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of EXCELLENCE   HyperClass – Main Concept and Objectives

1- To extend the current high fidelity model and simulation to a wider range of materials and material
properties, material distributions, geometries, attitude motions, optics.

2- To demonstrate, in simulation, the applicability of hyperspectral light-curve analysis to a wide range of
objects with different surface composition, size, shape, attitude motion, orbit regimes, illumination
conditions, in space and on ground sensors.

3- To demonstrate the use of deep learning for the classification of space objects from hyperspectral images
and hyperspectral light curve analysis.

4- To demonstrate the use of deep learning for attitude motion reconstruction from hyperspectral light curve
analysis.

5- To associate hyperspectral light curve analysis and attitude motion to identify patterns in space object
behaviour

6- To design a prototype sensor that can be used in conjunction with a standard telescope on ground or in
space on board a satellites

7- To test the concept in a lab environment with a mock-up of a small satellites. Possibly to be revised to:
testing the concept with actual optical observations from ground.

8- To demonstrate the use of multispectral/hyperspectral imaging to identify the surface composition of
resident objects in Low Earth Orbit, either using on ground or in orbit observations, and to improve their
classification.

9- To demonstrate that the use of the time variation of the intensity at different wavelengths can be used to
reconstruct the attitude motion better than by simply using light curve measurements.
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WP1 - Hyperspectral 
light curve analysis 

and object 
classification 

• Object simulation
• Sensor simulation
• Light decomposition
• Object classification



AEROSPACE CENTRE
of EXCELLENCE   Object and Sensor Model

• Arbitrary shapes

• Coupled attitude orbit dynamics

• Various material elements on each surface
• Self-shadowing

• Elements contribute signal when both illuminated and visible

• Fractional element illumination/visibility

• Materials + reflectance spectra assigned to each element

• Low fidelity Lambertian Model. Integrate collected power in 
wavelength band [λ0, λ0+dλ], summed over entire object:

• Hi-fidelity complete model of specular + diffuse reflection

• Reflective surfaces – glass, solar panels, polished metals etc

• More orientation sensitive – strong specular highlights
Example test object

Colours represent visibility state or 
materials
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• Multiple shapes and material distributions.

• Exact spacecraft model is not required

• More important is the expected distribution of materials 
associated to different objects

• High fidelity reflection/diffusion/emission model tuned on 
representative surfaces
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Real foil surface

High-fidelity Model Calibration Against Lab Experiments

• Reflectance data for 
rotating cube
• Case 1 – Al only

• One side Aluminum foil

• Others black paint

• Case 2 - 4 materials

• Aluminum foil

• Gold foil

• Brass plate

• Steel plate

Comparison of simulated and lab data at 985nm
(Case 1)

Crinkled foil (thermal blanket analogue)
Modelled by refining cube mesh and adding 

noise offsets

Glossy black
paint peaks

Specular peak
from foil
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Space and ground-based sensors 

• Space sensor no attenuation

• Both reflected and re-emitted light

• Ground sensor - Atmospheric attenuation (spectrum + 

elevation)

MODTRAN attenuation spectrum

Simulated HSI output (single sample)
Space object, 11 inch optics
Atmospheric effects visible
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• Dynamics + Atmospheric effects
• Lab case

• Fixed-axis rotation

• Fixed

• Used for validation

• Space case

• Free-space rotation/tumbling motion/precession

• Orbit propagation

• Tracks evolution of view + illumination directions

• Ground-based and space-based observers

• Atmospheric attenuation (spectrum + elevation)

Propagated orbital tracks in space case

MODTRAN attenuation spectrum
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Preliminary results

• Simulated sensor outputs for various objects and 
scenarios
• First iteration reflectance model

• Ground- and space-based observers

• Collected power estimate – informs telescope design

• Reflected and emitted components
• Night-time imaging

Simulated HSI output (single sample)
Space object, 11 inch optics
Atmospheric effects visible



AEROSPACE CENTRE
of EXCELLENCE   WP1 - Hyperspectral light curve analysis and object classification 

Preliminary results

More test cases – 2m cube, ground and space

Space based telescope (r = 10cm)

~10-13 W Reflection

~10-5 W Emission (350K)

Ground based telescope (r = 5m)

~10-11 W Reflection

~10-3 W Emission (350K)
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- Same analysis with larger cylinder

- Soyuz upper stage analogue

- Dimensions – 1.33m radius, 6.7m length

- Same trend

- ~100x greater power returned

Parametric Analyses: elevation

Elevation study for upper stage analogue
(ground based)

Cylinder model
(upper stage approximation)
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• Spectral unmixing 

• Component spectra can be estimated using 
N-FINDR algorithm for endmember analysis

• Lambertian model

• Various material/shape configurations

• Single pixel image

• Multiple scenarios were simulated with an 
without atmotphere

Mixed material rotating cube
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Click to add text
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Click to add text

• Simulation using cube with mixed materials on 
each side

• Based on spectra for three materials captured in 
the lab in the range 300-1500 nm
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Click to add text

• Spectral angle mapper (SAM) 
for spectral matching
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Click to add text

• With number of endmembers < 
number of ground truth materials

• Material B contains spectral 
properties of both gold and solar 
panel
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Click to add text

