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Abstract 

Our main objective in this ESA contract study was to define a 

concept how an existing European radar can be used to detect and 
characterize small-size space debris (SD) by applying low cost hardware 
and software upgrades. We concentrate on the EISCAT incoherent 
scatter ionospheric radars, located in northern Scandinavia and on 
Svalbard. We show performance estimates which indicate that the 
EISCAT UHF (930 MHz) radar is the most sensitive and accurate of 
the EISCAT radars for SD work. The expected performance is the 

same as the German FGAN radar performance. 
For parameter estimation we apply Bayesian statistical inversion. 

We start from a four-parameter model (amplitude, target range, ve- 
locity, acceleration) of the SD signal and find a probabilistic solu- 
tion for the parameters, given a sampled noisy signal m. The pa- 
rameter estimation leads to maximization of a quantity we call the 
Generalized Match Function (GMF). The GMF matches the mea- 
sured signal against a time-shifted, frequency-shifted transmission Tt,o;, 

GMF = 1< m, Tt,o; >1. The GMF method automatically makes use of 
the signal coherence to enhance detection sensitivity. Also, since the 
transmission To,o is directly measured, very little needs to be known 
about what the host radar is doing, the full information we can gain 
from the measurement is contained in m and To,o. We develop the 
GMF formalism from first principles in this report. 

For the SD measurements we want coherent integration, which 
EISCAT neither needs nor provides for. To allow atmospheric and 
SD measurements to proceed simultaneously, we use a separate re- 
ceiver backend of our own in parallel with the EISCAT receiver. The 
SD receiver has a multi-channel sampler, a memory buffer, and pro- 
grammable control. The samples flow to the buffer which is visible to 
a workstation. The workstation stores the data to disk at the sampling 
rate, 2-3 Msamples/s. In this study, we analysed our data off-line; the 
final aim is real-time detection. We estimate that real-time detection 
in the GMF scheme requires at least 1 Gflop/s computing speed. We 
have developed the necessary programs to scan, archive and analyse 
off-line the large amounts of data, 20--30 GB/h, that our approach 
produces. We describe the main features of this software. 

A test campaign in February 2001 at the EISCAT UHF radar 
showed that objects with diameter about 2 cm are readily observable 
when in the centre of the radar beam. In 4.5 h, we found 56 clearly de- 
tectable hard targets between 490 and 1480 km altitude, with effective 
diameters between 1.9 cm and 52 cm. We elaborate on these results. 
We also compare the strongest event with catalogue predictions. 

We conclude that piggy-backed SD measurements in EISCAT are 
efficient, technically straightforward, and (almost) ready to go. 
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1.1 Background and overview 

It is estimated that there are approximately 200 000 objects larger than 
1 cm currently orbiting the Earth, as an enduring heritage of four decades 

of space activity. This includes the functioning satellites, but by far most of 

the objects are what is called space debris (SD), man-made orbital objects 

which no longer serve any useful purpose. Many of the small-sized (less than 
10 cm) particles are due to explosions of spacecraft and rocket upper stages, 

but there are also exhaust particles from solid rocket motors, leaked cooling 

agents, and particles put into space intentionally for research purposes. The 

large (> 10 cm) objects have known orbits and are routinely monitored by 

the U.S. Space Surveillance Network, but information of the smaller particles 
is fragmentary and mainly statistical. 

Our aim in this work has been to determine the feasibility of using the 

European ionospheric radar system EISCAT in northern Scandinavia for 

the study of small-size SD. Since the early 1980s, the EISCAT radars have 

been performing ionospheric measurements about 2000 hours per year. In 
this feasibility study we have shown that it is technically straightforward to 
piggyback the SD measurement on top of the normal EISCAT ionospheric 

measurements, without interfering with those measurements. This could 

open up an extensive and, in terms of sensitivity and accuracy, competitive 

new radar resource for SD measurements. 
The EISCAT system [1, 2, 3] consists of three separate radars: monos- 

tatic VHF radar, located near Tromsø, Norway, and operating at 224 MHz; 

monostatic but two-antenna EISCAT Svalbard Radar in Longyerbyen, Sval- 

bard, operating at 500 MHz; and tristatic EISCAT UHF radar at 930 MHz, 
with transmitter in Tromsø and receivers in Tromsø and in Kiruna, Sweden, 

and Sodankylä, Finland. All the transmitters operate in the megawatt peak 

power range and routinely utilize high (10-20%) duty cycles. Except for a 

few special campaigns related to meteor measurements [4, 5], EISCAT has 

not been used to measure hard targets. The normal ionospheric EISCAT 

experiments, especially on the VHF radar which customarily measures at an 

altitude around 1000 km, see often, typically once in 5-10 minutes, a point- 

like, Doppler-shifted target, which stays visible from a few seconds to half a 

minute. These strong echoes are called "satellites" by the EISCAT commu- 

nity, and are a considerable nuisance in the ionospheric work. Slightly less 

frequently, the satellite echoes are actually observed by all EISCAT radars, 

but to our knowledge, no study of them has ever been made. 

Even though capable of seeing hard targets, the normal EISCAT ex- 

periment setup is not very suitable for detailed measurements of SD. The 

time resolution is rather poor, typically 5-10 s, and the range resolution has 

traditionally been several kilometers in the altitude region above 600 km 

which is of interest in SD measurements. Most problematic is that the tra- 
ditional EISCAT experiments operate in the "power domain", by computing 
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for each transmission-reception cycle, the interpulse period (IPP), various 
signal autocorrelation estimates, called the lagged products, and only saving 
the (averaged) products. Power domain is fine for the ionospheric plasma 
where the signal correlation times are shorter than the IPP, and thus the 
signal is incoherent from IPP to IPP. However, operating in power domain 
means unnecessary neglect of phase information for signals with phase co- 
herence time up to several hundred milliseconds, covering tens or hundreds 
of IPPs. For signals with long phase coherence time it makes good sense 

to work in the "amplitude domain", by adding together individual complex 
samples in such a way that they have nearly identical phase. This coherent 
integration enhances the signal with respect to the incoherent background 
noise, making it easier to detect weak signals. 

Because of the problems in the standard EISCAT experiment arrange- 
ments from the SD measurement point of view, and because of our principle 
of non-interference with EISCAT operation, we have not used EISCAT dig- 
ital signal processing facilities in this work. Instead, we have received the 
analog signal in parallel with the EISCAT receiver, with a separate receiver 
backend unit of our own. We have hooked to the the EISCAT analog signal 

path on a suitable coupling point, provided by EISCAT. After that point, 
we have sampled and processed the signal with our own data acquisition 

system. 
The use of a separate signal processing system, fully under our own 

control, has allowed us to implement dedicated amplitude domain signal 
processing. The basis for our SD detection and data analysis is Bayesian 
statistical inversion [6]. The starting point is a parametrized model of the 

measurement ~ as 

~(t) = s(A, R, w, aj t) + ')'(0-; t). (1.1) 

The signal s, the target echo, depends on the target range R; the Doppler- 
shift w, which corresponds to the radial velocity; and the Doppler-drift a, 
which corresponds to the radial acceleration of the target. The fourth signal 
model parameter is the amplitude A, which depends on the target cross 

section, target range, and radar parameters through the radar equation. In 
our model, the noise')' is parametrized by its variance 0-2 alone. 

The presence of noise introduces a random element into the measure- 
ment, which, for weak signals, can be the dominating effect. The statis- 
tical inversion approach acknowledges the inherent probabilistic nature of 
a noise-dominated measurement (or of any measurement), and provides a 

well-defined procedure to find the fundamental end result of such a measure- 
ment. The end result cannot be just a set of four numbers A, R, w, a. For a 

noise-dominated situation such a set would be meaningless at the best and 
misleading at the worst. A more complete answer is the posteriori density 

Dp(A, R, w, al~). It is the conditional probability density for the echo pa- 
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rameters actually having values A, R, úJ, and 0:, given the measurement m 

and, possibly, some external information about what to expect. 

Though desirable, it is difficult to present usefully the four-dimensional 

density Dp. When listing measurement results in this report, we give only 

the four numbers A, R, úJ, 0:, and quantities like radial velocity and effective 

diameter, directly derivable from them, but no error bars. Our parameter 

values are the Bayesian estimates. These are the most probable values of 

the parameters, given the measurement. We do not forget about the errors 

completely, though. We have used the statistical inversion theory to estimate 

the achievable parameter accuracy, mainly to compare the performance of 

several radars. In this work the error estimates are based on the linearised 

model of the measurement. The linearised model uses only the lowest-order 

terms in the power-series expansion of the model signal s(A, R, úJ, 0:). We 

discuss the regime of validity of these error estimates in Section 4.2.4 of this 

report. 
The Bayesian parameter estimation leads to a pattern matching problem. 

The task is to find the particular waveform, from a set of model waveforms 

{tR",-"a, (t)} which gives the best fit to the measured noisy waveform m(t). 
We call the quantity indicating the degree of match the generalized match 

function, GMF. For sampled data (sample vectors), we define it by 

I tR",-"a I GMF = <m, IltR",-"all 
> 

, 
(1.2) 

where < x, y > means the inner product of complex vectors and Ilxll is the 

associated norm. Geometrically, this definition means that the GMF is the 

length of the orthogonal projection of the measured vector to the model 

vector. The projection is a suitable quantity to describe how "parallel" or 

similar two waveforms are. Parameter estimation means adjusting the model 

parameters so that the model vector gets as parallel to the measurement 

vector as possible. This is equivalent to finding the GMF maximum. The 

GMF is the central tool in our analysis of SD data. 

It turns out that as a function of R, with fixed úJ and 0:, Eq. (1.2) can 

be viewed as representing a filtering operation, with m the filter input and 

the model waveform the filter. In this sense, the acronym stands also for 

"generalized matched filter". The other parameters besides R then are the 

"generalization". The final result of our GMF-based parameter estimation 

method is not new. It reproduces the well-known result of matched filtering 

that says that the time-reversed replica of any given waveform is the matched 

filter for the original waveform [7, page 156]. However, we will not need the 

filtering aspects of the GMF in this work. 
Neither will we dwell in this work on the connection between our GMF 

and what has been called the (radar) ambiguity function [8, pages 411-420]. 

If there is no noise and no acceleration, our GMF essentially reduces to the 
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radar ambiguity function. For our purposes we find the name GMF more 
descriptive, and also less ambiguous, than the original name--ambiguity 
functions of several different kinds are used extensively in incoherent scatter 
radar data analysis. 

The GMF-based data handling is tailored for efficient processing of the 
coherent echoes of small, smoothly moving hard targets. In particular, the 
method provides coherent integration of the signal. The importance of a 

coherent integrator as a signal detector is that its peak output is propor- 
tional to the signal energy Ws rather than just the signal power. Also the 
noise will manifest itself in the output of the detector; there will always be 
some possibility of confusing pure noise with the signal. For the coherent 
integrator, the ratio Ws/ P')' might therefore appear as a good measure to 
characterize how probable a correct detection is. When the ratio is "large", 
we expect high probability for correct detection. There is a technical prob- 
lem, however. The noise power depends on the receiver bandwidth B via 
the relation P')' = kT')'B, where k is Boltzmann constant and T')' is the noise 

temperature. For the inherently very narrowband SD signals, there is no 

natural receiver bandwidth that we could use as a reference when deciding 
which ratio is large and which is small. We force uniqueness by agreeing 
always to assume unit noise bandwidth. Thus we define our basic quantity 
with which to measure signal detect ability, the energy-to-noise ratio, as 

Ws 
SNRN = 

kT 
. 

')' 

(1.3) 

This is a dimensionless quantity. For correctly sampled signals the sampling 
interval T is the reciprocal of the receiver bandwidth. If the signal lasts for 
N samples, and Ps denotes the mean signal power, we have 

SNR = 
NT Ps 

= 

N Ps 
= N . SNR N 

kT kBT ' 

')' ')' 

(1.4) 

where 
SNR = Ps/ P')' = IAI2/(T2 (1.5) 

is the usual signal-to-noise ratio, computed from the complex signal ampli- 
tude A and the variance (T2 of the Gaussian noise. The directly measurable 
quantities SNR and N depend on the receiver bandwidth used in the mea- 
surement, their product SNRN does not. 

In addition to justifying our notation for the energy-to-noise ratio, (1.4) 

makes explicit the main benefit of coherent integration: the integration am- 
plifies the signal-to-noise ratio, directly proportional to the integration time. 
In the GMF method, the length of integration is in principle limited only 
by the coherence time of the signal. We can expect coherent integration to 
have considerable effect on detection sensitivity and parameter estimation 
accuracy. 
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1.2 Study objectives 

According to our contract agreement with ESOC, the objective of this study 

is "to define a concept how existing European radar or radio astronomy 
facilities can be used to detect and characterize small size debris by applying 

low cost hardware and software upgrades. In this study a suitable and cost- 

efficient concept shall be developed and its feasibility shall be demonstrated 

in a test campaign. The data recording and analysis chain shall be described 

in full detail" [9]. 

1.3 Structure of the study and organization of this 

report 

This study was formally divided into four work packages 

1. definition of a concept to detect small-size debris, 

2. specification of data collection and analysis, 

3. software and hardware upgrades, 

4. test campaign. 

In work package 1, we defined our measurement model. We applied sta- 

tistical inversion to linearised version of the model, to compare the EISCAT 

radars as well a few others in terms of accuracy and sensitivity. The main 

purpose of the comparison was to find the EISCAT radar that would be most 

suitable for the test campaign of WP4. This work is described in Chapter 2 

of this report. 
In work package 2, we presented our data collection system. We had 

actually used a preliminary but functional version of the data collection 

system already in November 1999, a few months before entering the ESA 

contract in January 2000, to do ionospheric measurements at EISCAT Sval- 

bard Radar. The data collected during that campaign turned out to be very 

useful test data when developing the GMF-based analysis procedures during 

WP2. These developments are described in Chapter 3. 

In work package 3, we continued developing the analysis software. Also, 

a new version of the data collection system was being developed by a Finnish 

company, Invers Ltd, which had actually also lent us the hardware we had 

used in the November ESR measurements. These developments, both in 

software and in hardware, were low level and are not interesting enough to 

be detailed separately in this report. 

We carried out the test campaign of work package 4 in February 2001 

at EISCAT UHF radar in Tromsø, in connection with a two-week Finnish 

EISCAT campaign. Analysis results from the test campaign are detailed 

and discussed in Chapter 4. 
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The structure of this report follows closely the order of the work pack- 
ages. After this introductory chapter, in chapter 2 we introduce the theory 
on which our measurements and analysis are based. We start with a simple 
sensitivity comparison of several radars, based on the radar equation. Then 
we specify our signal model and give a relatively self-contained derivation of 
the posteriori density Dp. The signal model assumes single-frequency trans- 
mission and hence misses an interference that turned up in actual analysis; 

discussion of this complication is in Appendix A. We derive Bayesian esti- 
mation formula for the basic parameters range, velocity, acceleration, and 
amplitude, showing the crucial role of the GMF. We use linearised theory 
to make accuracy comparisons between the various EISCAT radars. Next 
we describe the discretization that we have used for the actual detection 
and parameter estimation, and summarize the estimation procedure. In the 
last part of chapter 2 we handle the computational aspects of the GMF 
method. In particular, we estimate the computing power needed to perform 
SD detection in real time. 

In chapter 3 we describe our measuring and analysis system, both the 
hardware and the software. First we give an introduction to the EISCAT 
UHF radar, which is the radar we used during the test campaign. Then 
we describe our SD receiver and explain how it was used during the test 

campaign. On the software side, we explain the whole processing chain, from 
the sampling done under control of firmware, through scanning, detection, 
and archiving, up to the plotting of summaries of analysis results. 

In chapter 4 we describe the test campaign and the analysis results. We 
summarize the campaign execution. Then we display the analysis results in 
various ways. We use the analysis results to discuss the achievable sensitiv- 
ity and accuracy, and to evaluate the usefulness of a fast but approximate 
method for GMF evaluation which we call the FastGMF algorithm. We 
defer discussion of the details of the underlying EISCAT experiments and 
the SD analysis setup to experiment-specific Appendixes Band C. 

In chapter 5 we summarize what we have learned from this study, but 
also discuss a few problems, related to measurement accuracy and signal 
coherence. We state our conclusions from the test campaign. Finally, we 
suggest steps for further development. 
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2.1. ANALYSIS BY THE RADAR EQUATION 17 

2.1 Analysis by the radar equation 

2.1.1 Radar equation for point targets 

The power observed at the radar receiver is computed from the radar equa- 

tion, which for point targets reads 

Pt G Aeff 
Pr = 

47rR2 
()"* 

47rR2' 
(2.1) 

where Pr is the power at the receiver input, Pt is the transmitter power, 
G is the antenna gain, R is the range to the scattering point, Aeff is the 

effective area of the antenna, and ()" * is the radar scattering cross section of 

the target [8, page 4]. The effective area is related to the antenna gain by 

G>..2 

Aeff = 

47r 
' 

(2.2) 

where>.. is the wavelength of the transmission. 

2.1.2 Scattering cross section of a perfectly conducting sphere 

The radar scattering cross section depends on the form and the size of the 

reflecting particle in a complicated manner. For the modelling purposes we 

assume that the debris particle is a sphere. Then, for diameters d small 

compared to the wavelength, the scattering cross section is proportional to 
d6, and for large diameters it is equal to the geometrical cross section i7rd2. 

The first region is called the Rayleigh region and the latter the optical region. 

In between there is the resonance or Mie region, in which the scattering cross 

section shows an oscillatory behaviour. A simple rule says that the Rayleigh 

approximation is valid if the diameter is less than one fifth of the wavelength 

and the optical approximation when the diameter is larger than 10 times 

the wavelength. The cross section is shown in Fig. 2.1. 

