

categories depending on the density of the spikes: low, 

high, and medium density, corresponding respectively to 

approximately 50, 100 and 200 spikes per square 

centimeter

▪ The exception was a crown-like emitter, constituted by 40 

spikes arranged on a closed circular path (1D array).
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Tips before (left) and after (right) wetting
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Thruster Prototype

▪ The thruster prototype was designed to be a simple and 

flexible testbed for evaluating the novel emitter

▪ Since the emitters use liquid metal propellant, no heating

or thermal control is needed

▪ The thruster is compact, with a diameter of 86 mm and 

height of 70 mm

▪ Main design challenges were high voltage insulation in 

such a small volume and preventing propellant 

contamination of the insulators

▪ It can withstand peak emitter and extractor voltages of 

20 kV.
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The thruster module (cylindrical) attached to the 

mechanical interface to the vacuum flange
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Performance Testing – Setup

▪ The test campaign was conducted in the LIFET 3 

vacuum chamber at FOTEC premises

▪ Vacuum system with roughing pump + turbo pump, 

ultimate pressure 10-7 mbar

▪ A collector in the vacuum chamber was used to 

measure the emitted ionic current

▪ The pressure in the chamber was measured using a 

PKR251 Pfeiffer vacuum gauge (5 x 10-9 mbar)

▪ Viewports located at the side and at the back of the 

chamber allowed to observe and take pictures of 

the operating thruster
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Performance Testing – Setup

▪ The power to emitter was provided by a 

Matsusada AU-100R22-LCF (0-100 kV / 0-

22 mA, limited to 20 kV/20 mA)

▪ The power to extractor was provided by a 

Heinzinger PNC 20000-10 (0-20 kV / 0-10 

mA)

▪ All the data from the power supplies, the 

collector and the vacuum gauge was 

monitored and recorded by a Labview-

based software
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Performance Testing – Test Protocol

▪ Emitter (+tank) weighted and assembled into the 

thruster

▪ Truster mounted in the vacuum chamber

▪ Vacuum pumps started. Pressure level for starting the 

ion emission: < 10-6 mbar

▪ The test protocol consisted in:

o A startup voltage ramp (0-20 kV, 8mA current limit)

o Voltage/current characterizations to probe the 

operation of the emitters at different power levels

o 2-hour constant current phase, which allowed to 

observe the stability of the emission and to calculate 

the emitter mass efficiency

▪ Thruster dismounted, emitter weighted + SEM pictures
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Performance Testing – Result Overview

▪ A total of 21 performance tests were conducted on 19 

different emitters, with 2 emitters tested twice.

▪ Over 100 firing needles were achieved on some of the 

emitters, proving the feasibility of firing high density arrays 

with a single extractor

▪ Peak thrust reached 2 mN, while 50-400 µN was 

maintained during the constant current phase

▪ Firing currents as high as 20 mA were obtained

▪ The measured power-to-thrust of the new emitters ranged 

from 70 to 200 W/mN, while the specific impulse was 

between 400 and 4600 seconds. The top end of these 

performance metrics is comparable with existing FEEP 

thrusters.
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Firing videos
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Performance Testing – Electron Bombardment

▪ A limiting factor encountered early on during the performance 

test campaign, was a localized overheating of the emitter, 

causing irreversible damage of some needles

▪ We identified electron bombardment, caused by electrons 

generated from the ion beam impinging on the extractor, as 

the source of this overheating

▪ The identification of this issue allowed us to take steps to 

mitigate it, at the cost of sacrificing the thrust and the count of 

firing needles

▪ It must be stressed that, on the other hand, high emission 

current per se was NOT a limiting factor (the crown-like 

emitter fired at 20 mA without issues on the needles).
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Emitter 19 (Test 4) firing at high current

SEM image of a molten tip
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Performance Testing – Mass Efficiency

▪ The mass efficiency of the new emitters was between 2 

and 27%, which is lower than the best performing FEEP 

emitters currently available

▪ As expected, emitters with sharper tips and lower current 

per tip exhibited higher mass efficiency

▪ The characteristics of wetting are believed to influence the 

mass efficiency too: rich wetting (thick propellant layer) →

more droplets emission → lower mass efficiency
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Emitter 23

Emitter 33
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Performance Testing – Impedance

▪ Arrays with higher needle density showed higher impedance and 

onset voltage

▪ The high impedance of the 2D arrays was also due to the larger 

distance between the needles and the extractor, compared to the 

crown-like emitter

▪ An increase in impedance was observed during some of the 

performance tests. This behaviour could be attributed to three factors:

o Accumulation of contaminants, primarily gallium and indium 

oxides, on the needle tips

o Tip degradation caused by electron bombardment over-heating

o Progressive de-wetting of the liquid metal from the tips of the 

needles (unstable wetting, propellant depletion).
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Performance Testing – Performance Graphs (Test 1 – Emitter 20)
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Performance Testing – Performance Graphs (Test 7 – Emitter 28)
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Performance Testing – Performance Graphs (Test 16 – Emitter 32)
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Performance Testing – Performance Graphs (Test 19 – Emitter 33)
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Durability Testing

▪ The purpose of the durability test was to 

evaluate the evolution of the emitter 

performance and possible related needle 

degradation over an extended period (100 

hours)