• With number of endmembers > 
number of ground truth materials

• Similar endmembers containing 
spectral properties of multiple 
materials

• Additional algorithms such as 
HFC can be used to establish 
correct number of endmembers
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• Previous work focuses on distinguishing e.g. two satellites
• No probing of materials

• No other useful informaton gained

• Does not generalise

• Aim to classify based on key satellite components to build 
generalised pipeline

• Material abundance is key for detecting components

• Evolution of material abundance curves (MACs) over time (e.g. with 
rotation) contains information on distribution of materials

• Simulation model can output ground truth MAC
• Fraction of collected light due to each material at time t

• Developed both traditional and ML-based methods to recover MACs
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• Artificial neural network trained on 
many linear combinations of N materials

• Basic feed-forward, fully-connected architecture

• 2 hidden layers (ReLU + tanh), 200/50 nodes

• Softmax output activation: sum = 1 constraint

• One output node per material

• Color indexing transformation –
removes absolute intensity variation, preserves shape

• Accurately extracts MACs for simulated data

• 9 materials in current model

• Model is inherently object-agnostic (generalised)

High-resolution colour indexing 
normalizes for signal strength
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• Also used non-ML methods 
(constrained least squares) to 
decompose spectra

• Similar performance is achieved 
from both methods

• Both methods considered semi-
supervised
• Library must contain all dominant materials

Non-ML Spectral Decomposition
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• Many satellites have large components made of distinctive 
materials

• Solar panels, Antennas, Rocket nozzle, Optics, TPCB

• These should be detectable from MACs if:
• Components are composed of relatively unique materials

• Components are large enough to cause detectable spectral changes

• Object rotates sufficiently during integration period

• Extract statistical features from set of 9 MACs
• Correlation coefficients, mean, std(), min(), max() etc...

• Train ML models on MAC statistics
• Binary classifier for each component

• Gradient boosted tree ensemble (XGBoost)

Component Detection Model
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• Training data for component detection comes from a variety of 3D 
satellite models

• Assign material spectra to each polygon

• Pure materials or combinations

• Some based on real satellites, some generic templates with procedural 
generation e.g. Upper Stage

• 2000 simulations for each satellite, each with different orbital 
conditions and initial angular velocity vector

• Observer on ground

• Dataset augmented by a set of cubes with similar material distribution

• e.g. cube with one face dominated by titanium (Rocket Nozzle)

• Extremely high accuracy when tested on data from a 
'seen' satellite:

Component Detection Model: Training Data

3D models of various satellites used for 
training data generation

StarlinkIridium-NEXT

DubaiSat
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• Finally, classify satellites, based on detected components, into 
broad categories
• Comms, GNSS, EO, Rocket Bodies, CubeSats

• Not aiming to determine the exact satellite

• Final classification performed using k-Nearest Neighbours

Truth table for each satellite's present 
components, and the category it resides in
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• Must test process on unseen satellites to ensure generalisability

• Procedure:

• Retrain CDM on MACs for all satellites except satellite X

• Make predictions on MACs from satellite X

• Pass predictions through kNN to make final classification

• Repeat for each satellite in the list

• EO is the most challenging class
• Distinctive feature: optical baffle

• Modelled by black paint – low, flat reflectance spectrum

• Difficult to distinguish spectrally

Average detection probability of each component for each unseen 
satellite.

(e.g. probability of CDM concluding that component Y is present)
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• Aim to investigate effect of inaccurate library 
spectra on ANN decomposition performance

• Literature: aging causes a 'reddening' of 
spectral response
• No model exists -> use approximation

• Simulate aging by boosting red/NIR+ 
wavelengths
• R(λ) -> red_boost_function(λ)*R(λ)

• Ex

• R(500) -> 1*R(500)

• R(1000) -> 1.1*R(1000)

Aged Materials

Simulated aging applied to Aluminium
Spectrum
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• Retrained decomposition ANN with aged 
spectra

• Similar quality of predictions as with noon-
aged materials

Aged Materials
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• Generate data for satellites using aged spectra

• Make predictions with old ANN
• Trained on unaged ('incorrect') spectra

• Significantly higher MSE with aging mismatch

• Overall curve shapes preserved but 
magnitudes incorrect

• Systematic overestimation of black paint
• Other materials 'squashed' to compensate

Aged Materials

DubaiSat (aged)
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• Significantly higher MSE with aging mismatch

• Overall curve shapes preserved but 
magnitudes incorrect

• Systematic overestimation of black paint
• Other materials 'squashed' to compensate

Aged Materials

Material-wise MSE

Present materials -> higher MSE
Absent materials -> lower MSE 

(squashed closer to zero)
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• Repeat with increasing red 
boost max values (ie
increased aging)
• 1.0

• 1.025

• 1.05

• 1.075

• 1.1

Aged Materials

Present in DubaiSat

Absent in DubaiSat
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• The non-machine learning library 
unmixing method has a few post 
processing steps

• This is applied to both library 
spectra and the received signal so 
will affect the difference between 
aged and non-aged materials

• It is not entirely clear if this has a 
net benefit and will depend on 
how aging really effects materials

Aged Materials

Non-machine learning processing of 
aged aluminium spectra
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• Aged spectra produce errors when 
performing library unmixing 
though these are different than 
experienced by the machine 
learning method