The thick line in Fig. 2.1 gives a simplifying approximation, in which the 

first part follows the Rayleigh approximation, the latter part is the optical 

approximation, and the resonance region is neglected altogether. This is 

reasonable because in this study the radars operate mostly in the Rayleigh 

region. The high-frequency radars operate in the resonance region, but there 

is no point in using the curve in full, as the true debris particles are not per- 

fect spheres, and the result is approximate in any case. Hence the scattering 

cross section in our model calculations obeys the formula [10, page 95] 

()" { 9(";d)4, 
i7r~2 = 

1, 

when d < >..j(7rV3) 
, 

when d > >"/(7rV3). 
(2.3) 
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Figure 2.1: The scattering cross section divided by the geometrical cross 

section for a perfectly conducting sphere. The thick line follows first the 

Rayleigh approximation and then the optical approximation. The dashed 

line indicates the crossover point. 

2.1.3 A simple sensitivity comparison of six radars 

Table 2.1 lists three EISCAT radars and three other radars included for com- 

parison. The non- EISCAT radars are the TIRA tracking radar of Forschungs- 

gesellschaft für Angewandte Naturwissenschaften (FGAN) at Wachtberg in 

Germany, a new weather radar of the Finnish Meteorological Institute at 

Luosto (LUO) in Finland, and a hypothetical radar which we call the U5G. 

The U5G radar combines the 32 m antenna of the EISCAT UHF system 

at Sodankylä with a 3 kW transmitter to operate at about 5 GHz. The 

relevant properties of the radars are given in Table 2.1. 

We want to compare the sensitivity of the radars for small-size SD de- 

tection, that is, the radars' ability to detect weak, but coherent, signals. We 

assume that all the radars can perform coherent integration. Then we can 

use the energy-to-noise ratio SNRN as the measure of sensitivity. We have 

computed in Table 2.1 two benchmark numbers related to SNRN. First, we 

predict the SNRN that the radars should observe when measuring a "stan- 

dard target", a 3 cm sphere at 1000 km range. We assume 0.1 s coherent 

integration. Second, we compute the diameter that a target at 1000 km 

range should have in order to produce SNRN = 1, again with 0.1 s coherent 

integration. We call this diameter the reference diameter. 

The result of the comparison is that the EISCAT UHF and the FGAN 

radars are the most sensitive of the existing radars. The other radars are 

weaker for detection of small SD particles. It appears that the suggested 
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Table 2.1: Sensitivity comparison of six radars. The ESR system refers to 
the 42 m antenna. 

Radar properties VHF ESR UHF FGAN U5G LUO 
Frequency [MHz] 224 500 933 1330 5000 5625 

Wavelength [m] 1.338 0.600 0.321 0.225 0.060 0.053 
Transmission [MW] 3.0 1.0 1.5 1.6 0.003 0.3 
Antenna gain [dB] 43.1 45.3 48.1 49.7 62.5 47.5 
Max duty cycle [%] 12.5 25.0 12.5 3.7 25.0 0.12 
Noise temperature [K] 100 60 80 209 60 300 

Energy-to-noise ratio for 3 em target 
Cross section 0'* [mm-Z] 0.16 3.9 47 190 710 710 
Received power [a W] 0.18 0.81 15.3 69.3 12.1 0.96 
ýSNRN 1.3 4.9 13.2 9.4 19.1 0.2 

I 
Ref. diameter [em] 2.5 

I 1.61 1.1 I 1.31 0.5112.71 

special U5G system, which combines a high frequency, low power transmitter 
with a large antenna, would be by far the most sensitive system. 

The reference diameter must not be thought as the minimal detectable 
size. What can actually be detected depends on how the detection is actually 
done, and can be done. It turns out that the condition SNRN = 1 is quite 
too weak to ensure reliable detection. We found during the test campaign 
that we actually need ýSNRN to be about 5 for the target to be clearly 
detectable. Therefore, the actually detectable size is considerable larger 
than the reference diameter, see Fig. 4.3. 

2.2 Statistical inversion 

2.2.1 Signal model 

We denote the radar transmission by 

T(t) = i?(t). exp(iWradt), (2.4) 

where the slowly varying fT(t) is called the transmission envelope, and Wrad 
is the radar radio frequency (RF). We assume a pointlike target, at range 
Ro. If the target is stationary, the received backscattered echo s(t) is just 
the transmission, delayed by pulse propagation delay 2Ro/ c and scaled by 
some scale factor Ao. In the receiver, the RF signal Ao T (t - 2Ro / c) is first 
translated to an intermediate frequency (IF), T -t T', and then averaged 
by the receiver impulse response p(t). In our measuring system, we actually 
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form the impulse response digitally by adding samples, and the samples 

are integer number of wavelengths apart. The complex exponentials can be 

taken out from the convolution p*T', and we have 

s(t) - Aop*T'(t - 

2Ro) 
c 

T 2Ro. . 
2Ro 

- AOPH (t- -) .exp(uLiIFt) .exp(-z.Lirad-)' 
c c 

(2.5) 

We assume that during the beam passage the target has constant radial 

acceleration, ar = const = ao. Then the target range is 

1 
R(t) = Ro + vot + 2aot2, (2.6) 

where vo and Ro are the initial velocity and initial range, at time t = O. 

We use Eq. (2.5) also for a slowly moving target, with Ro replaced by R(t). 

Then the echo model becomes 

s(t) = Ao' ERo,wo,ao(t). exp(iwIFt). exp(-iwrad 
2Ro), 

c 

(2.7) 

where 

R O( 2R(t)) 
(') (. 2) 

E o,wo,aO(t) - E t - - . exp -2Wot . exp -20:0t , 

c 

EO(t) - pHT(t), 

Wo = 2vOWrad/ c, 

0:0 
- aOWrad/ c. 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

We assume that the transmission T(t) is also directly available as a "trans- 

mission sample signal" 
, 

processed similarly to the actual reception, so that 

it sees the same receiver impulse response. The factor EO(t) in (2.8) is the 

envelope of this IF signal. Note that in Eq. (2.8) we have taken the complex 

exponentials outside the convolution. This is a good approximation as long 

as the phase drift due to Doppler-frequency, flcPw = wotp, and the phase drift 

due to the acceleration, flcPa = o:ot~, are small during the duration tp of 

the impulse response. The impulse response duration is about equal to the 

sampling interval T, T '" 1 fLS. Typical Doppler-velocity is 1.5 km s-l, which 

corresponds to Wo = 211" . 9 kHz. Typical Doppler-acceleration is 100 m s-2, 

which corresponds to O:otp = 211".0.3 mHz. Clearly, both flcPw and flcPa << 1. 

The last factor in Eq. (2.7) is constant when there is only a single fre- 

quency in the transmission, and can be dropped. In the case of multiple 

frequencies the term must be taken into account, this case is handled in 

Appendix A. The factor exp(iúJIFt) will either be paired with its complex 

conjugate in an inner product, or be taken the magnitude of. In both cases, 

it will yield unity. We will drop it from our expressions from now on. 
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We denote the sampled waveforms with bold typeface, so that for exam- 
ple eR,w,c> is a vector with elements 

f~'W,c> 
= fR,w'C>(nr). (2.12) 

2.2.2 Measurement in the presence of noise 

The measured, complex-valued (detected) signal m contains noise ^f on top 
of the target echo s, 

m(t) = s(t) + ^f(t). (2.13) 

We assume complex Gaussian noise, that is, 

^f = 
^fre + i . ^fim <------+ (^(re, ^fim) , (2.14) 

where ^fre and ^fim are independent Gaussians, with zero mean and variance 
(Y2/2. Then, for any given moment of time, the joint probability density 
function (PDF) of the two-dimensional vector (^(re, ^fim) is 

1 1 
D(^() = ~ exp( -21^(12). 

7r (Y (Y 

(2.15) 

With this normalization, (Y2 equals the mean noise power 

P"( = Ebl2 = E(^(;e + ^f~) = (Y2. (2.16) 

We assume that the noise samples ^fn 
= ^f( nr) are uncorrelated. This re- 

quires that the duration of the receiver impulse response is not longer than 
the sampling interval r. Then the samples mn = m(nr) are statistically 
independent. We will also assume that the noise is stationary, even though 
this is a rather poor approximation for the actual radar data. 

We denote by D(mnlsn) the conditional PDF of mn, given Sn. This is 

just the PDF of the noise, 

1 1 2 D(mnJsn) = ~ exp( -2lmn - snl ). 
7r (Y (Y 

(2.17) 

Assume that we take M samples, and denote by m, 8 and r the M-dimen- 
sional sample vectors. For future reference, assume also that we have N 

signal samples, so that the signal vector 8 is padded to length M by zeros. 
Because of the assumed independence of the samples, the conditional joint 
density of all the M samples ("measurements") is 

M-l 1 1 
D(mI8) = II D(mklsk) = 

( 2)M' exp( -211m - 8112). 
7r(y (Y 

k=O 

(2.18) 
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We used the standard notation for complex vectors x = (XO . . . 
X M - d, with 

the inner product of x and y as 

M-l 
<x,y>= L XkYk 

k=O 

(2.19) 

and the norm as 

Ilxll = v<x,x>. (2.20) 

2.2.3 Parameter estimation, inversion solution 

Based on a M-point measurement m, we want parameters A, R, w, and a of 

the signal. In general, it is not possible to solve the parameters uniquely, and 

the best we can then do is to find a joint probability density for the various 

conceivable values. Equation (2.18) gives the so called direct theory of the 

estimation problem, the conditional probability density of the measurement 

m, given signal s. The inverse problem is to find the PDF of the signal 

parameters, A, R, w, a in this case, given a measurement m. This sought- 

for PDF we denote by Dp(A, R, w, aim) or by Dp(slm). It is called the 

posteriori density. 

For brevity, we rewrite the direct theory (2.18) as 

1 
r. D(mls) = D(mIA, R,w, a) = 

(7ra2)M 
. e 

, 
(2.21 ) 

where the "likelihood function" L = L(A, R, w, a, m) is 

-1 2 

L=21Im-s(A,R,w,a)ll, 
a 

(2.22) 

and s(A, R, w, a) means the signal model vector that corresponds to the 

indicated parameters. 
All aspects of the measuring situation would be known if we would know 

the joint probability density Dsm(s, m), for all m and s. According to 

the basic property of conditional probability, the joint density Dsm can be 

expressed in two ways, 

D(slm)Ds(m) = Dsm(s, m) = D(mls)Dm(s), (2.23) 

where Dm(s) and Ds(m) are 

Ds(m) = J ds Dsm(s, m) (2.24) 

and 

Dm(s) = J dm Dsm(s, m). (2.25) 
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Solving Eq. (2.23) for the sought-for density D(slm) gives the Bayes 
inversion formula 

1 
Dp(slm) = 

-( ). Dm(s) . D(mls). 
Dsm 

(2.26) 

In the context of statistical inversion theory, the marginal density Dm(s) is 

called the prior density or the a priori density, and is denoted by Dpr (s). 
According to its definition (2.25), the prior density describes the relative 
frequency of the parameters in the target population. The joint density 
Dsm is, of course, not known (if it where, there would be nothing left to do), 
and so the a priori density cannot be actually computed from Eq. (2.25). 
Instead, one assumes some form for Dpr, and inserts it to the right-hand 
side of Eq. (2.26). We incorporate a priori information into the inversion 
problem in this way. For lack of anything better, or for simplicity, it is 

common to assume a uniform a priori density in some interval, and zero 
outside. In the SD measuring problem it might make good sense to use 
non-flat a priori distributions for all parameters. However, in this study we 
assume flat a priori distribution. 

Once Dpr and the direct theory density D(mls) have been fixed, the 
factor Ds(m) in (2.26) can be determined, at least in principle, by requiring 
that Dp(slm) is a properly normalized probability density. We have 

Dp(A,R,w,alm) - C(m) e.c(A,R,w,a,m) 

- C(m) e-~llm-s(A,R,w,a)112, (2.27) 

where C(m) is a normalization factor that does not depend on A, R, w, a. 
The posteriori density Dp contains everything there is to be known about 

the target parameters on the basis of the measurement m and the prior in- 
formation; it is the complete answer. If the actual target parameters are 
Ao, Ro, wo, ao, we hope that the posteriori density would be well concen- 
trated around the point (Ao, Ro, wo, ao). If we are pressed to give, instead 
of the full distribution, single numbers as the solution of estimation prob- 
lem, the Bayesian estimate is the vector (Â, R, 0, â) that maximizes the 
posteriori density, with m fixed. 

Equation (2.27) shows that we get the signal parameter estimates by any 
of three equivalent ways, namely, 

to> from the maximum of the posteriori density Dp, 
to> from the maximum of the likelihood function ,c, 
to> from the minimum of the norm K = a\-Ilm - s(A,R,w,a)1I2. 

To find the minimum of the norm, we write K as 

a2K = IIml12 + IIsI12 - 2Re(<m,s>) 
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- Ilm112+ \11811- <~~1~>12 -1<~~1~>12 

I 12 2 < m, 8> 2 
- Ilmil + 11811- 

11811 
- GMF(R,w,a) , 

(2.28) 

where we observed that the GMF, as defined in Eq. (1.2), does not depend 

on the signal amplitude A, 

l<m,eR,UJ,a>1 
GMF - 

IleR,UJ,all 

1< m, AeR,UJ,a > I 
IIAeR,UJ,all 

- I<~~I~>I. 

(2.29) 

Equation (2.28) shows that the parameter estimation task divides into two 

jobs: minimizing the second term (to its absolute minimum, zero), and 

maximizing the GMF term. We have the following two-step estimation 

recipe. 

1. Maximize the term GMF2 in Eq. (2.28). This gives the estimates R, 

wand â, 

(R, w, â) = arg max GMF. 
R,UJ,a 

(2.30) 

2. Select the A in 8 = 
AeR,w,â in such a way that the second term in 

(2.28) becomes zero. This requires 

~ <m,eR,w,â> 
A= ~ . 

IleR,w,âI12 
(2.31 ) 

From (2.31) we get 

Iisil = II ÂeR,w,âII = GMF(R,w, â). (2.32) 

The signal energy Ws is the sum of the squares of the signal samples, 

times the sampling interval, 

Ws = L TIsnl2 = T118112, (2.33) 

so that from (2.32) we get an estimate for the signal-to-noise ratio, 

SÑR = 

(Ps) 
= 

Ws/(NT) 
= 

~ GMF(R,w,â)2, 
P a2 N a2 

'Y 

(2.34) 

where N is the number of signal samples. 
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Under very good SNR, m ~ So = AoeRo,wo,ao, and we have 

GMF(Ro, wo, ao) ~ 
1 < AoeRo,wo,ao, eRo,wo,ao > I 

IleRo,wo,ao II 
II AoeRo,wo,ao II. (2.35) 

On the other hand, still under high SNR, it follows from the Schwartz in- 
equality that 

GMF(R,w,a) :S II AoeRo,wo,ao II, for all R,w,a. (2.36) 

Equations (2.36) and (2.35) imply that (Ro, Wo, ao) is the GMF maximum 
point, and we have GMFmax = Ilsoll. Thus we have the desirable result that 
our estimation method is able to recover the actual signal parameters in the 
case of very high SNR. 

The behaviour of the parameter estimates under poor SNR is much less 

clear. For instance, the estimate Iisil will not go to zero when the actual 
signal vanishes. When the signal is very weak, m ~ r, and the estimate 
(2.32) becomes 

N+j-l I 
Iisil ~ æ~ ~ fn'Ynl' 

w here the coefficients f n depend on (R, w, a) and the shape of the transmis- 
sion envelope, and are normalized by L: Ifnl2 = 1. The index j relates to the 
range parameter R. Obviously, whatever value the Iisil in (2.37) evaluates 
to, it will not evaluate to zero, and, for small signal amplitude, it is also 
essentially independent of the amplitude. This means that the amplitude of 
weak signals tends to be overestimated (see Fig. 2.10). 

Even when we take in (2.37) the max only over the wand a parameters, 
at a fixed range, the result is non-zero, and is almost independent of the 
signal for weak signals. It is also independent of the range. This prompts 
us to define for target detection purpose a dimensionless quantity, which we 
call simply the "Ratio" and denote by R, as 

(2.37) 

R = max 
GMF(R,w,a). 

w,a a 
(2.38) 

The Ratio maximum, Rmax, is just the square root of the energy-to-noise 
ratio, 

Rmax = maxR = max 
GMF 

= 

Iisil 
= 

rw; 
= JSNRN. 

R R,w,a a a Y P; 
(2.39) 

When there is a target in the measurement, R(R) should exhibit a peak 
near the target range Ro, and, away from Ro, should relax to a more or less 
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Figure 2.2: Distribution of values of "background" R in three experiments. 

TauO data are simulated. The integration time was 0.3 s in all cases. The 

data in each panel are from one full-resolution scan. The dashed line is 

log-normal distribution with the same mean and variance (/.L, (12) as the 

measured data. 
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noisy "background" level, in principle computable from expressions of the 

type (2.37). See Fig. 3.4 for an example of actual behaviour of the ratio. 

Thus, R is a suitable tool to be used in a threshold-based detection scheme 

Detection +----t max R > Threshold. 
R 

(2.40) 

The ratio R, as a quantity to be kept in computer storage, represents a 

sensible compromise between the full three-dimensional, but very large, 

GMF(R, w, a) on one hand, and the single number GMF max, which no more 

indicates the data variability at all, on the other. 

The detection threshold should be set so that we get at most a pre- 

scribed percentage of false detections (detections due to noise only). To do 

this would require knowledge about the distribution of the R values in the 

absence of signal. Figure 2.2 shows a preliminary, numerical inspection of 

the matter. However, we have not based our detection criterion on the false- 

alarm rate in this work. Instead, by experimenting with several threshold 

values, we have set the threshold so high that all our detections actually 

represent real targets. 

2.3 Error analysis in linearised model 

The posteriori covariance matrix L;p of the model parameters A, R,w, a is 

calculated from the equation 

L; = (DTL;-lD)-l 

pm' 
(2.41) 

where D is a matrix formed by the partial derivatives of the model signal, 

s(t) in Eq. (2.7), with respect to the model parameters [11, pages 74-75]. 