▪ Test setup identical to the one used in the 

performance testing campaign

▪ The base testing protocol was the same as the 

one used in the performance test, with the 

constant current phase extended to 100 hours 

(50x).
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Durability Testing – Result Overview

▪ The tests have been conducted on four emitters, which were 

selected among the best performing ones from the 

performance testing campaign

▪ All four emitters reached at least 100 hours of cumulative 

firing with various degrees of performance degradation

▪ The first two emitters were tested across three segments 

totaling 100+ hours, due to propellant feeding issues from 

the tank, which required test interruption to refill the emitter

▪ After modification of the propellant tank, the last two 

emitters underwent complete 100-hour tests without 

interruption (the last emitter operated for 190 hours).
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Durability Testing – Firing Pictures (Test 1 – Emitter 23)
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Durability Testing – Firing Pictures (Test 2 – Emitter 28)
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Durability Testing – Firing Pictures (Test 3 – Emitter 20)
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Durability Testing – Firing Pictures (Test 4 – Emitter 27)
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Durability Testing – Test Graphs
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Durability Testing – Test Graphs
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Durability Testing – Results Table
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Durability Testing – SEM and EDX Analysis (Test 1)
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Before 1st part After 1st part

NOTE: The tips 

may not be the 

same!
After 3rd part After 4th part
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Durability Testing – SEM and EDX Analysis (Test 1)
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▪ Metallic elements proportions 

compatible with EGaIn

▪ The presence of oxygen indicates 

the formation of oxides of one or 

both elements constituting the 

propellant

▪ It is believed that these concretions 

are one of the main causes of the 

increase in impedance of the 

emitters
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Durability Testing – SEM and EDX Analysis (Test 2)
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Before 1st part After 1st part

NOTE: The tips may not be the same

After 3rd part After 3rd part
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Durability Testing – SEM and EDX Analysis (Test 2)
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Durability Testing – SEM and EDX Analysis (Test 3)
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Before Test After TestNOTE: The tips may not be the same!
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Durability Testing – SEM and EDX Analysis (Test 3)
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After Test – Firing Tip After Test – Non-Firing Tip
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Durability Testing – SEM and EDX Analysis (Test 3)
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▪ EDX confirms the presence of fresh 

propellant

▪ The detected small amounts of iron 

could be either completely exposed 

or covered by a thin layer of 

propellant, which, due to the low 

thickness, can be penetrated by the 

analyzing electron beam
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Durability Testing – SEM and EDX Analysis (Test 4)
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Before Test After Test
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Durability Testing – SEM and EDX Analysis (Test 4)
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After Test – Firing Tip After Test – Non-firing Tip
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Durability Testing – SEM and EDX Analysis (Test 4)
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Firing tip with interesting signs of erosion
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Durability Testing – SEM and EDX Analysis (Test 4)
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▪ The material covering the tip is 

mostly gallium-indium

▪ One possible explanation for the 

shape, is that this tip was previously 

covered by a thick layer of gallium 

and indium oxides, then it started 

firing, eroding away the oxides 

sideways by ion beam erosion.



40

Durability Testing – SEM and EDX Analysis (Test 4)
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▪ Iron seems separated from the 

other elements, indicating exposure 

of the underlying substrate and not 

a diffusion process
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Durability Testing – SEM and EDX Analysis (Test 4)
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▪ Metallic elements proportions 

compatible with EGaIn

▪ The presence of oxygen indicates 

the formation of oxides of one or 

both elements constituting the 

propellant

▪ It is believed that these concretions 

are one of the main causes of the 

increase in impedance of the 

emitters
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Main Achievements – Emitter Manufacturing and Wetting

▪ Successful manufacturing of 36 emitters using the new process

▪ Different types of arrays and needle densities using the same process (no difference in costs)

▪ Successful wetting of 28 emitters with EGaIn
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Main Achievements – Thruster

▪ Functioning thruster module

o Capable of operating at elevated voltages (up to 30kV emitter-to-extractor 

voltage)

o Total cumulative time of operation > 500 hours

▪ Newly designed functioning propellant tank
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Main Achievements – Emitter Testing

▪ Successfully demonstrated emitter firing in both 1-D and 2-D needle arrays

▪ Achieved firing from more than 100 needle tips; however, encountered issues at high currents 

due to the effects of electron bombardment

▪ High firing current per needle was not a limiting effect

▪ Durability tests conducted on 4 emitters, for at least 100 hours (max 190 hours), revealed 

little to no erosion of the iron tips, provided heavy electron bombardment was avoided. 

Oxide accumulation issue.
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Conclusions

• Demonstrated manufacturing, sintering, wetting and firing of FEEP emitters using a new method based on 

magnetic shaping of iron powder

• Demonstrated performances comparable in part with state-of-the-art FEEP emitters

• Demonstrated no major signs of needle erosion in tests spanning up to 190 hours of total cumulative 

firing time

Outlook

• Elimination or reduction of the electron bombardment issue

• Improvement of mass efficiency

• Use of pure indium as propellant (to reduce oxide formation and potential erosion)

• Evaluation of the technology for rapid and inexpensive FEEP emitter prototyping

• Evaluation of implementation into present (de-orbiting?) and future mission typologies
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THANK YOU for your attention!

Questions?
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Performance Testing – Result Overview
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