• Rather than a clear over or under 
estimation bias the general 
estimate is close but the trends in 
subtle changes to material 
abundance are missed

Aged Materials

Library matching performance on 
aged spectra
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• As with machine learning methods 
updating the model, in this case by 
using a library containing aged 
spectra, improves results

Aged Materials

Updated library matching 
performance on aged spectra
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• Added l1 output regularization to address black paint boosting

Aged Materials

No Regularization
MSE = 0.11133

Aggressive regularization on black 
paint (lambda = 1)

MSE = 0.0071
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• Retrain material curve ANN sans 
one material (GaAs Panel)

• Make predictions for a satellite 
(containing missing material) using 
new model

Residuals with ML

Material predictions for DubaiSat
(model trained without GaAs)

Gold blanket
underestimation

Black paint
overestimation
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• Can recover missing material 
spectrum form residual

Residuals with ML

DubaiSat material contribution truth

Residual at various times compared 
with GaAs spectrum

t=75 t=180

t=188

t=209
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• Comparison with ground truth

• Analysis of robustness of the two methods ML and non-ML

• Explain limitations

Material Identification and Abundance
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• Comparison with ground truth

• Analysis of robustness of the two methods ML and non-ML

• Explain limitations

Material Identification and Probability
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• Classification on simulated satellites 
appeared to be causing over-fitting and 
would only perform well if satellite was 
already "seen"

• New approach is to learn based on 
expectations and simulated material 
combinations – similar to materials model

• Can now go from spectra, to materials 
probability, to satellite classification with 
models that have never seen a satellite 
before

• Performance good in most cases with 2 
clear outliers. Starlink and Landsat8

From Material Identification to Object Classification
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• Attitude estimation from 
spectral light curves

• ML for attitude estimation 
from time variation of 
spectral curves 

WP2 - Hyperspectral 
light curve analysis 

and attitude motion 
reconstruction 
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• Material-wise decomposition obtained from endmember analysis

• Measurement model for eCube (single band):

• ni – normal to a given surface

• S – Sun direction

• V – observation direction

• F – fractions of each material on each face

• R – identified endmember spectra

• y – mb x 1 vector containing signal due to each material in each band

• Use measurement model to minimize cost function wrt rotation state n

Example of ecube with mixed 
materials

     𝐲 𝜆 =  σ𝑖=1
6 max 0, −𝐒 ⋅ 𝒏𝒊 max 0, −𝐕 ⋅ 𝒏𝒊 𝐅𝑖 ∘ 𝐑(𝜆)

 

𝐽 = σ𝑘 σ𝑗(𝑇𝑗(λ𝑘) − σ𝑖 𝑦𝑖𝑗(𝐧))2
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Click to add text

• Machine learning algorithms can be used to 
directly predict quaternion values based on the 
spectral data

• Over 20000 simulated time series of quaternions 
and related measured spectra.

• Cube with faces covered with mix of materials

• Support Vector Machine (SVM) 
regression with prior Principal 
Component Analysis (PCA) can 
be implemented to achieve this
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Click to add text

• These are prediction results for different
cases: (a) and (b) show reasonable
performance…

• …however, the addition of more data in (c) and
(d) can affect the performance of the model –
it is not able to generalise

• The reason is that the model expects similar
spectral responses for similar quaternion
values, however, responses are different due
to observation changes over the time
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Machine 
Learning 

model

Single spectral response

(1 vector array input)

+

Three observation 

parameters

• Problem: multiple observations of the same
attitude but in different illumination conditions
introduce a considerable noise in the training
dataset

• Solution: changes over the time in spectral
responses that correspond to similar/equivalent
quaternions can be considered by introducing
observation parameters as prior knowledge.

• We assume a known illumination and observation
directions at a given epoch

Before

R2=0.7473

RMSE=0.3271

After

R2=0.9797

RMSE=0.0999
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• Additionally, SVM regression can be replaced by 
Artificial Neural Network (ANN) regression, with 
presumably a higher generalisation ability:

SVM

R2=0.9308

RMSE=0.1752

ANN

R2=0.9829

RMSE=0.0861
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• Different approaches based on ANN can be 
investigated in the future. For example, using the 
entire time series (rather than single spectral 
responses) to estimate quaternions:

wavelengths

time

10 different cases of same object

ML model
Regression for:

- Sine amplitude

- Sine frequency

- Sine phase

Spectral responses 

(time series - 2D image)

Machine 
Learning 

model (NN)

• Quaternions could be represented using sine 
waves (estimation), so that the models only 
need to predict 3 values for a time series



Regularized batch loss

• 𝐽𝜔 = 0
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• 𝐽𝜔 - penalizes high angular velocities (large rotations between 
timesteps to be exact) - Implemented

• 𝐽𝛼 - penalizes high angular accelerations (large differences between 
consecutive estimates of the angular velocity) – Implemented

• Implemented Analytical Gradients for all loss functions



Painted cube – measurement vs theory



Regularized batch loss

• Optimizer tends to converge to 
local optima that are far from 
global optima.