Assuming the partial derivates constant amounts to using a linearised model 

of the signal. D T is the (conjugate- )transpose of D, and L;m is the error 

covariance matrix of the measurements. In our case the measurements are 

independent, and hence L;m is diagonal. Moreover, we assume that all the 

measurements, the N individual samples, have equal error (J" caused by sys- 

tem noise. In this case, Eq. (2.41) simplifies to 

L;p = (J"2(DTD)-1, (2.42) 

where (J"2 is the noise power. The errors of the model parameters are obtained 

as square roots of the diagonal elements of L;p. 

2.3.1 Results as a function of diameter 

Figures 2.3 and 2.4 show the relative error of the signal model parameters 

as a function of the sphere diameter for four radars. Two radars shown in 

Table 2.1 were omitted from the model calculations. These were the Luosto 
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Figure 2.3: Relative error of the amplitude and absolute error of the range 
as a function of the sphere diameter. 
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Table 2.2: The absolute error of amplitude A and the relative error of range 
R, velocity v, and acceleration a for the diameters given on the left for the 
EISCAT UHF radar. The values are for 1000 km range and 0.1 s coherent 
integration. 

diameter A R v a 

[em] [m] [m s-l] [m s-2] 

1.0 1.46 717 1.31 101 

1.2 0.84 415 0.76 58 

1.4 0.53 261 0.48 37 
1.6 0.36 175 0.32 25 

1.8 0.25 123 0.22 17 

2.0 0.18 90 0.16 13 

weather radar, because its performance is clearly inferior to the others, and 
the FGAN radar, because it is very close to the EISCAT UHF in its prop- 
erties. 

Most ofthe experiments with the EISCAT radars use phase-coded pulses, 
in which the transmission phase is flipped at selected intervals. The error 
estimates show that the accuracy of the amplitude, velocity, and acceleration 
estimates is not affected by the phase coding. The range determination, on 
the other hand, benefits substantially if the phase is flipped, or gaps are 
added to the transmission, because the edges are what give the accuracy 
for the range determination. Hence all results will be given for phase-coded 
pulses only. 

Warning 

Table 2.2 gives the errors for some selected diameters. We give the error 
limits down to very small diameters. In view of our preliminary results in 
Section 4.2.4 concerning the validity of the linearised model, this might not 
be entirely justified. 

2.3.2 Results as a function of velocity and acceleration 

The value of the radial velocity has a small effect on the error. Within the 
range 0--2000 m s-l, the error of any of the model parameters varies by 
less than a factor of 0.05. Thus we may neglect the velocity in the error 
model studies, and present the results for a single velocity value, which is 
1000 m s-l. 

The values of the acceleration within the range 0-100 m S-2 has a small 
effect on the results, but the effect is even smaller than that of the veloc- 
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Figure 2.5: Inverse of the variance of the range measurement as a function 
of the number of phase flips. Corresponding data points are shown with 
open circles. The fitted line (red) has slope 1.9. The phase codes used in 
the computations are also shown. 

ity. Thus all results shown are valid for any reasonable value of the radial 
acceleration the debris object may have. 

2.3.3 Effect of the phase flips 

The results for range in Fig. 2.3 were given for a phase-coded pulse, because 
the phase coding increases the accuracy of the determination of the range. 
The effect is illustrated in detail in Fig. 2.5 which shows 1/(J"~ as function of 
the number of phase flips. The variance decreases inversely proportional to 
the number of phase flips. This result is useful. The variance (J"~ decreases as 
the number of phase flips increases, but the other parameters are not affected 
by this. The mean number of phase flips in the codes used for calculating 
the results in Fig. 2.3 was slightly less than 12. As the maximum number 
of phase flips would be 24 with the assumptions used, the variance could be 
halved, leading to a y'2 decrease in the error of the range determination. 

2.4 Computational aspects 

2.4.1 Discretization of the model parameters 
The Bayesian parameter estimation method in Section 2.2.3 requires that 
we have a continuously parametrized set of model shape vectors eR,c.J,Q, 

Eq. (2.12), with the waveform ER,c.J,Q(t) defined in Eq. (2.8). The problem 
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here is that it is not clear how we should in practice perform the maximiza- 
tion of the GMF in the continuous case. In this work, we have solved the 
problem in a straightforward manner, by discretizing the parameter space 
into uniform, finite, three-dimensional grid {( Rj, Wk, O:[)} and performing an 
exhaustive search over the grid. 

We introduce also another approximation, replacing in Eq. (2.8) the 
time-dependent propagation delay 2R(t)/c by the constant delay 2Ro/c. 
Typically a single integration lasts for 0.1-0.3 s. During that time most 
SD targets move less than 0.5 km in the radial direction if the antenna 
is pointed nearly vertical. Due to the constant-range approximation, the 
model waveform can become 3-4 I-"s stretched or contracted with respect 
to the actually received waveform. The "mismatch" in GMF due to this 
approximation is small, and on the positive side, we gain the following three 
benefits, one of which is essential. 

Þ The norm IleR,W,Q II becomes independent of the model parameters 

R, w, 0:. It only depends on the transmission shape fT and the in- 
tegration time, and can be taken out of the GMF when computing the 
GMF maximum. This is basically a convenience only. 

Þ We can use the sampled transmission vector eO directly as the first 
factor in the signal model, Eq. (2.12), see below. This is a rather 
necessary feature if we cannot assume anything from the transmission 
shape a priori, or do not want to sample the transmission faster than 
the signal itself. 

Þ Because the only velocity dependence in Eq. (2.12) now is in the expo- 
nential exp(iwt), it becomes possible to evaluate the GMF with FFT. 
This is essential to keep the computations manageable. 

We acquire the echo shape directly by sampling the transmission p*fT(t), 
with the same sampling interval T that we use for the signal sampling. The 
result is the basic signal shape vector eO, with elements 

f~ = P * f 
T (ðT + n * T), n = 0, . . . 

N - 1, (2.43) 

where ðT is an unknown offset, ðT < T /2. We discretize the range with 
resolution ðR corresponding to the sampling interval, 

Rj = j . ðR, j = 0,1, . . . , 

ðR - 

TC 
- 

2. 

(2.44) 

(2.45) 

Typically the sampling interval is 0.5 I-"s, corresponding to ðR = 75 m. 
Reception from range Rj, eRj, is modelled by the transmission eO, shifted j 
steps to the right, 

eRj = (0...0 fg...f~-l 0...0). (2.46) 
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Note that even if the radar target would happen to be exactly at some of 
the ranges Rj, the model eRj could still be a slightly wrong approximation 
of the actual reception, due to the sampling offset ðT. 

The discretization in frequency is determined by the discrete Fourier 
transform that is used in evaluating the GMF, 

Wk = k . ðw, k = 0, ::1:1, 
. . . 

1: 
- 

27f 
- 

27f 
uW - 

Tc 
- 

M T' 

(2.4 7) 

(2.48) 

where M is the number of measured points (the length of the vector m) and 
the typical integration time Tc :=:::J 0.3 s, so ðw :=:::J 27f . 3 Hz. The correspond- 
ing velocity step ðVD, 

À 1 
ðVD = 

2" 
. 

Tc 
' (2.49) 

is 0.5 m s-l for the EISCAT UHF radar with radar wavelength À:=:::J 30 cm. 
Finally, the discretization of the acceleration parameter can be set at 

will and need not even be uniform. If the acceleration is not accounted for 
correctly, the phase of the model signal will drift away from the phase of 
the actual signal during the integration. This leads to mismatch which re- 
duces the value of Rmax. The same thing happens if the velocity is matched 
incorrectly. Due to finite velocity grid spacing, this can always happen to 
some degree. It follows from Eq. (2.49) that the maximum velocity quan- 
tization error, equal to half the velocity grid spacing ðv, causes maximum 
phase mismatch 

~lþv = 27f' 
(ðv/2) Tc 

= 7f/2 
À 

(2.50) 

during the integration. It appears sensible to select the acceleration grid 
spacing ða so that the phase error 

~lþa = 27f' 
(1/2)(ða/2) T; 

À 
(2.51 ) 

due to the maximal acceleration quantization error ða/2 also is 7f /2. This 
gives acceleration grid spacing 

ða = À/T;, (2.52) 

which is 3.5 m s-2 for 0.3 s integration. 
An example of a two-dimensional GMF (we ignore acceleration) is shown 

in Fig. 2.6, plotted on the (v,R)-plain. The data are from our Novem- 
ber 1999 test campaign at ESR, where the active EISCAT experiment was 
the so-called tauO experiment. The data have high SNR, thus Fig. 2.6 serves 
to illustrate the form of the GMF in the absence of noise. Two features are 
conspicuous. First, the GMF is well localized both in range and in velocity 
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around the maximum point. Second, the GMF oscillates strongly both in 

range and in velocity direction. 

In the range direction, the GMF is strongly dependent on the trans- 

mitted codes. In particular, the short-period (600 m) oscillation apparent 

in Fig. 2.6 is due to interference between the two frequency channels of 

the tauO experiment, and would be absent in a single-frequency case. See 

Appendix A for details. We believe that the interference phenomenon is a 

manifestation of the fact that the presence of multiple frequencies actually 

brings in more detailed information about the combination of the range and 

velocity parameters. This additional information is seen as the fine struc- 

ture in the GMF and, therefore, also in the posteriori distribution. There 

are radar applications where two radar frequencies are used to find narrow 

layers or small objects by applying interferometry between the frequencies. 

The fine structure seen in the GMF suggests that such interferometry is a 

built-in feature in the GMF method of analysis. 

The GMF(v = vD,r), as a function of range, is essentially the autocor- 

relation of the code envelope fT. Thus, it has a finite length in the range 

direction. Moreover, the main part of the autocorrelation has width of the 

order of the constant phase element of the phase code, 9 km in the case of 

tauO experiment. 

In the velocity (frequency) direction, the GMF behaviour is not sensitive 

to the code details, instead the shape corresponds to the various time scales 

inherent in the measurement, such as pulse length, interpulse period, and 

integration time. For example, the main mass of the GMF is concentrated 

on a frequency interval of width 2/ L, where L is the length of transmission 

in an IPP, about 2 ms in this case, corresponding to 0.3 km s-1 on the 

velocity axis. 

We now summarize the parameter estimation scheme in the discretized 

case. We denote by Gj,k,l the generalized match function on the parameter 

grid point (Rj, Wk, 0'.1), 

1< ill, 
eRj,ùJk,CtI >1 

Gj,k,l = G(Rj,wk,az) = 

JWT 
' 

(2.53) 

where WT is the energy of the sampled transmission eO, 

WT = Ileol12 = 
IleRj,ùJk,CtII12 for all j, k, 1. (2.54) 

We locate the Gj,k,l maximum position (J,k,f) using the ratio R as an 

intermediate. 

Step 1. For each range gate j, we find and store the maximum value of 

Gj,k,l with respect to k and l, together with the location (Kj, Lj) of 

the maximum, 
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Figure 2.6: Measured generalized match function. The data are from our 
November 1999 campaign at ESR and have the standard experiment tauO 

as transmission. The figure shows the region around the maximum position 
of the GMF. The surface GMF(v, r) is shown in the top-right panel as a 

colour-coded image, while the other two panels show cuts of the surface 
through the maximum position. 

Rj - max G j k z/ (J 
k,1 " 

(Kj, Lj) - 

argmaxGj k I. 
k,l 

, , 

(2.55) 

(2.56) 

Step 2. We find the maximum Rmax of Rj. Its location gives (j,k,i) 

J - 

argmaxRj, 
J 

(k, i) - (Kj,0)' 

(2.57) 

(2.58) 

Step 3. We read the shape parameter estimates from the location of the 
maximizing point, and the SNR estimate from the GMF value at that 
point, 

(R,w,&) - 

(Rj,~,az), 

--- 
1 

2 SNR - 

N 
(Rmax) . 

(2.59) 

(2.60) 
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This straightforward discrete-parameter implementation is an approxi- 

mation to the full continuous-parameter inversion solution which we formu- 

lated in Section 2.2.3. The estimates (2.59) and (2.60) retain the inherent 

errors described by the posteriori density Dp(A, R, w, aim). But, in ad- 

dition, they incorporate quantization errors because only a discrete set of 

parameter values are considered, and they also depend on the related incom- 

plete knowledge of the transmission shape. Under sufficiently good SNR, the 

quantization errors will dominate over the errors due to noise [though the 

required SNR might be very high, see Eq. (4.4) below]. 

The actual computation of the Gj,k,l makes use of FFT. We can expand 

the definition (2.53) as 

M-l 
Gj,k,l = L u~,l) exp(-27ri';) 

, 

n=O 

(2.61 ) 

where 
u~,l) = mnE~_j exp (-i a1T2n2) / jW;. (2.62) 

This shows that for each range gate j and acceleration parameter l, Gj,k,l 

can be computed for all Doppler-shifts k by a single M-point FFT. 

However, we note immediately that the computation task involved in 

detection, using full resolution and without any further approximation, be- 

comes overwhelmingly large. Assume we want to cover 1000 km in range 

and use 0.3 s integration. Assume that the sampling interval is 0.5 /1-8. Then 
M = 600 000, and the FFT requires about 60 Mfiops. The 1000/0.075 ~ 

13 000 range gates require about 800 Gfiops. If we also want to cover, say, 

a ::J::20 m s-2 zone of acceleration values around a range-dependent first- 

guess value, with grid spacing 3.5 m s-2, we need about 8 Tfiops. For a 

workstation one can expect about 1 Gfiop/s computing speed, so we would 

need about 8000 s to handle the 0.3 s of data, or three years to handle one 

hour. Fortunately, it is possible to make several further approximations, so 

in reality the prospects for real-time detection by affordable means are much 

better. 

2.4.2 Fast GMF algorithm 

The radar duty cycle in EISCAT experiments is about 10% in the UHF and 

about 20% at ESR. Therefore, in the GMF computation the FFT is done 

on a vector that has 80-90% of its length zeros, in regularly placed blocks. 

Also, the 10-20 kHz bandwidth needed to cover the SD signal is narrow 

compared to our sampling frequency of a few MHz. This means that not 

much information will be lost if we re-sample our data with reduced rate. 

When it is possible to accept some loss of accuracy, these considerations 

make it possible to reduce the number of arithmetic operations drastically, 
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Figure 2.7: Effect of GMF algorithm on detection sensitivity. The pan- 
els show difference in Rmax when estimated with the full GMF and the 
FastGMF algorithms, respectively. 

typically by a factor of about one hundred. We call the resulting method 
for fast but approximative GMF evaluation the FastGMF algorithm. 

2.4.3 Detection in real time 

The computation speed required for real-time detection depends 

I> on the used GMF algorithm, 
I> on the length of integration, which together with the sampling interval 

determines the input data size M, 
I> on the number of range gates to handle, 
I> on the number of acceleration points to use, 
I> on how soon after a scan we make the next scan. 

We analysed our February 2001 test campaign both with the straight- 
forward "full" GMF algorithm and the hundred times faster approximative 
FastGMF algorithm, and found the difference in detection sensitivity to be 
surprisingly small. For example, Fig. 2.7 shows the difference b.Rmax, 

b.R - 

Rmax(GMF) - Rmax(FastGMF) 
max 

- 

Rmax(GMF) , 

for all analysed events, plotted as function of various parameters: event num- 
ber, signal strength, and also target Doppler-velocity. The Rmax difference 
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is only of the order of 10%, mostly in favour of the full GMF as expected, 

but sometimes the FastGMF has yielded the higher value. This means that 

other factors than just the algorithm are affecting the value of Rmax. What- 

ever these factors are, they do not appear to be much related to the signal 

strength, because there is no obvious trend in the second panel of Fig. 2.7. 

This assures us that there are not any strong selection effects in the play, 

even though all the data were originally detected using the FastGMF algo- 

rithm. We therefore conclude that it is safe to use the FastGMF algorithm, 

for target detection at least. 

It seems that it does not help much to increase integration beyond 0.3 s. 

This is illustrated in Fig. 2.8 and Fig. 2.9. It is not clear why we do not 

gain-and can even lose-from increased integration. The signal model, 

rather than our software, must be failing some way or another, because we 

do get the expected VN behaviour [Eqs. (2.39) and (1.4)] when we feed 

simulated data to our analysis programs, see Fig. 2.10. Factors contributing 

to the model failure may include the limited target coherence time itself, 

ionospheric effects on the signal coherence, the varying signal strength when 

the target moves through the radar beam, and also the fact that the current 

implementation of the GMF-method does not account for the motion of the 

echo envelope during the integration. In the estimate of the computing load 

below, we will use 0.3 s as the length of the integration. 

The required range gate spacing depends on the transmitted code. If 
there is only a single frequency in the transmission, GMF in the range 

direction is a smoothly varying function, the code autocorrelation function, 

centred near the actual target range. With multiple frequencies-which 

almost always is the case in EISCAT -on top of this smooth variation, the 

GMF exhibits a much faster oscillation in the range direction, as shown 

in Fig. 2.6. At first sight, one might therefore conclude that instead of 

the baud length, the scale determining the range grid spacing is the much 

shorter period of the interference pattern. This would suggest the use of the 

maximum range resolution available. 

It turns out that this is not necessary, the relevant scale even in the 

multi-frequency case is the code baud length. The positions of the peaks 

and zeros in the interference pattern depend also on the frequency w. Ba- 

sically, the pattern in range direction shifts slowly to larger ranges when 

w is increased. The detection function at point r, R(r), is formed from 

GMF(r, w, a) by picking the maximum over wand a. This causes the min- 

ima of the interference pattern in the GMF to be partially filled up in R(r). 

We conclude that it suffices to use range grid spacing that is some sizeable 

fraction of the code baud length, a third, say. In fact, when analysing cpllt 

data we have used range grid spacing 9 j.LS, which is 43% of the baud length 

21 j.Ls. This might appear a rather sparse grid, but the test campaign showed 

that in practise the loss of detection sensitivity is tolerable. For example, 

Fig. 2.11 shows that in 90% of cpllt events, we lose less than 27% of Rmax 
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compared to using the maximal range resolution. 