• Currently, this is being solved by 
doing a grid search for the initial 
guess (using the tools in MACS to 
define uniform search directions 
on a sphere)



Regularized batch loss

• Sometimes, optimizer 
converges to a 
solution that results 
in the same observed 
spectral lightcurve, 
but is the opposite 
rotation to the 
ground truth



Possible solutions

• Grid search assuming fixed axis rotation on a subset of the trajectory
• Estimate angular velocity from Fourier analysis
• Sample directions uniformly
• Use lowest cost as initial guess

• Dynamic programming with discretized states
• Create a discrete state space by uniformly sampling attitudes
• Use DP to solve problem, where control is angular acceleration

• GMM Filter

• 1st is simpler to implement, but fixed axis rotation might not generalize. 

• 2nd besides being more complicated may also be slow

• 3rd would involve work that could probably go into SOBA



Next work

• Test with different objects DONE

• Tweaks on initial guess generation DONE

• Fix an issue on synthetic data generation for training data DONE

• Start training a NN on the attitude determination problem (fixed axis 
for now) [started, but need to look into the results more carefully]



Initial guess generation – rotation period

• Because the signal components are 
not sinusoidals, nor are they smooth 
FFT analysis can be misleading [Silha, 
Stellingwerf]
• even without occlusions, when a surface 

stops being visible due to no longer 
facing the observer/light, a non-smooth 
point exists 

• Inserting Rodrigues formula into the 
light function suggests double frequency 
components could be dominant



Initial guess generation – rotation period

• Phase dispersion minimization (PDM) has better results, but the 
presence of low frequency terms can make it give misleading results
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• Phase dispersion minimization (PDM) has better results, but the 
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Initial guess generation – rotation period

• Those low frequency terms are due to phase variation, which tends to 
have a period of the order of the observation time



Initial guess generation – rotation period

• A high pass filter seems to solve this problem
• Noise, absent in this test, may need to be removed with a low-pass filter

high high



Initial guess generation – initial conditions

• Assuming fixed axis rotation, the initial orientation 𝑞0 and the axis of 
rotation 𝑎 are sampled. 

• The sampling is obtained using MACS’s algorithm for generating a uniform distribution of directions. The resulting distribution is uniform for 𝑎, but 
technically the sample of 𝑞0 does not represent a uniform distribution of SO(3) [Shuster (2003)]. I will not worry about this for the moment though. 

• The lightcurve for a single period, found with PDM, is compared with 
the observations, and the closest match is used as an initial guess.

• This initial guess is refined with a local search over the same period 
still constrained to fixed axis rotation
• Now that the test cases consist of objects rotating about a fixed axis, this initial guess estimation seems to do most of 

the heavy lifting. The overall search strategy may need to be improved once precession/tumbling is considered.

• Finally, the regularized batch optimization strategy mentioned before 
is used to get a result over the whole lightcurve observation.



Regularized batch loss – success cases



Regularized batch loss – failure case

• Still have issues – the 
segment of the LC used to fit 
an initial guess may be 
misleading

• (using the whole LC to evaluate an initial guess 
leads to failure if the estimated period is even 
slightly off)

• Here we converge to a non-
global local optimum as a 
result of the bad initial guess

• Before trying to solve this it may be a good 
idea to look at non-fixed axis rotation, to 
avoid crafting a solution that only works on 
this case
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• Cost function:
• 𝐽 = 𝐽𝐷 + 𝐽𝛼
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• Cost function penalises high angular accelerations

• Initial guess 𝑞0 obtained using PDM followed by grid search

• All attitude histories in ℛ(𝑞0) are used as initial guesses for 
separate optimisations, as they all tend to be local optima

Regularised batch least squares - Summary
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• Spectrum function recap:
• 𝑆 = 𝑆 𝑣𝐵, 𝑠𝐵 , 𝑂 = 𝑆 𝑠𝐵 , 𝑣𝐵, 𝑂

• Swapping view and illumination vectors results in same 
lightcurve

• Therefore there is always a symmetry of the form
• 𝑅ℎ 𝜋 , i.e. a 180 deg rotation about the bisector

• I.e., attitude 𝑞 and its transformation 𝑅ℎ 𝜋 𝑞 result in the same spectrum

• In addition, there are body symmetries

Symmetry in Lightcurve Inversion
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• Let us now write the spectrum function as

•𝑅𝑏→ℎ converts body frame coordinates to h frame, a frame with x axis 
along bisector, and xy plane coincident 
with the sv plane

• We can recover 𝑣𝐵 , 𝑠𝐵  from 𝑅𝑏→ℎ, 𝛼  as
• 𝑠𝑏 = 𝑅𝑏→ℎ

𝑇 cos
𝛼

2
, sin

𝛼

2
, 0

• 𝑣𝑏 = 𝑅𝑏→ℎ
𝑇 cos

𝛼

2
, − sin

𝛼

2
, 0

• 𝑇𝐻 are the reflections about the
planes in Fig, and their
composition 𝑅ℎ 𝜋
•𝑇𝐵 are body symmetries 

Symmetry in Lightcurve Inversion
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• For an object attitude in the inertial reference frame 𝑅𝐵𝐼, the attitudes in the 
following set will all produce the same spectrum:

• The condition det 𝑅𝐵𝐼
𝑆 = 1 is to enforce 𝑅𝐵𝐼

𝑆 to be a rotation, which is necessary 

for it to describe the attitude of the object. This means, if the object is asymmetric, 

above set only contains 𝑅𝐵𝐼 and

• If there is at least one reflection symmetry in ℛ, other elements 𝑇𝐻 can be used in 

elements of ℛ

Symmetry in Lightcurve Inversion
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• Example of attitudes in 
ℛ for an object with a 
single reflection 
symmetry about the xz 
plane

Symmetry in Lightcurve Inversion



AEROSPACE CENTRE
of EXCELLENCE   

• The attitude histories 
obtained from 
noiseless data on this 
dataset produced a 
nearly identical 
spectral lightcurve to 
the observation. In all 
cases, perfect results 
were obtained.

LS results – cube without symmetry
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• The use of symmetry group improves the quality of the results. 
Starting only from the initial guess obtained with PDM+grid 
search (grey column) would lead to worse results:

LS results – cube with symmetry

• DDP usually produces 
worse results for the loss 
function, but in this case 
only slightly (these are log 
values), but it’s faster:
• interior-point: 𝜇 = 29𝑠

• DDP: 𝜇 = 19𝑠

• A probable reason for DDP’s inferior 
performance may be related to the current 
implementation’s use of finite difference 
instead of analytical gradients used with 
interior point.
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• The attitude histories 
obtained from 
noiseless data on this 
dataset produced a 
nearly identical 
spectral lightcurve to 
the observation. In all 
cases, perfect results 
were obtained.

LS results – cube without symmetry
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• The use of symmetry group improves the quality of the results. 
Starting only from the initial guess obtained with PDM+grid 
search (grey column) would lead to worse results:

LS results – cube with symmetry

• DDP usually produces 
worse results for the loss 
function, but in this case 
only slightly (these are log 
values), but it’s much 
faster:
• interior-point: 𝜇 = 29𝑠
• DDP: 𝜇 = 19𝑠

• A probable reason for DDP’s inferior 
performance may be related to the current 
implementation’s use of finite difference 
instead of analytical gradients used with 
interior point.
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• Occasionally, the model will still converge to a symmetric case, but for fixed axis 
rotation, in the absence of noise the ground truth has the lowest cost

LS results – cube with symmetry

RMS 𝜃 for test case 1A comparing 
estimated attitude to closest element 
of ℛ

The method should be seen as 
providing the user with a family of 
possible attitudes, depending on 
symmetries
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• A new dataset was generated where the 
ground truth object is more complex – a 
Dragon capsule, and it is precessing

• The old method to generate an initial 
guess was failing often, so a more robust 
approach was designed 

• A combination of a grid search for the 
initial state followed by iteratively 
building up the attitude history one time 
step at a time

• No need for PDM or assumptions of fixed 
axis rotation to get the initial guess

• Promising results so far (next slide)
• Ideal for use with best-first search 

algorithm – next step

• For each q0 in grid, in order of 
how close resulting spectra is to 
first observation

• qHist = {q0}

• For 𝑛 from 2 to 𝑁𝑇

• Minimise 𝐽 for lightcurve up to 
𝑡𝑛 using previous qHist as 
initial guess, and update qHist

• cost = 𝐽(qHist)

• If current cost is above 
smallest_cost, stop

• smallest_cost = min(cost, 
smallest_cost)



AEROSPACE CENTRE
of EXCELLENCE   More challenging dataset – Dragon capsule precessing

RMS 𝜃 for test case 2 comparing 
estimated attitude to closest 
element of ℛ
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መ𝑆1 ෝ𝒗1 ො𝒔1

መ𝑆2 ෝ𝒗2 ො𝒔2

… … …

መ𝑆Nෝ𝒗𝑁 ො𝒔𝑁

ML model
(e.g.: NN)

Angular velocity 
vector

Training data:
• Fixed and non-fixed axis rotation

• Different object models

• Different orbits

• Different observation 
geometries

• Orbit simulated, with 
constraints previously 
mentioned on elevation, 
illumination and night 
observation
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of EXCELLENCE   Machine learning - recap

መ𝑆1 ෝ𝒗1 ො𝒔1

መ𝑆2 ෝ𝒗2 ො𝒔2

… … …

መ𝑆Nෝ𝒗𝑁 ො𝒔𝑁

ML model
(e.g.: NN)

𝝎

• Redundant data:
• Rotating s and v vectors in 

input would correspond to 
the same rotation in the 
output

• The sun direction varies 
very little

• Reducing this redundancy can 
allow significantly reducing 
the amount of input 
dimensions

• Choosing a frame where s is 
[1,0,0], and writing v and 
angular velocity in that frame

መ𝑆1 ෝ𝒗1
⊙

መ𝑆2 ෝ𝒗2
⊙

… …

መ𝑆Nෝ𝒗𝑁
⊙

𝑅1 𝑅2
−1
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• Different frames tested for both input and output

Machine learning - tests

መ𝑆1 ෝ𝒗1 ො𝒔1

መ𝑆2 ෝ𝒗2 ො𝒔2

… … …

መ𝑆Nෝ𝒗𝑁 ො𝒔𝑁

ML model
(e.g.: NN)

𝝎

• Input data:
• v and s in inertial frame
• v only, in “Sun” frame
• v only, in Sun-view frame

• Output data: midpoint 
angular velocity vector in
• inertial frame
• body frame
• H frame
• other