The test campaign showed (see Fig. 4.1) that in practice we can cover 

about 1000 km in range, say from 500 km to 1500 km, with a 100-200 km 

gap somewhere inside. 

Selecting the acceleration grid for detection has turned out to be very 

simple: no grid is needed. A single, range-dependent value is good enough 

as long as the antenna is pointed nearly vertically. The value ao we have 

used is computed assuming that the target is in a circular orbit, 

RE RE 2 

ao = 90 . h 
. (RE + h) , 

(2.63) 

where RE is the Earth radius 6360 km, 90 is acceleration of gravity at zero 

altitude, 9.8 m s-2, and h is the target altitude. We do not know how 

circular the orbits actually are, and in view of our criterion (2.52) for the 

acceleration grid spacing, which gives 3.5 m s-2 for 0.3 s integration, more 

than the single value might appear desirable. However, both simulations 

and the data from the test campaign show that not much sensitivity is lost 

in practice even if the acceleration is not varied. 

Figure 2.12 shows, with simulated data, the effect of an error in the 

model acceleration to the amplitude estimate, thus, to the detection sen- 

sitivity. We simulated populations of strong (SNR = 100%) targets. The 

populations had progressively larger spread in the uniformly distributed ac- 

celeration near the circular-orbit value, and uniformly distributed velocity 

in the interval 900-1100 m s-1. We assumed the circular-orbit acceleration 

in the detection. Two observations may be made from Fig. 2.12. First, 

there is a rather large spread in the distribution of the amplitude estimates 

even when the correct acceleration is used in detection. This initial spread 

is probably due to the velocity quantization error, which can cause the am- 

plitude to be underestimated by about 60% (see Fig. 4.9). Second, even 

with acceleration errors up to :1::20 m s-2, the typical loss of sensitivity is 

only about 40%. These results are essentially independent of the used GMF 

evaluation method. 

Figure 2.13 shows for the test campaign data the reduction of Rmax if 

a = 0 is used in the GMF. The mean reduction is 33%. However, only 

one of the events would have been left undetected even in this case. We 

conclude that for target detection with vertical radar beam it is acceptable 

to use only the single, range-dependent value of acceleration. 

If we further assume that it is sufficient to sample with 2 MHz rate, and 

accept that with 0.3 s integration it is possible to tolerate 0.2 s blank time 

between successive scans, we can determine the number of flops per seconds 

needed to handle the detection in real time. This we have done in Table 2.3. 

Our detection and analysis software has been programmed using the 

MATLAB high level programming language and programming environment. 
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Figure 2.12: Distribution of amplitude estimates, Â/Ao, for populations of 
simulated targets. The spread ßao of target accelerations in the population 
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circular-orbit, acceleration. All targets are at the same range, and have the 
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Figure 2.13: Effect of acceleration correction on Rmax. The cpllt data was 

analysed with FastGMF, with 0.3 s integration and full spatial resolution. 

The top panel shows Rmax both without acceleration correction and with 

the circular-orbit value for the correction. The dashed line is the detection 

threshold (=5). Only event number 25 was not detected when no acceler- 

ation correction was in use. The middle panel shows reduction of Rmax as 

function of Rmax. Mean drop is 33%. The bottom panel shows reduction of 

Rmax as function of the circular-orbit acceleration value. 

MATLAB itself is an interpreted environment, but it allows user-defined, com- 

piled c-Ianguage extensions. The GMF evaluation has been implemented as 

such an extension. We used MATLAB'S flops counter to get the number of 

arithmetic operations needed for a single range gate in the FastGMF algo- 

rithm. This number is shown in the second line of Table 2.3 for the three 

experiments that we have been analysing in this work, namely, cp11t and 

tau2 for UHF and tauO for ESR. For example, the cpllt experiment requires 

0.71 Mflops per gate. We emphasize that this is not a guess but an actu- 

ally measured number in the real job. Note that we also do acceleration 

correction here. We only handle one acceleration value per gate, but at 

least for nearly vertical pointing, more values are not needed. Next we get 

the number of range gates to compute. For example, in cpllt we need 740 

range gates, to cover 1000 km with 1.35 km (9 J.ts) resolution. This requires 

525 Mflops. To perform two scans per second thus requires about 1.1 Gflops. 

We get a similar speed requirement for tau2. ESR is easier, basically because 

of the lower frequency that is used there. 
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Table 2.3: SD detection computing power requirements in some EISCAT 
experiments, in the FastGMF algorithm. We assume 0.3 s coherent integra- 
tion and scan repetition period 0.5 s. We require range coverage 1000 km, 
and range grid spacing as used in analysis of test campaign data. The 
Mflops/gate values are taken from MATLAB flops counter during actual ex- 
ecution of the detection algorithm. 

cpllt tau2 tauO 

Sampling rate (J.Ls) 0.5 0.5 1.0 

Mflops in FFT / gate 0.27 0.27 0.27 
Mflops in other ops / gate 0.44 0.53 0.56 
Total Mflops/gate 0.71 0.80 0.83 

Baud length (J.Ls) 21 36 64 

Range resolution (J.Ls) 9 10 15 

Number of gates/scan 740 666 444 

Number of gates/s 1480 1330 890 

Req. reading rate (MBytes/s) 2.6 2.6 1.3 

Req. computing rate (Gflops/s) 1.1 1.1 0.7 

We estimate that four G4-level power-PCs should be able to handle this 

task in real time, when the algorithms are carefully coded in a compiled 
language. It is encouraging that in preliminary FFT benchmarking, we 
have got almost 3 Gflops/s performance on a 500 MHz G4 laptop. 
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3.1 Hardware 

3.1.1 EISCAT UHF radar 

The main blocks of the EISCAT UHF radar are shown in Fig. 3.1. The 

EISCAT receivers at all three UHF sites, Tromsø, Kiruna, and Sodankylä, 

are almost identical, the main difference being that at the receiving-only 

sites Kiruna and Sodankylä there is no need for the duplexer and the re- 

ceiver protector. Also the polarizer arrangements are somewhat different. 

The Tromsø UHF receiver has a cooled preamplifier, which takes in the 

radio-frequency (RF) signal around 929 MHz from the antenna through the 

duplexer-polarizer system. The RF signal is mixed by the first local oscilla- 

tor sinusoidal signal and the high-frequency part of the mixing result filtered 

out. These operations produce the first intermediate-frequency signal (IF1) 

around 117 MHz. To minimize cable losses, this conversion takes physically 

place very near the preamplifier, up in the antenna. 

The IF1 is then taken down from the antenna to the receiver hall. There 

it is downconverted to the second intermediate frequency (IF2) around 

11 MHz by mixing with second local oscillator signal and again disregarding 

the higher frequency mixing product. The analog signal path is bandlimited 

to around 7 MHz width by a filter centred at 11.25 MHz. This filter is the 

antialiasing filter of the system. 

The second IF is digitized by a 14-bit AjD converter, which produces 

a continuous sample stream at the rate of 15 Msamplesjs. The stream of 

IF2 samples is distributed to the multi-channel, VME-based, EISCAT dig- 

ital receiver, each channel taking one slot in a VME crate. Each of the 

digital channels performs quadrature detection by multiplying the incoming 

real-valued sample stream by a complex harmonic sequence e-i27riKtn, where 

fK is a frequency near 11 MHz, and filtering out the high-frequency part. 

The channel hardware also reduces the sampling rate (decimates) from the 

15 Msamplesjs to a value typically 10-50 kHz. The continuous, decimated 

streams of baseband samples are then time-gated to the channels' buffer 

memories, under the control of a special radar controller device, which con- 

trols the gating with 100 ns time resolution. 

The complex-valued, four-byte-precision sample vectors in the channel 

buffer memories are the input to the subsequent signal processing. The next 

step normally is to compute various lagged products of the samples and 

average them over a few seconds. The processing takes place in a general 

purpose workstation, which is mounted directly on the receiver VME crate 

and runs the Sun Solaris flavour of UNIX. The lagged product computation 

proceeds at about 200 Mflopsjs. The data transfer from the channel buffer 

memories to the VME computer memory, a typical place of a bottleneck in 

VME-based systems, proceeds at about 33 Mbytesjs in block-DMA mode. 

The time-averaged lagged products are transferred over a 100 MHz ded- 



3.1. HARDWARE 47 

, 
" $" " 

Duplexer / Polarizêr / RecelverProtector 

929 MHz 929 MHz 

Pre 
Amp 

1st IF 
unit 

117MHz 

2nd IF 
unit 

11 MHz 

ND 

Multich 
Digital 

Receiver 

VME 
computer 

Server 
computer 

Transmitter SO receiver UHF receiver 

Figure 3.1: EISCAT Tromsø UHF radar and our SD receiver 

icated Ethernet link (future update to a Gigabit link is planned) to a 14- 
processor Sun Enterprise 4500 server, where further processing then takes 
place-speeds up to about 1.5 Gflops/s have been achieved [12]. The pro- 
cessed data are saved to the server disks (there is about TByte of disk space 
available), and finally transferred to tape archive. 

The EISCAT UHF transmitter consists of a programmable radar con- 
troller that generates the pulse patterns at DC level, either uncoded on/off 
pulses or various classes of binary phase codes; an exciter system that con- 
verts the radar controller output to RF around 928 MHz; and a klystron 
power amplifier that consists of two klystron tubes, delivering combined 
peak power of about 2.5 MW. The maximum power which can actually be 
transmitted is limited by the waveguide system to a value just below 2 MW 
(as of beginning of 2002). The maximum transmitter duty cycle is 12.5%, 
and duty cycles near this value are also used in most experiments in prac- 
tice. A set of 14 transmission frequencies is available, spaced by 300 kHz 
and going from 926.0 MHz upwards. 

The 32 m UHF antenna has a fully steerable parabolic dish, has Cassegrain 
optics, and has rotation rate of about 800 /min both in azimuth and eleva- 
tion. The four 30 k W antenna motors, two on both axes, are controlled 
by a rather simple-minded servo system. The servo is quite sufficient for 
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the occasional change of pointing required by ionospheric work, where the 

path taken from point to point is not of much interest. The lack of built- 

in synchronization and explicit speed control between the axes would make 

difficult to achieve any movement which requires fast controlled motion of 

both axis. If SD tracking would ever be required, this part of the antenna 

control system would probably need to be redesigned. 

The time and frequency base at all EISCAT sites is from the GPS system. 

3.1.2 The SD receiver 

To be able to measure in parallel with EISCAT, an additional data collect- 

ing system is needed. Coherent integration requires that the raw samples 

are available, so an independent system from the analog level onwards is 

needed. Our SD receiver allows us to hook on any analog frequency, and as 

a matter of principle, we would prefer to take the signal as near the antenna 

(as unprocessed) as possible. After discussion with EISCAT staff, for the 

February 2001 test campaign in Tromsø, we decided to use the EISCAT 

second IF as the analog input. In this section we describe the SD receiver. 

Figure 3.1 shows the main blocks of the SD receiver and its main connection 

to the EISCAT UHF system. 

EISCAT experiments normally contain more than one frequency. EISCAT 

itself handles this situation in the traditional way, by having multiple hard- 

ware channels, each tuned to a particular frequencyl. The end result is 

several sample streams, one for each channel. Our approach in the SD 

receiver is different. We sample fast enough to always capture the whole 

relevant IF2 band into a single digital stream. If the spread of frequencies is 

B MHz, we take slightly more than B million complex samples per second. 

We call this kind of multi-frequency, complex-valued, digital data the IQ 

data. The largest frequency spread during the test campaign was 2.1 MHz. 

We handled it by taking 2.5 million complex samples per second. The in- 

dividual EISCAT frequency channels have rather narrow bandwidth, a few 

hundred kHz at most, so the IF2 frequency band has large gaps without 

useful information, see the bottom panel of Fig. 3.2. It would make sense to 

compress the data by cutting off the empty segments by suitable FFT pro- 

cessing, but we have not done this in this study. Preferably the compression 

should happen on-line. 

In addition to sampling the target echo, we also need to sample during 

the transmission periods, to get the code patterns. At its ESR site, EISCAT 

provides the transmission sample signal on the same data path as the recep- 

tion, so no special arrangements are needed there. In Tromsø, this service 

is planned but was not available during the test campaign, so we had to 

resort to ad hoc arrangements. We sampled the transmission with the same 

lUnder program control, the tuning can be changed in microsecond time scale. 
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sampling rate as the reception. 

Our data acquisition system has originally been developed for ionospheric 
tomography by a Finnish company, Invers Ltd. The basic system consists 
of a sampling section, a detection and decimation section, and a computer 
interface section which has a large data buffer and a control interface. The 
system supports three analog input channels. We used two channels, one for 
transmission sampling, the other for reception sampling. The transmission 
channel was level-detected, and when found active, was selected as the data 
source. For all other times, the receiver channel was used as the data source. 

The raw sampling rate was 40 MHz. The resulting real-valued sample 
stream was processed by programmable logic circuitry to perform detection, 
essentially by doing Hilbert transform as follows. If the 40 MHz stream has 

samples Xl,X2..., the first complex sample is Zl = (Xl,X2), the next complex 
sample is Z2 = (X5, X6), and so on. The stream of the zn-samples thus has 

sampling interval 100 ns. For narrowband analog input around 10 MHz, 
the zn-sequence represents the positive-frequency part of the double-sided 
analog spectrum, the negative-frequency part being zeroed in the sampling. 

The complex 10 MHz sample stream is decimated as required and written 
into the output buffer. The decimation is done by adding an appropriate 
number of consecutive complex samples, thus ensuring proper filtering. 

It may be noted that no separate conversion to baseband is done in 
this scheme. What one has in the baseband is some Nyquist replica of 
the positive-frequency part (or the negative- frequency part) of the original, 
real-valued analog signal. To work, this arrangement requires the band- 
limited analog input to be centred at a suitable frequency. The necessary 
frequency translation is done by the AR5000 broadband communication 
receiver, placed in front of the analog-to-digital converter. 

The output buffer and the control circuitry are mounted on a PCI slot of 
a fast workstation. We are using Power Macintosh G4 workstations, running 
under the Mac OS X version of UNIX. Software from Invers Ltd is used to 
read the data from the buffer and write them to hard disk. Typical data 
accumulation rate is between 20-30 Gbytes/hour, depending on the sampling 
interval. For final storage, data are copied to 60-70 Gbyte FireWire disks, 

which is a rather slow process. 

Figure 3.2 shows a snapshot of the raw data produced by the SD receiver. 
In this study, all subsequent signal processing has been done off-line, using 
raw data on disks. 

3.2 Software 

Figure 3.3 shows a conceptual block diagram of our SD software, as it would 
be used in real-time operation. All the main tasks were implemented already 
for the test campaign, but the software was operated off-line, using data 
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Figure 3.2: Four IPPs, 19.53 ms, 32550 samples of cpllt raw data from the 

test campaign. The top panel gives location of the data in the data stream. 

The indicated time 23:32:27.98 gives approximate UT at the beginning of the 

displayed data. The x-axis is samples. The second panel shows transmission 

ON-bit (line) and GPS full-second mark-bit (circle). The full-second mark 

occurs here at 23:32:27.99 with respect to the uncorrected UT time axis. 

This shows that the uncorrected time is lagging the GPS time only about 

10 ms. The third panel shows the real part of the complex samples, start- 

ing from long pulse (LP) transmission, followed by alternating code (AC) 

transmission. Transmission is in red, reception in blue. The transmissions 

are LP, AC, LP, AC. The strong echoes immediately after the transmission 

blocks are clutter. The increased noise at about 7 ms and 17 ms is due to 

calibration noise injection. In each IPP, there is strong target echo from 

960 km range which shows up 6.4 ms from the leading edge of the respective 

transmission. The bottom panel shows power spectra of transmission (red) 

and reception (blue, sign inverted). The frequency axis is from -833 kHz to 

+833 kHz, corresponding to 0.6 J-LS sampling interval. 
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recorded on disks. In real-time operation, only a large buffer of raw data 

would be kept on disk. Whether operating real-time or off-line, conceptually 

we view the data as a continuous stream. 

The software to process the data stream is a chain of four modules: the 

scanner, the detector, the archiver, and the analyser. For this study, we have 

implemented the processing chain as two MATLAB TM programs, SPDSCAN 

and SPDVIEW. MATLAB is a commercial, high level interpreted language 

and a programming environment, well suited for graphics and rapid proto- 

typing of signal processing applications. However, a major inconvenience 

during this study has been that MATLAB is not adequately supported on the 

Macintosh platform. 

3.2.1 Data stream 

The digital SD data stream consists of primary data and auxiliary data. 

The primary data, produced by the SD receiver under the control of the 

CURSIP TM software of Invers Ltd, consist of 32-bit words. Of a word, 

15+ 15 bits are used by a complex integer which represents a measured sam- 

ple, either a transmission sample or a reception sample. The remaining two 

bits contain two flags. One flag tells whether the data sample is a transmis- 

sion sample or a reception sample. The other flag is a GPS-based full-second 

time mark, accurate to a few /lB. 

The auxiliary data consist of a time stamp and radar state informa- 

tion. The CURSIP software inserts a fully qualified time stamp, based on the 

recording computer's timekeeping, into a log file at the start of the record- 

ing. Starting from the time stamp and counting samples in the continuous 

sample stream, we get the actual UT time of any data segment with about 
10 ms accuracy, mainly limited by the accuracy of the workstation clock, see 

Fig. 3.2. For routine SD measurements, antenna pointing direction should 

be recorded. In EISCAT, pointing data are only available via the radar's 

process computer. We would need EISCAT to provide a server program, 

capable of returning the azimuth and elevation when queried. It is useful to 

have the transmission power included into the data stream also, although 

the relative changes of the power can be monitored via the transmission 

samples. Neither the antenna pointing direction nor the transmission power 

were available on-line during the test campaign. On the other hand, only 

fixed antenna pointing was used, so we could easily keep track of the pointing 

direction during data analysis. 