• Model:
• Single layer
• Two layers
• Two layers with dropout

መ𝑆1 ෝ𝒗1
⊙

መ𝑆2 ෝ𝒗2
⊙

… …

መ𝑆Nෝ𝒗𝑁
⊙

𝑅1 𝑅2
−1
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• Input data:
• v and s in inertial frame
• v only, in “Sun” frame
• v only, in Sun-view frame

• Output data: midpoint angular 
velocity vector in
• inertial frame
• body frame

Technically, where it says 𝜔𝐵𝐼 
it should say 𝜔𝐵𝐼, 𝜔𝐵𝑆 or 
𝜔𝐵𝑆𝑉, according to the frame 
ෝ𝒗 is in 



AEROSPACE CENTRE
of EXCELLENCE   ML results – output frame

• Input data:
• v only, in Sun-view frame

• Output data: midpoint 
angular velocity vector in
• inertial frame
• body frame
• H frame
• symmetry removal tests
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of EXCELLENCE   ML results – model architecture

• Input data:
• v only, in Sun-view frame

• Output data: midpoint angular 
velocity vector in
• inertial frame
• symmetry removal tests

• Model:
• Single layer (600)
• Two layers (600, 50)
• Two layers with dropout (600, 

20%, 50)
• (1000, 20%, 100, 20%)
• (1000, 20%, 200, 20%, 50, 20%)
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• Model Calibration
• Experimental validation
• Endmember analysis from 

lab data

WP3 – Testing in 
relevant environment 

and prototyping 
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Experimental setup

Tungsten lamp and collimatorObject: a cube with different
materials attached

Rotation stage

1.4 m
Telescope

Camera

Fibre input of a 
CCD 
spectrometer
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Experimental setup

Camera view of a cube

Signal from 1.5 cm diameter area is 
measured by spectrometer 

Corresponds to 200um fibre input diameter of 
spectrometer

COMMERCIAL IN CONFIDENCE
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Experimental results

Rotating cube, 6º/s , materials: Al and gold foil

Some examples of R spectra at max signal

The spectra are shown for different time from the start of 
experiment (time stamps), which correspond to different 
rotation angle of the cube

Distinct features in R spectra at ~461 and 800 nm
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Experimental results

The ratio of reflectivity of Al and gold foil at the 
wavelengths of 461 and 800 nm (squares) as a 
function of rotation time

Solid lines – the actual signal at these two 
wavelengths
The ratio is shown only at the time stamps 
corresponding to max signal at these two 
wavelengths, otherwise the signal ratio noise 
ratio is too small

Some information about materials

Full R spectrum analysis for more complex 
cases (e.g. mixture of materials) - Endmemeber 
analysis above
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setup with and without a diffuser in front of fibre input of monochromator

✓ Without diffuser, 20 ms/ spectrum, monochromator alignment for max signal

✓ With diffuser, 100 ms/spectrum, monochromator alignment for max signal 

✓ Without diffuser, 100 ms/diffuser, same fibre alignment as above (i.e. the signal is not optimised for max)

Consistency of R measurements



© Fraunhofer 

Consistency of R measurements: setup with and without a diffuser in front of fibre input of monochromator

Gold-Al (crinkly) surface 1 -Al (crinkly) surface 2 -Al 
(smooth) on rotating cube
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Consistency of R measurements: setup with and without a diffuser in front of fibre input of monochromator

Gold-Al (crinkly) surface 1 -Al (crinkly) surface 2 -Al 
(smooth) on rotating cube
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Consistency of R measurements: setup with and without a diffuser in front of fibre input of monochromator

Gold-Al (crinkly) surface 1 -Al (crinkly) surface 2 -Al 
(smooth) on rotating cube
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Consistency of R measurements: setup with and without a diffuser in front of fibre input of monochromator

Gold-Al (crinkly) surface 1 -Al (crinkly) surface 2 -Al 
(smooth) on rotating cube
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Consistency of R measurements: setup with and without a diffuser in front of fibre input of monochromator

Gold-Al (crinkly) surface 1 -Al (crinkly) surface 2 -Al 
(smooth) on rotating cube
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Consistency of R measurements: setup with and without a diffuser in front of fibre input of monochromator

Gold-Al (crinkly) surface 1 -Al (crinkly) surface 2 -Al 
(smooth) on rotating cube
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Consistency of R measurements: setup with and without a diffuser in front of fibre input of monochromator

Gold-Al (crinkly) surface 1 -Al (crinkly) surface 2 -Al 
(smooth) on rotating cube
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Consistency of R measurements: setup with and without a diffuser in front of fibre input of monochromator

Gold-Al (crinkly) surface 1 -Al (crinkly) surface 2 -Al 
(smooth) on rotating cube
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Consistency of R measurements

Conclusions:

Acquisition time of 100 ms: averaging of spectra collected over 0.6 degrees rotation (given experimental 
settings)

 =1/10th of the rotation speed of the object 

=> considered as an optimal regime for data collection 
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Consistency of R measurements and material identification

Aluminium-Steel-Brass-Gold 
on rotating cube, R@800nm
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Consistency of R measurements and material identification

Black-Black-Aluminium-Black 
on rotating cube, R@860nm
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Consistency of R measurements and material identification

Aluminium-Steel-Brass-Gold 
on rotating cube, R@800nm
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◼ Importance of baseline correction of the reflectivity spectra for accurate 
identification of materials

◼ To be applied in the algorithm at the later stages of development

◼ FhCAP is experienced in developing algorithms for automated baseline correction

Consistency of R measurements and material identification
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Reflectivity spectra of GaAs and GaAs based solar panel
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Distinct reflectivity feature in solar panel => prospects for identification
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Testing the mixture of materials
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Principle design of the ground sensor
Ground-based sensor

Telescope: Celestron EdgeHD 1400: F=3910mm, D=356mm

Sensor: Phase 1 CCD spectrometer and camera

Camera

Spectrometer fibre input

Fibre core diameter 200 um
Objects <20 m size (@400km distance) will be fully 
projected onto the fibre core

Telescope image plane

2f 2f

Achromatic doublet 

50/50 beam splitter
aperture

Potential cost (sensor, telescope, and mount): £35k

Phase 2: telescope and mount to be bought with FhCAP budget. Other options for telescope can be considered.
Sensor – Phase 1
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Principle design of the ground- and space-based 
sensors

Space-based sensor

Space qualified telescope (designed in FhCAP, not part of this project): f=400 mm, D=80 mm. Size 100x100x160 mm 

Sensor: no COTS space-qualified CCD spectrometers for 400-
1100 nm spectral range

Similar space-qualified spectrometer: 
Thoth technology Inc
1000-1700 nm
80x46x80 mm, 280g, -20 C - +40C
Cost $49.5k

FhCAP: to design and build (Phase 2) space-qualified 400-1100 nm spectrometer
Teledyne – space-qualified CCD sensor
Horiba - space-qualified diffraction grating
Texas instruments - space-qualified electronics
Potential cost of components for spectrometer: £45k
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Telescope experiments

108

Aligning the telescope
Pointing model:

Error analysis, pointing accuracy +- 10 arc. sec
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Telescope experiments
Satellite tracking, first attempt. 19/01/2023, ~17.28 Cosmos-1300 

View from the guide-scope
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Telescope experiments
Satellite tracking, first attempt. 19/01/2023, ~17.28 Cosmos-1300 

Problems: satellite is not at the centre of the camera

Reasons: 1) alignment needs improvement
2) PC clock accuracy 
3) TLE data

Remedy: 1) “Dimension 4” software installed to 
synchronise PC clock with Internet Time Server (using 
Manchester server now)
2) Re-alignment with synchronised clock
3) Make sure TLE is up to date
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Misalignment analysis

111

Arcturus: 11*26 arcsec
Or 149*350 um in the image plan

Vega: 11*21 arcsec
Or 153*288 um in the image plan

Replaced fibre to 400um diameter one, replaced focusing mirror to 30 mm for better light collection
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Misalignment analysis

112

Projection of a 200um core fibre
into the camera

Projection of a 400um core fibre
into the camera with 2x tighter focusing

With new focusing lens and optical fibre, 40 arcsec misalignment can be accommodated
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Telescope experiments

113

Checking the sensitivity of the sensor
Measurements of the spectra of planets and stars with various  Magnitude

All spectra are corrected for spectral sensitivity of the 
system: telescope + sensor + atmosphere



© Fraunhofer 

Telescope experiments

114
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Telescope experiments

115

Comparing with literature date

Sensor measurements https://www.astrogeo.va.it/astronom/spettri/pianetien.htm

Comparison of the spectra of the 
moon (blue line) and Jupiter (red 
line)

Methane bands typical of 
Jupiter atmosphere

CH4
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Telescope experiments

116

Conclusions: Sensor can detect objects with magnitude down to ~6 with acquisition time of ~0.2-1 s per spectrum
Correction for spectral sensitivity gives satisfactory agreement between the measured and reported spectra of 
space objects

Next step: realigning the telescope with synchronised PC clock
Measurements of satellites
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Designing the telescope and spectrometer for space platform

117

Spectrometer design

Spectral resolution: 7 nm
Spectral range: 450-950 nm
Sensor size: 20.48 mm
Pixel size: 10 um
Required dispersion: 35 nm/mm
Grating: 300/mm
Entrance slit: 200 um

Calculated focal length of objective: 95.2 mm
Assuming F#=4, required objective diameter: 23.8 mm (close to standard 1” optics)
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Designing the telescope and spectrometer for space platform

118

Spectrometer initial design
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Designing the telescope and spectrometer for space platform

119

Spectrometer optical design optimisation
Slightly increased distance between the objective and diffraction grating: Input slit, the grating and the sensor are in the 
same plane now (simplifying design and assembly)
Objective – aspherical surface
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Designing the telescope and spectrometer for space platform

120
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Designing the telescope and spectrometer for space platform. Spot diagrams

121
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Designing the telescope and spectrometer for space platform

122

Conclusions 

Optical design of the telescope and spectrometer for sensing in space is finished

Telescope: Cassegrain type, with aspherical achromats for light focusing into a 200um fibre
Fibre coupling efficiency >50%.
Mechanical sizes 400x150 mm

Spectrometer: Ebert scheme. With 200 um input slit. Sensor - Capella CIS120. 2048*2048 pixels
Mechanical sizes 100x50 mm 