3.2.2 Scanner 

The most time consuming task of the data processing, GMF computation, 
is done by the program SPDSCAN. It implements step 1 of the GMF method, 

Eqs. (2.55) and (2.56), saving to files Rj, Kj and Lj for each scan, together 
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Figure 3.3: Main software modules for SD measurements. The GURSIP 

software by Invers Ltd controls the low-level signal processing, which takes 
the analog input and produces complex samples around DC, at the rate of 
a few Msamples/s. In addition, this software inserts the necessary auxiliary 
information into the data stream. The scanner computes the GMF. In a 

real-time system, the scanner is the bottleneck and might need to run on 
several networked workstations in parallel. The detector uses the scanner 
data for the detection decision and notifies the event archiver to save or 
release the corresponding data in the IQ-data buffer. The analyser performs 
high resolution re-scans and makes fits to time series to get event parameters. 
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Figure 3.4: Standard screen display of the SD scanner program, SPDSCAN, 

showing a target hit. The top panel shows the location of the scan in the 

input data stream. The middle panels show the first two IPPs, about 13 IDS, 

of the raw data in a 0.3 s integration. The bottom panel is the ratio n. The 

scan UT time is 22:19:08, 20 February 2001. 

with a set of supplementary information. For real-time detection, it might 

become necessary to run the scanner on several networked computers. The 

scanning task is straightforward to parallelise on scan-by-scan basis, so we 

do not expect the parallelisation to present a big problem in practice. Paral- 
lelisation on this level, including the distribution of the tasks and collecting 

the results, is a standard feature of the GURSIP software. Figure 3.4 illus- 

trates the appearance of SPDSCAN on computer screen. The time instant 

shown is near the beginning of the strong event which we use for catalogue 

comparison in Section 4.4. 

The files produced by SPDSCAN are used as the input by the detection, 

archiving, and analysis program, SPDVIEW. 

3.2.3 Target detection and initial parameter estimates 

Before actually attempting detection, it is possible to use SPDVIEW to in- 

spect interactively the ratio curves produced by SPDSCAN. It is also possible 

to "clean" the curves, for instance by removing systematic distortions. For 

example, the ESR radar used to have a pronounced variation of receiver gain 

during the reception window, and the UHF radar cpll experiment has cali- 

bration noise injection in the middle of the reception window. These trends 

and distortions are averaged and removed, or at least reduced, using data 
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that do not contain manifestly large signal contribution, see Section B.3 for 

more details. The result is a set of fairly flat versions of the ratio R pro- 
files. Detection is done on the cleaned data, by finding Rmax-step 2 in the 
GMF method-and comparing it against a fixed threshold. By inspection 
of the test campaign data, we somewhat arbitrarily adopted Rmax > 5 as 
the detection criterion, see Section 4.2.2. 

When the detection threshold is exceeded, SPDVIEW performs step 3 of 
the GMF method [Eqs. (2.59) and (2.60)] to get initial estimates for target 

range, Doppler-velocity, and the signal-to-noise ratio. If also the accelera- 
tion has actually been deduced by the scanner, by varying the acceleration 

parameter in the GMF, also the acceleration is returned. However, in al- 
most all cases, we have fixed the acceleration to the circular-orbit value 

ao (r) [Eq. (2.63)]. 

The initial parameter estimates obtained as side product of detection 

are deduced directly from the profiles collected by the scanner, with the 

particular range, time and spectral resolution used by the scanner. These 

preliminary values are used to group the individual scans into events, corre- 
sponding to a single target when it moves though the radar beam. SPDVIEW 

provides automatically a preliminary grouping, based on finding a detectable 
spike in the R profiles in nearly the same range in nearby scans. The group- 
ing can be improved by interactive inspection. 

3.2.4 Event archiver 

After an event has been identified, SPDVIEW is used as a rudimentary archiver 

to save the raw data and the auxiliary information to an event-specific direc- 

tory. The amount of raw data to be archived is large but not unmanageably 
large. In the test campaign, about 15 events per hour were found. To store 
10 seconds of raw data around each event would amount to storing 150 sec- 

onds/hour. Assuming 2 Msamples/s sampling rate and four-byte complex 
samples, 150 seconds/hour corresponds to about 900 measuring hours per 
terabyte of available storage, if all ranges are kept. As the largest avail- 
able tape units and FireWire disks presently take about 100 Gbytes of data, 
storing one year's measurements as uncompressed raw echoes would require 
about 10 or a dozen such tapes or disks. This seems a quite reasonable 

cost. A planned FFT-based data compression algorithm, for storing only 
the necessary limited frequency bands, could result in a further compression 
by a factor of about 5 in the average. Storing only limited range intervals 
in an experiment which has 12.5% radar duty cycle, would reduce the stor- 
age needs by a further factor of 8. If both compression modes are used, 
the required storage space for one year's measurements goes down to about 
25-30 Gbytes. 
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3.2.5 Analysis 

We get initial estimates of target range and velocity as side product of the 

detection, but the final determination of the target parameters is done sep- 

arately with SPOVIEW, using raw data from the event archive. The analysis 

consists of two phases. First the event's raw data are re-scanned with full 

time and range resolution, and optionally using the full GMF algorithm. 
This becomes possible because after detection, we can restrict to a few kilo- 

meters the range where the GMF is evaluated. In the second phase, we plot 

the parameters from individual scans as function of time, and, when possi- 

ble, fit low-order polynomials to the range and velocity data. Figure 3.5 is 

an example of such an event summary plot. 
Panels (2)-(4) of the event summary plots show the maximum ratio 

Rmax, range R, and Doppler-velocity Vo (positive away from the radar). 
The header panel gives the event time to, which we define as the time of 

maximum signal strength. The event time is used as the origin of the time 

axes in the data panels. The header also gives R(to) and vo(to). 

If there are enough points where Rmax exceeds the chosen threshold, also 

range rate RR = dR/dt and radial acceleration ao = dvo/dt are estimated 

for time to, by fitting either a straight line or a parabola to the Rand Vo 

points, respectively. We normally use smaller threshold value in the analysis 

than in the detection. The range rate RR is redundant, and in general less 

accurate than the directly measured Doppler-velocity. When the fits are 

available, the header panel gives also RR(to) and ao(to). In this case, also 

the quoted range R(to) and velocity vo(to) are taken from the fits. If there 

are too few good points to allow fitting, the quoted range and velocity are 

read directly from the Rand Vo data. 
The parameter line in the event summary plot header gives also the 

effective target diameter d. It is the diameter of a conducting sphere that 

at the observed range would give the observed SNR, if the target would be 

in the centre of the radar beam at the moment of observation. Normally, 
the effective diameter underestimates the true size; for very weak events, 

the effective diameter can also be an overestimate, see Fig. 2.8. For several 

events in the test campaign, antenna side lobes were visible in the Rmax(t) 

plot. It might be possible to get the actual off-centre angular distance in 

these cases, but except for a single occasion (see Section 4.4), we have not 

attempted to determine it. 
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Figure 3.5: Event summary plot for an event in experiment cpllt, 19 Febru- 
ary 2001. The event was analysed with the standard GMF algorithm. The 
header panel shows the deduced event parameters, which include time of 

maximum signal strength, and, for that instant of time, target range, range- 
rate as fitted from range data, Doppler-velocity, and minimum diameter. 
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4.1 Test campaign 

Our ESA contract stipulates a series of test measurements to be performed 
and analysed. We did the measurements at EISCAT UHF radar during a 

Finnish experiment campaign which lasted from 11 February to 23 February 
2001, using our SD receiver as shown in Fig. 3.1. 

Two standard EISCAT experiments were in use during the campaign, 
the cpllt experiment (Appendix B) and the tau2 experiment (Appendix C). 
We took 16.5 hours of cp1lt data, with sampling rates from 2.5 MHz to 
1.1 MHz, and 1.7 hours of tau2 data, with 2 MHz sampling. This gave 
about 0.5 Tbytes of data, which were stored on 13 FireWire disks. We 
have analysed 2.8 hours of cp1lt and 1.2 hours of tau2. Both our group and 
EISCAT had various difficulties especially in the beginning of the campaign, 
and so the analysed data is from late in the campaign. 

4.2 Analysis results 

4.2.1 Detection rate and altitude coverage 

There were 45 (cp1lt)+11 (tau2) clear hard target events in the 4 hours of 
data. "Clear" here means that the event had more than one scan exceeding 
the detection threshold, and that the deduced target parameters were sen- 
sibly located in (R,vD)-space from scan to scan. The mean event rate was 
13 events per hour. The combined SD search region in the two experiments 
was from 400 km to 1750 km in altitude. Figure 4.1 shows the altitude dis- 
tribution of the events and also indicates the blind zone of each experiment. 
The blind zone is an altitude interval from which no target echoes can be 
received, due to an ongoing transmission. The blind zone in tau2 is in the 
middle of the highest event density in cpllt. This might partially explain 
the somewhat lower event rate in tau2, nine events per hour, compared to 
16 events per hour in cpllt. 

4.2.2 Detection sensitivity and effective diameters 

After experimentation with various values, Rmax = 5 was used throughout 
as the detection threshold. The weakest event of each experiment is shown 
in Fig. 4.2. The background value of R is about 3 in both experiments, 
and it might appear from the figure that threshold 5 is a little too high (see 
also Fig. 2.2). Indeed, no false alarms in the higher search window (the 
region on the high altitude side of the blind zone) were triggered in the four 
hours of data. However, in the low-altitude search windows the situation 
was more complicated, as the data were a lot more disturbed there. But 
even in the lower window, after subtracting the stationary distortions, the 
threshold value 5 appeared to be suitable. On the other hand, it is clear 
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Figure 4.1: Altitude distribution of events in the test campaign, February 
2001. The cpllt data are from 19 February, 22:23-01:11 UT (45 events), the 
tau2 data are from 20 February, 21:26-22:40 UT (11 events). The top panel 
shows the altitude distribution of all the 56 events, the bottom panel shows 
the SD search regions in the two experiments. In tau2, the first blind zone 
is in 855-1067 km, in cpllt, in 682-785 km altitude. 
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Figure 4.2: Weakest analysed events in the test campaign. The cpllt event 
corresponds to effective diameter 2.1 em, the tau2 event to effective diameter 
2.3 em. The detection threshold 5 is indicated by the dashed lines. Data 
were scanned with FastGMF, using full spatial resolution. 
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from Fig. 4.2 that one cannot use much lower threshold than 5. For example, 

already value 4 gives a false alarm in almost every scan that goes through 

the full altitude range (observe that Fig. 4.2 shows only about 3% of the full 

range) . 

Given the length of integration, duty cycle, system temperature, trans- 

mission power, and target range, Rmax can be converted to effective target 

diameter with the help of the radar equation. Figure 4.3 shows the resulting 

threshold diameter as a function of range for cpllt and tau2. For example, 

at 1000 km range, Rmax = 5 corresponds to 2.1 cm diameter in cpllt and 

1.9 cm in tau2. The greater sensitivity of tau2 is due to the higher duty 

cycle, 8.8% in tau2 contrary to 7.0% in cpllt. The assumed integration time 

is 0.31 s for both experiments. The assumed transmission power is 1 MW 

which was a typical value during the test campaign. Part of the time, the 

power was lower, but we have not made any corrections due to this. The 

sensitivity estimate in Fig. 4.3 also assumes that the coherent integration 

has been successful and that the GMF method estimates the peak signal 

amplitude correctly. In practice, several factors cause the signal amplitude 

to be underestimated, up to several tens per cent. This reduces the actual 

sensitivity. On the other hand, the assumed transmission power in Fig. 4.3 

is only half of the 2 MW that the refurbished EISCAT UHF transmitter 

is ultimately expected to deliver. Therefore, the curves in Fig. 4.3 give a 

rather good idea about the detection sensitivity that we can realistically 

expect from the UHF system. 

Figure 4.3 shows the small-diameter events from the test campaign. The 

full effective-size distribution is plotted in the top panel of Fig. 4.5. Because 

we do not usually know how far off-axis the target passed through the radar 

beam, its effective diameter gives only a lower bound for the actual size. One 

probably should not make strong inferences from a data set this small, but 

in the higher ranges, the events appear to lie rather far from the threshold 

curve. Range-integrated size distribution, containing all the analysed events, 

is shown in Fig. 4.4. Also it shows some kind of deficiency of events near the 

detection threshold. This might indicate that we do not detect all events 

that are near the detection threshold. Such an effect is to be expected, but 

a proper statistical study should be done about how large the effect should 

be. 

4.2.3 Velocity estimates 

The remaining basic parameters, the Doppler-velocity and the acceleration, 

are shown in the middle and bottom panels of Fig. 4.5. The velocity data 

looks sensible. There is even the expected small asymmetry between the pos- 

itive and negative velocities. There are 22 events with positive Vr, with mean 

1.03 m s-l, and 23 events with negative velocity, with mean -1.16 m S-l. 

Two factors cause this 13% bias towards negative velocities. First, the an- 
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Figure 4.3: EISCAT UHF detection sensitivity limit with 0.3 s integration 
and 1 MW transmission power. The minimum detectable size is shown as 
function of range. There are two curves for both experiments of the test cam- 
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Rmax = 5, the lower curve corresponds to Rmax = 4. The markers show 
measured effective diameters, estimated using standard GMF algorithm. 
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Figure 4.5: Event parameter estimates in the test campaign. The data was 

analysed with the full GMF, with 0.3 s integration. The top panel shows the 

effective diameter. The solid line in the top panel indicates the threshold 

diameter (for cpllt). The middle panel shows the Doppler-velocity VD. The 

dashed lines give the maximum and minimum radial velocity for targets 

in circular orbits, for the beam elevation 770. The bottom panel shows 

the acceleration estimate, computed by a linear fit to VD(t) during beam 

passage. The solid line is the vertical-beam, circular-orbit acceleration ao. 

tenna is pointed slightly, 3.80, to the west (at elevation 77.10), and second, 

the maximum of the low-orbit debris inclination distribution is around 650. 

Consequently, the SD objects approach mainly from the west, and thus 

have a small bias of flying towards the station. Flying towards the radar 

corresponds to negative radial velocity [13, Fig. 2.4-3, p. 2.4-3]. Another 

curiosity is that the scatter of the positive and negative velocity points is 

clearly different. 

The target radial velocity shown in Figs. 4.5, 4.6, and 4.10 refers to 

velocity at the time of maximum signal strength. Typically the target could 

be followed from one to several seconds, and in these cases the given Doppler- 

velocity is obtained by a linear fit to the VD points from consecutive 0.3 s 

integrations. We have not attempted any quantitative error analysis here. 

Nevertheless, the analysis summary plots, such as Figs. 3.5 and 4.12, reveal 
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Figure 4.6: Effect of signal strength on the velocity and acceleration esti- 
mation. The top panel shows the difference of directly measured Doppler- 
velocity and the velocity computed by fitting range data. The bottom panel 
shows the difference of the acceleration from the circular-orbit value. The 
acceleration was determined via fits to the Doppler-velocity data. 

that in the VD(t) curves there are "semi-random" jumps, up to a few tens 
of m s-1 in GMF analysis, and up to 100 m S-1 in FastGMF analysis. The 
jumps are much larger than the theoretical velocity error estimates, based 
on linearised signal model (Section 2.3), would suggest. We discuss this 
problem in Section 4.2.4, below. 

The top panel of Fig. 4.6 compares the Doppler-velocity VD with the 
velocity RR obtained by linear or quadratic fit to the range data. The 
weakest targets have the largest difference between the two estimates. The 
difference can be several hundred m S-I, but is seems probable that the 
inherent scatter in the RR points is larger than in the VD points, as hinted 
by the top and middle panels of Fig. 4.10. Therefore, a large part of the 
IVD - RRI difference is probably due to the inaccuracy in the RR data rather 
than in the Doppler-data. 
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4.2.4 Velocity accuracy estimates 

We reserve a more thorough study of the measurement accuracy for fu- 

ture work; here we offer preliminary remarks about the Doppler-velocity 

(Doppler-frequency) error. We need to inspect the behaviour of the full pos- 

teriori probability density Dp(A, R, flm) rv exp( -llm-sI12 I 0"2) in Eq. (2.28). 

We evaluate Dp in the frequency direction, through the Dp maximum po- 

sition (Ao, Ro, fo). We neglect noise in the measurement m and assume 

simple, single-frequency transmission. Expanding the definitions involved 

gives 

Dp(J) = Dp (Jo) . e 
-SNRw2{ l-eos[7r(f- fo)(KP-P+L)]. Bi:êtÏ:p2L. ~nB;n(~(!~j~~} 

, 

(4.1) 

where SNRN is the energy-to-noise ratio (1.3), P is interpulse period, L is 

length of a single transmission, and K is the number of IPPs in the coherent 

integration, so that the integration time is Te = KP. For the GMF we 

similarly find from Eq. (2.29) 

GMF 
= JSNRN .!sin1r(J - fo)LII sin1r(J - fo)KP I 

0" 1r(J - fo)L K sin 1r(J - fo)P 
. 

(4.2) 

We expand the exponent in Eq. (4.1) into a power series and use typical 

values for K, P, and L to simplify the expression. We get 

-~(f-fO)2 + o[(Tc(f-fo))4] 

Dp(J) = Dp(Jo) . e "f , 
(4.3) 

where 
2 

3 1 
O"j = 

81r2 T~ SNRN' 
(4.4) 

Thus we get a Gaussian distribution, with variance O"}, provided that 

If - fol <<liTe. Note incidentally that liTe is also the frequency step for 

the discretized GMF. Using the Gaussian distribution is equivalent to using 

the linearised signal model of section 2.3.1 Therefore, for example with 0.1 s 

coherent integration, using linearised theory for error estimation is legal-or 

at least self-consistent-when the posteriori density is so narrow that most 

of the probability mass is well within 10 Hz (1.6 m S-I) from fo. This should 

happen when the signal is strong enough. 

We can use the full posteriori density from Eq. (4.1) to find how strong 

the signal needs to be for the linearised theory to be valid. The centre column 

of Fig. 4.7 shows the posteriori density for a few targets of increasing size, 

the rightmost column shows a blow-up around the maximum at v = vo. We 

assume EISCAT UHF radar, transmission duty cycle 10%, target at 1000 km 

1 
Actually, there is a small (about 25%) discrepancy between the velocity error we have 

shown in Fig. 2.4 and the error af computed from Eq. (4.4) and shown in Fig. 4.8. 
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Figure 4.7: Shape of the posteriori density as a function of signal strength. 
The leftmost column of panels show the GMF, the centre column gives the 
(non-normalized) Dp in the velocity direction, the rightmost column is a 

blow-up of the centre column near the main peak. The dashed line in the 
rightmost panels is the Gaussian approximation of Dp. 

range, and coherent integration Tc = 0.1 s. The leftmost column shows the 
GMF, in the ýSNRN units that we normally use in target detection. The 
dashed line in the rightmost column shows the posteriori density for the 
linearised theory, computed from the Gaussian approximation (4.3). 

Figure 4.7 shows that for a weak signal (d = 1.5 em, ýSNRN << 5), 
the posteriori probability is spread over a wide velocity interval. From such 
a measurement we cannot single out a preferred velocity for the target, in 
other words, we cannot "detect" the target (in the velocity space). The 
error estimate cannot be computed from the Gaussian approximation, the 
estimate would be quite too small. On the other hand, for a strong sig- 
nal (d = 3.0 em, ýSNRN >> 5), the posteriori density is well concentrated 
around the single point VQ. The linearised theory now gives a good error es- 
timate. It hardly can be a coincidence that the localization of the posteriori 
density occurs when ýSNRN reaches the value about 5, which we experi- 
mentally, in the test campaign, found to be a good detection threshold. 

We may attempt to find the region of validity of the Gaussian approx- 
imation on the basis of the localization property of the posteriori density. 
An easy-to-compute indicator of Dp localization is the size of the first side 
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Figure 4.8: Validity regime of the linearised error model. The thick lines 

give the velocity error (Jv as a function of target size, computed from the 

Gaussian approximation of the posteriori density, for three integration times 

Tc. The thin solid lines (10%) and (0.1%) delimit the transition region 

where the posteriori density localizes when we move from left to right along 

the error curves. The thin dashed line (DT) corresponds to the detection 

threshold that was used in the test campaign. The linearised theory should 

be applicable to the right of the transition zone. 

maximum, at ft = fa + 1/ P, compared to the main maximum at fa. We 

will consider the density localized when the ratio Dp(ft)/Dp(Jo) is 0.1% 

or smaller. We take the velocity error curves of the linearised theory, and 

mark on each of them the target size that corresponds to the localization 

limit, to get the line labelled "0.1%" in Fig. 4.8. The line labelled "10%" is 

found in a similar way. The velocity error curves in Fig. 4.8 assume target 

at 1000 km range. The Tc = 0.1 curve is compatible with the curve we have 

shown earlier, in Fig. 2.4. The region of validity of the Gaussian error es- 

timates begins somewhere between the two lines marked by 10% and 0.1%, 

and extends to the right in the figure. 

The dashed line labelled "DT" in Fig. 4.8 represents our standard de- 

tection threshold ýSNRN = 5, and corresponds to a high degree of Dp 

localization, Dp(ft)/Dp(Jo) = 2%. Therefore, we seem to have got the-- 
problematic-result that if the target can be detected at all, it is safe to use 

the (too) small velocity error bars of the linearised theory for it. 

Conceivably, a loophole in the above argument could be that we have 

been using the continuous-parameter GMF. Could the reason for the larger- 

than-predicted velocity fluctuations be that in our actual data analysis, we 

maximize the GMF only on a discrete grid of velocity values? The answer 

appears to be "no". Figure 4.9 shows, as function of velocity through the 

GMF maximum position, both the continuous-parameter GMF(v) and the 
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Figure 4.9: Continuous-parameter GMF and discretized GMF. The figure 
shows the theoretical, noise-free GMF as a function of velocity, for a simple 
experiment as specified in the top panel. The solid line is the continuous- 
parameter GMF(v), the dots give the discrete-parameter GMF(Vk)' The two 
bottom panels are blow-ups around the main maximum and the second side 
maximum. The target velocity Vo = 0.75 m s-l is exactly half of the velocity 
grid spacing. The continuous-parameter GMF has its main maximum at 
Va, the (now ambiguous) position of the main maximum of the discrete- 
parameter GMF differs from it only by the maximum velocitSy quantization 
error, 0.75 m s-l. 

discrete-parameter GMFk = GMF(Vk)' Their relation depends on the actual 
radial velocity Va of the target. If the velocity is equal to some available grid 
point (in the figure, the point Va = 0), the maximum of GMF(Vk) is at V = Va. 
Even the value of the GMFk maximum equals to the value of the continuous- 
parameter GMF. The worst case is when the target velocity falls precisely 
halfway between two velocity grid points, this is the situation shown in 
Fig. 4.9. The GMFk values of the maxima are about 60% lower than the 
GMF values, but the main GMFk maximum is inside the main maximum 
of the continuous-parameter curve. Thus, the maximum possible velocity 
error is just the velocity quantization error, 0.75 m S-l in this example. It 
does not look probable that the discretization could be the main source of 
the error size discrepancy. 

It seems that we must claim the large velocity errors to noise. It seems 
that the noise causes so much variation in the GMF that, every now and 
then, a wrong peak will be picked by the maximization algorithm; this 
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will then immediately give velocity error that is of the observed magni- 

tude, tens of meters per second. We suspect that we are seeing here a 

manifestation of an old problem of pulse radar engineering, the so called 

range-Doppler dilemma. It is an old maxim of radar science that if one tries 

to increase the unambiguous range by decreasing the pulse repetition fre- 

quency (PRF = l/IPP), one runs into the danger of the velocity becoming 

ambiguous. In Fig. 4.9, the separation of the local GMF maxima is equal 

to the PRF. The envelope curve of the maxima is determined by the pulse 

length, L. If L is fixed and we decrease the PRF, the level of the GMF side 

maxima increases. This means that the noise has better chance to cause a 

wrong peak to be selected, in other words, the velocity has become more 

ambiguous. 

If the large errors really are related to the range-Doppler dilemma, the 

errors can, possibly, be mitigated. Contrary to what is sometimes stated [8, 

page 139], the range-Doppler dilemma is not an unavoidable limitation of 

radar operation, but can actually be circumvented. One of us (Lehtinen) 

actually owns a patent for a method to do precisely that [14]. The Lehtinen 

method is based on varying the radar's pulse repetition rate in a carefully 

chosen manner, and is therefore called the SMPRF-method (Simultaneous 

Multiple Pulse Repetition Frequencies). 

Digging the skeleton of the range-Doppler dilemma from its hard-earned 

grave is not the quantitative solution to the error size discrepancy we would 

like to have. The error analysis, when based on the full posteriori density, 

should be able to predict the errors correctly. We did assume zero noise when 

deriving the form of the posteriori density; this might not be permissible in 

the non-linear problem. It might also be essential to take the range direction 

into consideration when computing the error estimates in the full theory. 

4.2.5 Acceleration estimates 

The acceleration estimate is plotted at the bottom panel of Fig. 4.5. This 

estimate is not given for the weakest targets at all, but when available, it 

comes from the same linear fit to the VD(t) data as the Doppler-velocity. 

The accuracy of the slope of the fitted line depends strongly on how long 

the target stays visible. On the basis of the event summary plots, it is clear 

that Fig. 4.5 includes acceleration points that deviate significantly from the 

expected value. Most of the targets should have almost circular orbits, and 

their radial accelerations are expected to fall near the solid line given in 

Fig. 4.5. The large deviations from this expected value ao strengthen the 

conclusion that the acceleration cannot be estimated in this way for most of 

our events. The bottom panel of Fig. 4.6 shows that increasing the signal 

strength in itself does not necessarily improve the estimate much. However, 

in the few cases where there is a strong signal which can be followed for 

several seconds, we normally get an acceleration estimate that is within a 
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few m s-2 from ao. 
Our initial idea was to obtain the acceleration directly for each individual 

scan by varying the acceleration parameter in the GMF. It now seems that 
the GMF does not depend strongly enough on the acceleration, at least 
when we use only 0.3 s integration. Figure 2.13 shows the change of Rmax 
(for cpllt data) when the acceleration parameter in FastGMF is changed 
from the circular-orbit value to zero. The mean reduction is 33%, there is 

large scatter, but not the expected trend. If ao is approximately the correct 
acceleration, the larger it is, the larger is the error we make when changing 

to a = O. Thus the drop tlRmax of Rmax should increase with increasing ao. 
No such trend is visible in the bottom panel of Fig. 2.13. Only the scatter 
in tlRmax increases somewhat with increasing ao. 

Thus, the question of how to best determine the acceleration is still open. 
For the time being, as long as our data are taken with almost vertical beam, 
the best estimate for acceleration is just the circular-orbit, vertical-beam 
value. This strategy will need to be reconsidered if handling data from 
lower elevations becomes relevant. 

4.3 FastGMF versus GMF 

In MATLAB c-implementation, the FastGMF algorithm is typically about 
100 times faster than the full GMF. For speed reasons, it is mandatory to 
use the FastGMF in the detection phase, but it would be good to be able 
to use it for the actual parameter estimation also. It took 10 days of CPU 
time to scan the 45 cpllt events with the GMF, even though we used as 

short range interval as possible. The integration was 0.3 s, and full spatial 
and temporal resolution were used in the scans. 

In Section 2.4.3 we pointed out that both simulation and data from the 
test campaign have shown that very little can be gained from the use of the 
full GMF algorithm instead of the much faster FastGMF. To understand 
why FastGMF can be this good in comparison to the full GMF, consider the 

following. In the optimal case, both GMF and FastGMF are able to recover 
the signal amplitude exactly. The actual value of Rmax estimate depends 

more significantly on how far the actual target parameters happen to be 

from the discrete grid of range and velocity values than the computational 
algorithm. For a target that we can follow a reasonable length of time, both 

range and velocity change appreciably, and the phase space trajectory has a 

good chance to get near some grid point, irrespective whether we are using 
GMF or FastGMF. To rephrase this argument a bit more formally, recall 
that in the parameter estimation we are maximizing, with respect to j and 
k, an expression of type 

Gj,k = ;c 11TCdtei(Wk-WO)t x fRj(t)fRo(t) I, (4.5) 
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where ER(t) means the transmission envelope translated to position Rand 
normalized to unit amplitude, Rj and Wk are points on a fixed grid, Ro and 

Wo are the actual target parameters, and Te is the integration time. Then the 

crucial factor is, when the point (Ro, wo) moves, how near will it approach 

some of the grid points. 
This interpretation is consistent with the data in the bottom panel of 

Fig. 2.7. The figure shows that the fastest moving targets tend to benefit the 

least from the use of the full GMF. The other side of the coin is that even 

the full GMF algorithm tends to underestimate Rmax, and, moreover, it is 

not immediately obvious how to best improve the estimate. Tightening the 

grid in range direction improves the amplitude estimate Â, but tightening 

the grid in frequency direction does not improve the amplitude estimate at 

all. The latter result comes about because, due to the FFT, the frequency 

grid spacing <5f is coupled, via <5f = liTe, to the shape of GMF: when the 

grid becomes tighter, Te becomes larger, and then the GMF oscillates more 

wildly. To see this quantitatively, note from (4.5) that if Ro = Rjo for some 

jo, and Ao is the actual signal amplitude, we have 

Â I sin 7r(1k - fo)Te I 
Ao 

= mF Gjo,k = mF 7r(Jk - fo)Te 
' 

which always attains the same minimum value, ~ ~ 0.64 (at Ilk - fol = 

l/2Te), no matter how small the frequency grid spacing is [see also Eq. (4.2) 

and Fig. 4.9]. If the target Doppler-frequency fo is picked at random, the 

expected value of ÂI Ao is 

(4.6) 

\ Â) 1 10.5 sin 7r f 
- 

=- df-~0.87, Ao 0.5 0 trf 
(4.7) 

independently of how tight the frequency grid is. 

One possibility to improve the amplitude estimate, while still using FFT 
for the GMF computation, is to multiply the measured signal m(t) by an 

additional phase factor 

g(8k) (t) = exp( i 2~:k t), <5k:::; 0.5, (4.8) 

at the same time when m(t) is multiplied by exp(io:t2) to make the acceler- 

ation correction. The benefit is that then the coupling <5f = liTe no more 
holds; in addition to the frequencies !k = kiTe, we are allowing also the 

frequencies (k + <5k)ITe in the signal model. The simplest strategy is to 

take 8k = 0.5, in addition to <5k = O. This improves the worst-case ampli- 

tude estimate from ÂI Ao = 0.64 to ÂI Ao = sin ~ I ~ ~ 0.90, at the price 

of roughly doubling the computing time. The <5k-correction could in prin- 
ciple be worthwhile in the final analysis when computing target diameter. 
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Figure 4.10: Effect of GMF algorithm on velocity estimates. The top panel 
is a comparison of Doppler-velocity VD in GMF and FastGMF. The middle 
panel is a comparison of the range rate RR = dR(t)jdt. The bottom panel 
is a comparison of the consistency between VD and RR. 

However, we have not applied the correction during this study. The domi- 
nant source of error in target size determination with the EISCAT radars is 
the uncertainly about where the target went through the radar beam. The 
ðk-correction becomes more relevant if this bigger problem can be solved. 

For the Doppler-velocity, GMF and FastGMF give quite similar esti- 
mates. The top panel of Fig. 4.10 shows that in most cases the difference 
is less than 50 m s-l, and very rarely exceeds 150 m s-l. This is about the 
same as our rough estimate for the velocity error, so it seems that as far as 
the Doppler-velocity is concerned, we do not lose much accuracy if we use 
solely the FastGMF algorithm. The middle panel in Fig. 4.10 shows that 
there is more difference between GMF and FastGMF algorithms in the RR 
than in the directly measured Doppler-velocity. This is consistent with the 
assumption of inherently larger errors in RR, irrespective of the algorithm. 

Figure 4.11 compares the acceleration estimate in the GMF and FastGMF 
analysis, see also the bottom panel of Fig. 4.6. Irrespective of the GMF al- 
gorithm, most of the deduced acceleration values differ significantly from the 
expected circular-orbit values. This shows that it is problematic to get a 
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Figure 4.11: Effect of GMF algorithm on acceleration estimate. The top 

panel shows the acceleration aD = dVDldt for the cpllt events in the test 

campaign. The dashed line shows the circular-orbit acceleration ao. The 

bottom panel shows the deviation from ao. 

reliable estimate of the acceleration by fitting a line to the Doppler-velocity 

data. The problem is probably related to the large errors in the velocity esti- 

mates. Our strategy at this stage has been to fix the acceleration parameter 

to the circular-orbit value in the GMF. We have also made a few attempts 

to estimate the acceleration directly from individual measurements, but it 

has been difficult to make any clear conclusion based on them. 

We do not show any comparison between the GMF algorithms for the 

remaining basic parameters, the time and range of the maximum signal 

strength. Both methods give essentially identical results, within the resolu- 

tion of the spatial and temporal grids used. We take this to mean that the 

absolute accuracy of range determination is limited by the sampling inter- 

val, rather than any estimation errors. In the few cases where the tabulated 

events indicate a substantial difference in range, there is also clear difference 

in time. In these cases, the Rmax(t) curve has two or more well separated 

peaks of almost same height, possible due to rotating targets, and different 

peaks have by chance been selected by the different algorithms. 
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4.4 Comparison with a catalogued object 

The strongest of the high-altitude tau2 events during the test campaign 
began at 22:19:06, 20 February 2001. The event was studied by M Landgraf 
from ESaC [15]. He identified the target as a large catalogued object, 
CaSPAR ID 1994-11G. According to Landgraf, the object has total mass 
1390 kg and cylindrical shape, with diameter 2.7 m and height 2.2 m. It has 
radar cross section 8.3 m2. The target should have passed the EISCAT beam 
at the off-axis distance of 1.270. Figure 4.12 shows our analysis summary plot 
of the event. The analysis was done with FastGMF, using 0.27 s integration. 

The top panel of Fig. 4.12 shows the peak ratio Rmax(t) in dB scale. 
Markers indicate those scans where Rmax was larger than the threshold 4.5. 
The antenna sidelobe pattern is clearly visible. Even the third sidelobe is 

seen, at about time 4 s, although the corresponding sidelobe on the other 
side of the main lobe is no more observed. To find the off-centre distance of 
the transit, we fitted theoretical EISCAT antenna pattern to the Rmax data. 
The theoretical pattern uses the specified diameters and mutual distance of 
the UHF antenna main reflector and subreflector, but does not account for 
the effects of the supporting structures. The best fit is shown in Fig. 4.13. 
It was achieved by assuming that the beam transit took place at 0.520 offset 
from the optical axis. The actual beam shape differs somewhat from the 
ideal shape. It is known, for example, that the third sidelobes are actually 
asymmetric and weaker than the theoretical value. However, even taking 
this uncertainty into account, it seems difficult to reconcile the predicted 
offset of 1.270 with the inferred value 0.520. It is possible that the EISCAT 
pointing was not what we believed it was, azimuth 183.30 and elevation 
77.10. Normally, EISCAT pointing is known to be accurate to within 0.10, 
but the February campaign took place after an exceptionally long mainte- 
nance and system upgrade period, after which no pointing calibration had 
been done. Due to peculiarities of EISCAT pointing hardware, the azimuth 
pointing can fairly easily get an accidental offset during maintenance. 