Zemax files with optical schemes will be attached to the report
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Telescope experiments, using mount offset

Starlink 1272, 7/3/23, 20:20 Starlink 1293, 7/3/23, 20:30 
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Telescope experiments, using mount offset

Starlink 1301, 7/3/23, 20:02 Landsat5, 7/3/23, 20:42 
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Ground sensor results and the modelling

125

Measured reflectivity of an object in space, R_m_o:

R_m_o= I_m_earth/I_m_illum_sun

R_m_o= (I_sun*T_atm*T_sys*R_m_o)/(I_sun*T_atm*T_sys)

I_m_earth – intensity of light from the object 
measured by the telescope system on Earth

I_m_illum_sun – intensity of sunlight measured by 
the telescope system on Earth

T_atm – transmittance of the atmosphere

T_sys – transmittance of the telescope system

I_sun – intensity of sun, extra-terrestrial

I_s_earth – simulated intensity of light from the 
object on the telescope system on Earth

Simulated reflectivity of an object in space, R_s_o:

R_s_o= I_s_earth/I_s_illum_sun

R_s_o= (I_sun*T_atm_MODTRAN*R_s_o)/(I_sun*T_atm_MODTRAN)

Ideally: R_s_o=R_m_o and I_s_earth=I_m_earth

I_s_illum_sun – simulated intensity of sunlight on 
the telescope system on Earth

T_atm_MODTRAN –transmittance model of the 
atmosphere used in simulation
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Ground sensor results and the modelling

126

Experiment – measurements through real atmosphere
Simulation – using MODTRAN model
Potential discrepancy

Possible solution:

Setting I_s_earth=I_m_earth

R_s_o = R_m_o*k*Tsys where k=T_atm/T_atm_MODTRAN

Measuring k*Tsys at cleat sky conditions:

k*Tsys=I_m_clear_sky/(I_sun*T_atm_MODTRAN)

I_sun – using 2000 ASTM Standard Extraterrestrial Spectrum Reference E-490-00
T_atm_MODTRAN – data available
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• Data taken directly from the sensor or simulation differ significantly. There are 
clearly differences between what was captured with real atmospheric conditions 
and what was simulated based on MODTRAN

Straight From Sensor/ Simulation
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• After correction we have more similar spectra. This does, however, require a different 
atmospheric correct function be used for the real data than the simulation

• This is not the same, but we also have solar panels in 1 but not the other.

After Atmospheric Correction
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• After all pre-processing spectra appears ready for unmixing

After All Pre-Processing
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• Unmixing of Starlink satellites show aluminum and gold blanket, but no solar panel –
materials seen are consistent over time and satellites

Unmixing of Starlink Satellites

Figure: Unmixing of Starlink 1272 Satellite with 34 time series measurement
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• Unmixing of Landsat satellite also shows aluminum and gold blanket, but no solar 
panel – materials seen are again consistent over time though only 1 satellite was 
measured

Unmixing of LandSat Satellites

Figure: Unmixing of Landsat5 Satellite with 6 time series measurement
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of EXCELLENCE   

• Unmixing of ISS show a slightly wider variety of materials – and a variation in 
material detection around time 60

Unmixing of ISS

Figure: Unmixing of ISS with 120 time series measurement
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• Previous demonstrated unmixing of real data, however, lack of solar panels made us 
unsure of reliability of results

Material Abundance and Prediction
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• New solar panel imaged in our lab to 
explore spectra of panel components

Further Exploration of Real Data Unmixing
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• We were unable to find much of these in the real data, perhaps suggesting the 
connector material and panel is different than what we observed here

Further Exploration of Real Data Unmixing
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• The unmixing algorithms estimates the 
abundance of each material present

• We can compute this synthetic mix and 
compare to the received signal to assess 
how accurate the results appear to be

• It is clear that for the solar panel on 
earth, where we know we have the right 
materials in the library, performance is 
good

• For the ISS where we are not sure of this, 
performance is worse

• This is supported by the good results for 
the simulation

• The logical conclusion is that there are 
materials or spectral differences not 
accounted for in our existing library

Further Exploration of Real Data Unmixing

ISS

Solar 
Panel 
Imaged 
on Roof



AEROSPACE CENTRE
of EXCELLENCE   

• Performance appears better for other 
satellites

• Again this suggests it depends on how 
accurately our library represents the 
spectra of materials that are present

Further Exploration of Real Data Unmixing

COSMOS

COSMOS (with matt gold blankets)

Very 
different 
gold foil
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1. Create an object classification system.
• Improve current model to include material degradation and other effects
• Create a database of objects and associated material distribution on their surfaces. Note that accuracy of shape is 

not essential but rough material abundance per surface is important.

• Generation of a database of spectral time series for different attitude motions for each object.

• Training a deep-classifier to associate spectral time series to object type 

2. Extend the work on attitude motion
• Exploit the analogy with image classification 
• Extend the database of time-varying spectral responses 

• Train a deep-learning model to return quaternions from time series

• Develop a measurement model to associate pointing direction to spectral responses 
• Association of materials to pseudo-surfaces (unknown shape)

• Association of directions to pseudo-surfaces

3. Validation
• Acquisition of observational data of known objects

• Spectral unmixing 
• Application of algorithms and validation of assumptions 

Next Steps
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