Panels (2) and (3) of Fig. 4.12 show the measured range and Doppler- 
velocity. The solid dark curves represent quadratic and linear fits to the 
good (Rmax > 4.5) points. The large dots represent the predicted values. 
The measured range is about 7 km larger than predicted. Assuming roughly 
south-to-north flight direction, 7 km would require an elevation offset about 
0.60. This appears unreasonably large. It is difficult to explain the 7 km 
from a timing error either. The situation with the velocity data is similar. 
The slope of the velocity curve is as predicted, but there is a conspicuous and 
consistent discrepancy of about 0.1 km s-l in the actual velocity values. The 
circular-orbit, vertical-beam acceleration is 27.5 m s-2, which is consistent 
with the value 27.1 m s-2 from the velocity fit. According to Landgraf, 
the timing accuracy for the catalogued objects is of the order of 10 s, while 
we believe our timing to be accurate to within about 0.1 s. However, the 
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Figure 4.12: Event at 22:19:06, 20 February 2001, catalogue comparison. 

The top panel shows Rmax in dB. The middle panel shows the measured 

range (small circles), a parabolic fit, and the catalogue prediction (large 

circles). The bottom panel shows the measured Doppler-velocity (small 

circles), a linear fit, and the catalogue prediction for the range rate (large 

circles). The measurement was analysed with the FastGMF algorithm. 
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Figure 4.13: A cut of the theoretical EISCAT UHF antenna pattern at off- 

axis distance 0.520. The y-axis is the antenna gain divided by the gain on 

the optical axis. 

range and velocity discrepancies cannot be removed simply by adjusting the 

relative timing, because the required correction would be about six seconds 

for the range data, but only about three seconds for the Doppler-data. 

As the final comparison, we consider the signal level. We get from 

Eq. (2.60) an estimate of the SNR, normalized for 1 MHz noise bandwidth. 

We use the value Rmax 
= 137 from the top panel of Fig. 4.12, and get the 

number of signal samples N ~ 24000 (per 1 J.Ls sampling interval) from the 

integration time 0.273 s and the duty cycle 8.8%. We find 

1372 
SN~.52O = 

24000 
= 0.782. 

We estimate from Fig. 4.13 that there is about 23 dB loss in received signal 

power because the target was off-axis, and use that value to correct the SNR 

estimate. We get 

SNRaxis = 0.782 .102.3 = 156. 

This is the SNR we would have got if the target would have gone trough the 

beam centre. We use SNRaxis, the measured range 1520 km, and the radar 

equation to compute the radar cross section. We get cross section 4.2 m2, 

which is 2.0 times smaller than the catalogued value. Possible reasons for 

the discrepancy are our assumptions of 60 K noise temperature and 1.0 MW 

transmission power and, especially, our estimate of the off-centre loss, 23 dB. 

The last number alone could be wrong by the required 3 dB. 
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Measuring SD with EISCAT radars 

In this study we have designed, implemented, and tested a system for using 
the EISCAT incoherent scatter radars to detect and characterize small-size 
space debris. Our aim has been to develop a system that can observe space 
debris unobtrusively in the background when the radar is doing its normal 
ionospheric work. Our solution introduces a new piece of hardware, the SD 

receiver. The interface between the host radar and the SD receiver is clean 
and minimal. The radar does not need to know what the SD receiver is 

doing. It only needs to provide the following minimal and cheap resources: 

Þ a copy of its received analog signal 

Þ a copy of its transmission waveform 
Þ antenna pointing direction and transmission power as a network service 
Þ optionally, a copy of the site's GPS I-second pulse. 

The SD receiver, in turn, does not need to know the details of the running 
radar experiment beforehand. Our data processing requires the transmission 
waveform as input; that we measure directly. The SD receiver needs not to 
know anything about the host radar's own signal processing. 

The SD receiver maps its input analog frequency band, which usually 
contains several narrowband frequency channels with a total spread of a 

few MHz, to the band's digital image, represented by a single stream of 
complex samples. A workstation connected to the receiver transfers the 
samples to hard disk. Because of the required high sampling rate for rou- 
tine operations, it appears necessary to perform SD target detection in real 
time, so that only data containing targets need to be saved. The required 
computing speed for real-time detection is in excess of one Gflop/s, but is 

within the reach of a modest number (3-4) of today's workstations, working 
in parallel. In this preliminary study, we have worked entirely off-line, using 
the data recorded on disks. 

Our SD detection and data analysis is based on statistical inversion, 
which we have applied via a tool we call the GMF. We have shown that the 

GMF, with different approximations and resolutions, suffices both for the 
initial detection and the final parameter estimation. The foundation of the 
GMF method is firm and simple, and the parameter estimates, at least in 
special cases, are equivalent to well-known maximum likelihood estimates. 

The problem of parameter estimation accuracy 

As we have discussed above, the analytic prediction of parameter errors fails 
for small SNR. The errors can, however, be estimated from the fluctuation of 
the deduced parameters during the time the target moves through the radar 
beam. In order to get a more reliable analytic parameter error estimate, 
we will have to investigate the Gaussianity of the posteriori density and the 
coherence of the received signal. 
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The event summary plots of the test campaign show the variation of all 

target parameters from integration to integration. Jumps in the velocity 

time series are from a few meters per second to several tens of meters per 

second, after the linear trend due to acceleration is removed. The linearised- 

theory curve in Fig. 2.4, on the other hand, gives r.m.s. error 0.16 m s-l 
for a 2.0 cm target at 1000 km range with 0.1 s integration. According to 

the results of the test campaign, such a target is just barely detectable even 

with 0.3 s integration. 

Issues of coherent integration 

Early on in our two-year study, we proposed to use coherent integration to 

increase detection sensitivity. The requirement of coherent integration then 

lead us to adopt the GMF technique. Coherent integration surely is essential 

for sensitivity. It is essential also for the parameter accuracy; we note from 

Eq. (4.4) that the posteriori density becomes better localised in proportion 

to the SNRN and not merely to the SNR. Therefore, it is unfortunate that 

we cannot in practice integrate longer than a small fraction of a second, 

say ~ 0.1 s, before starting to lack behind the predicted sensitivity gain. 

We do not know what causes this apparent loss of coherence. It could be 

that the targets do not scatter coherently, but for a small target deep in the 

Rayleigh region this would be unexpected in itself. It might be that iono- 

spheric electron density fluctuations cause perceptible irregularities to the 

phase of the signal. Clutter or interference could disturb the signal. And we 

can never completely exclude phase drifts due to the hardware, though the 

GMF method automatically cancels any drift that is common both to the 

transmission and the reception. This cancellation requires that the trans- 

mission samples are of good quality and really represent the transmitted 

signal. 

Real signals are never completely coherent, but we expect our signal 

model, which is already second order in time, to remove at least most of 

the long-term phase drifts. On the other hand, the signal model cannot 

take into account rapid back-and-forth phase variations (phase jitter) during 

integration. We did check the phase jitter of the SD receiver's clock input 

signal during the test campaign, and concluded that it would not cause 

problems for us. 

We have also checked, by using perfectly coherent simulated data, that 

the detection sensitivity increases as expected when integration time is in- 

creased. This observation demonstrates that our data analysis software is 

implemented correctly. In the light of the error estimation problem, it would 

be desirable to check also velocity and range error behaviour with simulated 

data. There is a good place for further study here, via simulations, theory 

model improvements, and more extensive study of actual data. 
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Test campaign 

On the basis of our February 2001 test campaign at EISCAT UHF radar, 
we can draw several conclusions, which we, in spite of the smallness of the 
analysed data set, believe to be reasonably robust. 

1. We get 10-15 events per hour. 
2. Most events are seen in the altitude band 800-1200 km. 
3. The detection limit is 2 cm at 1000 km range, with 1 MW transmission 

peak power and 0.3 s coherent integration. 
4. Range can be determined essentially with the accuracy determined by 

the gate separation, about 0.1 km. 
5. Doppler-velocity can be determined with about 0.1 km s-l accuracy 

or better in most cases. 

6. It has not been possible to get good estimate for acceleration, but the 

circular-orbit value is good enough for the detection purposes as long 

as almost vertical antenna pointing is used. 

7. Our approximate FastGMF algorithm can be used both for detection 
and final parameter estimation, without significant loss of sensitivity 
or accuracy. 

8. The required sustained computing speed is about 1 Gfiop/s for real- 
time detection in cpllt and tau2 experiments, on the same level of 
sensitivity and accuracy that we had in the test campaign. 

Next steps 

The test campaign showed that meaningful target parameters are obtained 
at EISCAT with our SD measuring and analysis system, even though the 

parameter accuracy achieved so far is not as good as we had expected. 
However, for the practical purpose of routine monitoring of small-size SD, 
to achieve centimeters per second velocity accuracy is not top priority. It 
could be that the larger-than-expected errors relate to the apparent lack of 

coherence, and via it, to detection sensitivity, which definitely has an impact 
on the measured size distribution. We are confident that the problems with 
estimation accuracy and coherent integration will be understood, and that 
more sensitive and accurate measurements can be achieved in the future. 
This might require more computing power than we have estimated in this 
study. 

One of the main benefits of the statistical inversion approach is that it 
provides a firm foundation for error analysis. We should extend the mea- 
suring model to include several integrations and get a proper error estimate 
for the event parameters. Another interesting aspect for future work is the 
use of a priori information. Statistical inversion gives a well-defined way to 
feed a priori probability information into the detection problem. We have 
not made use of this option so far, but it is not inconceivable of doing so 
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later, when we have better ideas about the parameters of the SD popula- 

tion. Correct prior information is an extra helping hand, and could prove 

useful for large-scale statistical studies of small-size SD populations, where 

we might want to push down the detection limit. 
The test campaign showed that using our SD receiver, the SD measure- 

ments can readily proceed in the background of standard EISCAT iono- 

spheric measurements. There are a few things that need to be taken care of 

before routine operations could begin. 

[> We need real-time detection capability. This requires that key parts 

of our MATLAB-based software is coded with a compiled language. We 

also need an environment that allows distributing the detection com- 

putation among a few networked workstation on scan-by-scan basis. 

[> We need to streamline our data analysis, to make it considerably more 

automated. We need to include non-stationary noise into our mea- 

surement model to handle noise injections. We need to include valid 

error estimates into our event parameter listings. 

[> We need to analyse the data further, to extract orbital elements based 

on circular-orbit approximation, and to provide error estimates for 

them. 

In the longer term, we should not forget the unique tristatic property of 

EISCAT UHF system, which allows the determination of true orbit and 

true scattering cross section from a single measurement, without any addi- 

tional assumptions. However, tristatic SD measurements, as well as all other 

changes in EISCAT standard experiments like using variable-length IPPs, 

require EISCAT's active participation, and are therefore at odds with the 

low-profile, no-interference approach that we have adopted in this study. 

We have shown that there are no technical nor operational reasons why 

EISCAT could not help substantially in space debris monitoring, perhaps 

on the level of several thousand analysed events per year. This can hap- 

pen without causing any interference with EISCAT's primary ionospheric 

mission, and with minimal extra cost. 



Appendix A 

Multi-frequency GMF 

81 



82 APPENDIX A. MULTI-FREQUENCY GMF 

A.I Generalized matched filtering 

When searching the radar echo of a moving point target in received data, 

we essentially want to find a time-shifted and Doppler-shifted replica of the 

transmission pattern in the reception time series. The target detection thus 

amounts to a pattern search (pattern match) operation. A well-known and 

optimal way of finding a known pattern in noisy data is by matched filtering 

(MF), where one matches the pattern in time (or, equivalently for a pointlike 

radar target, in range). When the pattern in addition of the unknown 

start time also possesses an unknown shift in frequency, the proper tool is 

the generalized match filter. The generalized MF is capable of matching 

the pattern both in range and frequency simultaneously, and involves the 

computation of the generalized match function, GMF. 
Denoting the transmission by T(t) and the reception by S(t), the GMF 

for our detection problem is 

GMF(r,w) = If dt [S(t) + r(t)] . T(t - 2r/c)ciwtl, (A.I) 

where r(t) is noise and the the over bar denotes complex conjugation. In 

general, a transmission can contain multiple frequency channels, that is, 

several modulation patterns on different frequencies. The channels can be 

sent during the same IPP or in the cause of several IPPs. Here we assume 

that the channels are sent almost consecutively during a single IPP. The 

transmission on channel n can be written as 

Tn(t) = En(t)eiwnt, (A.2) 

where the complex-valued transmission envelope En(t) describes the code 

pattern on DC level, a phase code say, and Wn is the radio-frequency emitted 

from the antenna. The complete transmission is then 

T(t) = LTn(t) (A.3) 

and the reception is 

S(t) = L Sn(t), (A.4) 

where Sn is the reception that would be obtained if only Tn were transmitted. 

A.2 GMF with a single-frequency transmission 

We first handle the case of a single-channel experiment. The reception S is 

essentially the transmitted pattern, shifted in time by the pulse propagation 

delay 2R/c, where R is the target distance, and shifted in frequency by the 

Doppler-frequency WD, 

S(t) ex: El(t - 2R/c) . ei(WI-WD)t. (A.5) 
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The integrand in the definition of GMF is then 

STe-iwt ex: f1 (t - 2R/ c)e-i(Wl -WD)t 
. f"1 (t - 2r / c)eiwlt 

. e-iwt 
- f1(t - 2R/c)f"1(t - 2r/c). e-i(w-WD)t. (A.6) 

Note that due to the complex conjugation in T, the rapid time variation eiwlt 

cancels from ST. From (A.6) it is evident that without noise, we maximize 
the GMF ("get best match") at the point (r, w) = (R, WD). 

Summarizing the case of a single-frequency transmission, we have seen 
that 

GMF(r,w) ex: I J dtf(t - 2R/c)f"(t - 
2r/c)e-i(w-WD)t I, 

which has maximum at the point corresponding to the target range Rand 
the target Doppler-shift WD. To get some idea about the behaviour of the 

GMF, we inspect the cuts of the GMF-surface through the maximum point, 
in the range and frequency directions. 

In the range direction through the maximum the GMF, without noise, 
reduces to the magnitude of the autocorrelation function of the transmission 
envelope 

(A.7) 

GMF(r,w = WD) ex: I J dt f(t - 2R/c)f"(t - 2r/c) I. (A.8) 

Typically this is a rather slowly varying function of r around the maximum 
at r = R, with width of the order of twice the length of the constant-phase 
element of the code (the baud length). The autocorrelation function is 

identically zero when 2r / c differs from 2R/ c by more than the full duration 
of the transmission (supposing that the r is not so large that pulse-to-pulse 
correlation becomes an issue). In the next section we will show that when 
there are multiple frequencies in the transmission, an additional modulating 
factor p(r - R) appears to the r.h.s. of Eq. (A.7), with faster variation. 

In the frequency direction through the maximum, the GMF reduces to 

GMF(r = R, w) ex: Ii dte-i(w-WD)t I. 
The integral in (A.9) is over the interval (or intervals) of time when the echo 
is received. 

In the simplest case, the GMF-integral is evaluated only over one IPP, of 
duration P, so that the integration limits in Eq. (A.7) would be from 0 to P. 
One of the main benefits of the GMF detection method is that, technically, 
the integral can as easily, though of course not as fast, be evaluated over 
M IPPs. If the echo arrival time and other properties change only very 
slowly from IPP to IPP, a factor of M improvement in detection sensitivity 
in noise-dominated environment can be achieved. 

(A.9) 
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We denote by L the duration of the envelope 101. Then for a single IPP, 

Eq. (A.9) becomes 

lL+2R/C 
GMF(r=R,w) ex: I dtCi(w-WD)tl 

2R/c 

L . (L(w - WD)) 
- .smc . 

2 
(A.I0) 

The main maximum has width ð-w = 47r / L or ð-f = 2/ L, measured from 

zero to zero around the maximum. 

If the GMF -integral is taken over M IPPs, each of duration P and all hav- 

ing sufficiently identical transmission of length L, the sinc factor in (A.lO) 

becomes modulated by the Dirichlet-kernel 

1~1 im(w-wD)P 1= 
ISin[(W-wD)MP/2]I 

~ e 
sin[(w - wD)P/2] 

. (A.ll) 

The expression (A.ll) has maximum equal to M at w = WD and zeros at the 

points f m 
= ;Fp. The qualification "sufficiently identical" especially means 

the requirement of phase coherence, or constant phase difference, between 

transmission ET(t) and the corresponding echo ER(t) from IPP to IPP, so 

that 

ER(t) . ET(t) ~ ER(t + mP) . ET(t + mP) for m = 1. . . M. (A.12) 

Equation (A.12) by no means requires the codes themselves to be identical 

from IPP to IPP, only basically that their magnitudes are equal, so a set of 

well-behaving phase codes is allowed. Where (A.12) will in practice typically 

go wrong, even in a fully phase coherent radar system, is when the target 

itself introduces an extra (other than Doppler), fast varying phase to the 

echo signal. Another way to destroy the necessary phase coherence, in the 

flexible EISCAT system at least, is to perform sufficiently "clever" frequency 

hopping from IPP to IPP. 
For a sufficiently coherent system (target+radar), it follows from (A.I0) 

and (A.ll) that 
GMF(R,WD) ex: ML. (A.13) 

This says that the maximum value of GMF is proportional to the total 

length of signal, and signifies coherent integration. 

In this section, we have assumed that there is only one frequency in the 

transmission. Most of the treatment and conclusions of this section carry 

over unmodified to the multi-frequency case. However, we did silently ignore 

a couple of phase terms in Eq. (A.6). In the case of a single frequency this 

was OK because those factors can be factored out of the integral, and have 

magnitude equal to unity. In the case of multiple frequencies, there exists 
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the possibility of "interference", and we need to proceed more carefully. In 
particularly, we will show that, while all the rapid time variations listed in 
Eq. (A.I) will still cancel out, the GMF possesses an interference-type oscil- 
lation in the range direction. This interference pattern in range is ultimately 
due the fact that the phase path (distance in terms of wavelength) to a given 
range r changes by different amounts for the different frequencies, when r is 

varied. This interference is purely an artifact of the GMF method. It comes 
about only when the GMF is computed. There of course cannot be any 
physical interference, because the transmitted pulses are spatially separated 
(also) after reflection from the point target. 

A.3 G MF with multiple frequencies 

We model the reception as an attenuated replica of the transmission, shifted 
in time by the pulse propagation delay 2R/ c, 

Sn(t) = bTn(t - 2R/c). (A.14) 

This is certainly a valid expression for a stationary point target. The mul- 
tiplier b may be a complex number, and includes all the usual stuff from 
the radar equation. Target motion, R = R(t), will change the length of the 
phase path, a change that shows up as the Doppler-velocity. Crucially, in 
the following we will use (A.14) also for a such a (slowly) moving target to 
track the phase change. 

For the short period of time - a few IPPs at most - that we are interested 

in, the target range does not change much so the factors coming of the 
radar equation will not change significantly. Therefore we will take b to 
be a constant. This might not be a good approximation for real targets due 
to their internal properties such as rotation. The constant b could also 
be channel dependent, but as it will anyway assumed to be constant, the 
dependency can be ignored. 

We take time t = 0 to correspond to the lower integration limit of the 
GMF integral, and assume constant radial velocity vo, thus taking 

R = R(t) = Ro +vot. (A.15) 

Inserting R(t) from (A.15) into (A.14) and using the representation (A.2) 
of T(t) gives 

Sn(t) - b. En(t - 2R/c) . 

eiwn(t-2R/c) 

. t . ~ . ~t - b. En(t - 2R/c) . e~wn . e-~wn' c . e-~wn' c 
. 

(A.16) 

For a short interval of time, we can replace R(t) inside the envelope En(t) by 

an average value, or simply by Ro. This approximation suffices here when 
we just want to inspect the general properties of GMF. Those properties 
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depend more on the phase factors than the precise shape of the envelope. 

The exponent of the last phase factor in the expansion (A.16) includes the 

target's Doppler-frequency 

úJO,n 
= úJn .2vo/c. (A.17) 

The Doppler-frequency is proportional to the transmission frequency, and 

thus is in principle different for the different channels. However, the channel 

frequency difference in EISCAT is a few MHz at most, and the transmission 

frequency is on the order of a GHz. Thus, also for the Doppler-frequency, 

we have ÂúJO/úJO,n '" 10-3, and we can ignore the difference. 

With these notations and cosmetic approximations, we can write the 

reception (A.16) in the form 

Sn(t) = b. e-iwn~ . En(t - 2Ro/c) . 

eiwnt 
. e-iwDt. (A.18) 

The other factor that we need in the GMFintegral, Tn(t - 2r/c), is also 

expanded based on the definition (A.2), but this time the range parameter 
is kept fixed. We get an expression that looks like a simplified form of 

Eq. (A.18), 
Tn(t - 2r/c) = e-iwn~ . En(t - 2r/c). eiwnt. (A.19) 

The quantities Tn(t) and Sn(t) above represent the transmission and re- 

ception on the RF level. Nevertheless, we have treated them as complex 

(detected) signals right from the beginning. Detection just removes either 

the negative-frequency spectral component or the positive-frequency com- 

ponent from the original real signals. As a reminder that the GMF method 

really operates on the detected signals, on some intermediate frequency (IF) 

level, we at this point include the frequency-shift from transmission frequen- 

cies down to IF by a some local oscillator frequency úJLO, by replacing 

Sn(t) ---+ Sn(t). e-iwLQt 

Tn(t) ---+ Tn(t). e-iwLQt. 

(A.20) 

(A.2I) 

These changes add an extra factor e-iwLQt to the r.h.s. of Eq. (A.18) and 

an extra factor e-iwLQ(t-2r!c) to the r.h.s. of Eq. (A.19). Note that the fre- 

quency shift by úJLO is not channel dependent. Taking these added factors 

into account, we get the following expression for the most general product 

SnTm that can appear in the GMF integral in the case of multiple frequen- 

cies. 

SnT meiwt - b. e-iwn~ . En(t - 2Ro/c) . 
e+iw~t 

. e+iwDt . 
eiwt 

x eiwm~. Em(t - 2r/c) . e-iw;.,.t . e-iwLQ2r!c. (A.22) 

We denoted by úJ~ the IF frequency úJn - úJLO of channel n. The time- 

dependent part of (A.22) is 

ei(w~ -w;.,.)t . ei(w-WD)t. (A.23) 
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In the area of (r, w)- plain which we are interested in, w will be of the order 
of WD, a few kHz. Instead, the frequency separation of the transmission fre- 
quencies is typically of the order a few hundred kHz. Under these condition, 
the first term in Eq. (A.23) oscillates much more rapidly than the second 

term, if n i= m, and greatly suppress the value of the integral. This means 
that, to more or less good approximation, we may ignore those terms where 
n i= m. With this assumption of approximate orthogonality between the 
frequency channels, we can compute the GMF from 

GMF = L 1 dtSnT neiwt 
. 

n 

(A.24) 

Inserting SnTn from (A.22) into (A.24), cancelling the terms éiw~t and 
noting that !e-iwLQ2r/cl 

= 1, we get 

'" { . ~ 1 .() } GMF(r, w) = b 
L... 

e-2Wn c dt En(t, r, Ro) . 
e2 W-WD t 

. 

n 

(A.25) 

We denoted by En the autocorrelation product of the transmission envelope 
on channel n, 

En(t, r, Ro) = En(t - 2Ro/c) En(t - 2r/c). (A.26) 

Within the approximations leading to (A.25) we note that even in the multi- 
frequency case, the GMF has the absolute maximum at the point (Ro,WD). 
Clearly, (A.25) is consistent with Eq. (A.7) that we got earlier for the single 

frequency case. However, now we have also got an extra range-dependent 
factor in front of the integral. This factor factors out if there is only a single 
frequency, but gives an interference pattern in range if there are multiple 
frequencies. In the general case, the interference pattern depends both on 
the transmission envelopes and the frequencies, but if all envelopes are iden- 
tical, En = E1, the integral can be taken out of the sum in (A.25), and the 
GMF can be written as the product 

GMF(r, w) = b. p(r - Ro) .11 dtE1 (t, r, Ro) . 
ei(W-WD)tl 

' 
(A.27) 

where 

'" 
. 2(r-Ro) 

p(r - Ro) = 

L... 
e2Wn 

c 
. 

(A.28) 
n 

For example, for the ESR tauO experiment we have two identical transmis- 
sions in an IPP. In this case 

I r-Ro I p = 2COS[(Wl - (2)~] . (A.29) 
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In this two-frequency case, p(r) is periodic, with the period ~r determined 

from 
~r IWI - w21. - = 7r 

C 

(A.30) 

as c 

~r- - 

2111- 121. 
(A.31) 

For example, if the channel frequency separation 111 - 12 I is 250 kHz as 

in our November 1999 data, ~r = 600m. In the cut GMF(w = WD, r), 
Eq. (A.27), this rapid oscillation of p(r) is superimposed on top of the much 

slower variation of the magnitude the autocorrelation of the transmission 

envelope. 
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B.l Modulation and timing 

The cpllt transmission consists of unmodulated 350 J.LS long Long Pulses 

(LP) and 16 x 21 J.LS (16 bits, 21 J.LS duration) Alternating Codes (AC). In 

addition, the transmission contains a few short, unmodulated pulses, which 

we have ignored in the SD search. Fig. B.l shows the timing details of the 

cpllt transmission. The frequencies Fn given in the figure are the frequencies 

that we used during measurements in February 19. 

In cpllt, the transmission-reception periods (IPPs) are of two different 

lengths. The IPPs that start with the transmission of a LP have duration 

5201 J.LS while the IPPs containing the ACs have duration 4663 J.LS. The 

transmission frequencies are used in such a way that the shortest period 

where the transmission repeats identically is 19530 J.LS for the LPs, and 

much longer for the ACs where the phase code bit pattern cycle is 2 x 32 

IPPs long. This means that target ranges up to 19530 x 0.15 km = 2930 km 

can be determined unambiguously with both modulation. Figure 3.2 shows 

raw data from a few consecutive IPPs. 

B.2 Matching windows and blind zones 

When the radar is transmitting, no reception can occur. In addition, EISCAT 

experiment designers use rather long periods around the actual transmission 

where the receiver is protected, that is, isolated from the antenna. These 

transmission windows are marked in Fig. B.1. There are altitude zones from 

which we cannot have complete information, because part of the the echo is 

cut off by a transmission window. We call these zones the blind zones, and 

conversely, refer to the altitude zones from which we can receive a SD echo 

completely, the matching windows. The latter name comes about because in 

a matching window, the whole transmission can conveniently be used in the 

GMF. Because in cpllt both the IPPs and the transmissions have slightly 

different lengths, the matching windows are located somewhat differently 

for different modulations. The situation is shown in Fig. B.2. 

With our SD receiver, we receive and record continuously, picking input 

from the transmission sample channel when that channel is detected active, 

and from the reception channel at other times. With this data it is possible 

formally to compute the ratio R for any modulation at any time (range), 

also outside the matching windows. We present such an overview in Fig. B.3, 

where we plot the ratio R for LPs and ACs separately. We compute these 

code-wise ratio curves by using in the GMF only the appropriate piece of 

the full transmission. 

Matching a transmission against another transmission in the blind zone 

shows up in Fig. B.3 as an increase ofR. It is not clear why this happens, and 

especially, why the two curves are so different. The two involved frequencies 
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should be widely different, and no actual match should take place. 
When the transmission to be matched starts to overlap a transmission 

window, it sees the greatly reduced noise level there. This shows up as n 

decrease, most clearly in the AC curve towards the end of the lower matching 
window. It would in principle be possible to increase the altitude coverage 
a little by making use also of this "partially blind" region, but we have not 
done so in this work. 

There is a hard target echo visible in Fig. B.3, towards the end of the 
upper matching window. The scan in Fig. B.3 is near the maximum of the 
second event in Table B.1. 

B.3 Handling the noise injection 

When we match a transmission against a noise injection burst we find an 
increase in n, shown in Fig. B.3. In cpllt, EISCAT injects a 330 f.."S long 
burst of wide band noise of known temperature into the receiver front end, 
2.63 ms after the start of each AC transmission, as can be seen Fig. 3.2. 
EISCAT uses the noise injection for receiver gain calibration. Also we should 
ultimately use it, but in this work we have instead relied on the presumably 
known system noise temperature as the means of finding signal power in 
physical units. Conversion of signal power to physical units anyway is needed 
only when estimating the effective target diameter. 

On the face of our definition of the ratio n, Eq. (2.38), it may look 
surprising that an increase of the noise power in the denominator should 
lead to an increase of the ratio. Indeed, this only happens because we 
have oversimplified our measurement model. In our derivation of the GMF 
formalism, we explicitly assumed the noise to be stationary. Therefore, our 
software estimates the noise power as the average of the squared magnitudes 
of the first N samples of the matching window, 

1 h+N-1 
P-y == 

N 
L Imnl2, 

n=h 

(B.1) 

where )1 refers the first gate in the matching window and N is the number 
of signal samples. (It is then also hoped that those N points do not contain 
much signal contribution, but this is a separate issue, see below.) Clearly, 
this is not the proper way to go if the noise, in actual fact, is not stationary. 

In Fig. B.3 the noise injection bump shows up only in the first matching 
window in the alternating code curve, and only in the second matching 
window in the LP data, as it should. Also note that the LP forms a narrower 
bandwidth filter than the AC, and so the ratio curve is more smooth for the 
by LP filtered data. 

The noise injection bumps present a problem for Rrnax-based detection 
and target size estimation. Suppose the maximum of the noise injection 
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bump has R = 4, while the background ratio level is about 2. This means 

that the detection threshold must be set at least to a value around 5, in 

order to avoid a lot of false alarms near the top of the bump. Suppose that 

halfway up the slope of the bump there is a promising spike that rises 2 

units from the edge of the bump, to a maximum R = 4.5. What should we 

conclude about the spike? If we conclude it is a target, what strength do 

we assign to it? How do we force an automatic threshold detector to notice 

the small spike in the shadow of the large bump? 

Our off-line detection software circumvents the noise injection problem 

by estimating the shape of the bump from a large number of scans, sub- 

tracting the mean bump from all scans, and applying the detector only to 

this cleaned data. The procedure probably is fine from the detection point 

of view, but did we distort the size estimate? Whether this solution is right 

or wrong surely is no big issue as long as we are only accepting very clear 

events as the analysable events. But if we someday would want to work 

nearer the noise floor, say to count really weak targets, these matters must 

be addressed seriously. 

BA Detection setup 

We have scanned about 10000 seconds of continuous recording of the cpllt 

data from February 19, 2001. The sampling interval was 0.6 I-tS in this case, 

so this set contains 16.7 x 109 complex samples, taking 62 Gbytes on disk. 

The range coverage of the SD search is shown in Fig. B.3. Between 

altitudes 396 km and 1377 km, only the interval 682-785 km could not be 

searched. To get this coverage, we scanned the whole data set three times. 

1. Both the LPs and the ACs were used to scan the range intervals 396- 
666 km (386-649 km altitude) and 855-1413 km (833-1377 km). 

2. The higher window was extended downwards by matching only with 

ACs on interval 806-900 km (785-877 km). 

3. The lower window was extended upwards by matching only with the 

LPs, on range interval 600-700 km (585-682 km). 

Other scan parameters were set in the following way. 

I> Range step was 15 gates, 9 I-tS, which seems to be small enough for the 

21 I-tS bit length of the alternating codes (see Fig. 2.11). 

I> Length of coherent integration was 64 IPPs, 0.31 s. 

I> Searched velocity interval was -5... + 5 km s-l. 
I> Acceleration: For each range j, only a single value aU) was used in 

GMF. The acceleration was computed from Eq. (2.63). The antenna 

elevation was 77.10, so we simply used the range in place of the altitude 

in the formula. Even though the acceleration was thus not measured 
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in individual scans, a (mostly bad) estimate for it was still found sub- 
sequently in most cases, from the change of the radial velocity from 
scan to scan. 

t> Scan period was 0.5 s, meaning that after each scan, 0.2 s was skipped 
before starting next scan. All the detected targets stayed more than 
a second about the detection threshold. Therefore, we do not think 
that the 0.2 s gaps caused many events to be missed. 

t> At the time of our campaign, the UHF transmitters were not operating 
perfectly. The transmission was rather stable most of the time, but 
the maximum power was estimated to be slightly less than 1 MW only. 
We have used this single value in all estimates of the effective target 
diameter. 

B.5 Detection 

The detector software (programs SPDSCAN and SPDVIEW), with threshold 
5, found 52 events. Of these, we deemed seven to be not analysable. In 
most cases the rejection was because the target obviously was outside the 
matching window and triggered the detector only because of the rather large 
width of the detection peak. Raw data for the remaining 45 events were 
first moved to a separate place, using the archiver subsystem of SPDVIEW. 
A suitable length of raw data, from about 5 to about 30 seconds per event, 
was transferred. This reduced the data size needed to be kept online from 
62 Gbytes to about 3 Gbytes. 

B.6 Parameter estimation 

After detection, the analyser program (SPDVIEW) was used to re-scan the 
event data around the known range with full resolution and without gaps in 
time. We used both the FastGMF and the standard GMF algorithms. The 
standard GMF algorithm involved a complex 520800 points FFT for each 
range gate. The FastGMF algorithm squeezed this number down to 3712. 
Analysis with the full GMF was desperately slow. The analyser produced 
2+2 summary plots per event, which we saved to the same directory as the 
event's raw data. The event summary plots for all events are available via 
our SD web page at the URL www.sgo.fi/-jussi/spade/. 

B.6.1 Data quality plot 

Example of the first type of event summary plot is in Fig. BA. It shows 
the results of the scan which corresponds to the maximum ratio Rmax of 
the event. The time of the scan, which we more precisely define to be the 
start time of the 0.31 s data segment used for the scan, is taken as the time 
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label for the event in event listing (Table B.1), and as the time origin in the 

time series plots (Fig. 3.5). The absolute accuracy of the time label is of the 

order of 10 ms. 
The top data panel of Fig. B.4 shows the first few IPPs of the raw data 

of the scan. The next panel shows the ratio n(r) near its maximum at 

r = Ro. The bottom panel shows the velocity slice of the GMF through its 

maximum position. That is, the panel displays the function 

GMF(Ro, '-<), ao) 
'-<)f-+ , P noise 

(B.2) 

with the Doppler-frequency '-<) converted to velocity units. The ao = ao(Ro) 

is the circular-orbit acceleration value. 

The noise power estimate (B.1) uses N points starting from the first 

point in the search window. In the high resolution re-scans, the search 

window is narrow and is more or less centred to the target position, as 

shown by the vertical lines in the top panel of Fig. B.4. The estimate Pnoise 

will contain signal, and the ratio n and the velocity slice (B.2) will become 

systematically underestimated. For high signal levels, this suppression gets 

serious and must be removed, or else it affects the target size estimate. For 

the time series plot in Fig. 3.5, there is a simple remedy: the analyser uses 

the minimum of the individual noise estimates. For properly chosen data 

set, there will be a few scans which contain no signal, and they will yield an 

uncontaminated estimate of the noise. 

B.6.2 Parameter estimation plot 

An example of the second type of analyser plots is in Fig. 3.5, see Sec- 

tion 3.2.5. 
The FastGMF algorithm introduces errors to the parameter estimates, 

very prominent in VD(t) in Fig. 3.5, but also affecting r(t). Moreover, 

FastGMF systematically underestimates the ratio. Making a fit to several 

scans hopefully improves the estimates of rand VD. 

B.7 Listing of events 

Listing of cpllt analysis results is in Tables B.1, B.2 and B.3. 
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Figure B.1: 'Iransmission in experiment cpllt, 19 February 2001. The draw- 
ing is not to scale. The top four panels show transmission during the first 
four interpulse periods of the transmission loop (times are in j1.s). The IPPs 
have lengths 5102 j1.s, 4663 j1.S, 5102 j1.S, and 4663 j1.S. After this 19.530 ms 
cycle, the transmission repeats identically, expect that the alternating code 
phase-flip pattern keeps changing over a set of 32 different codes. The full 
loop is 32 x 19.530 illS = 0.625 s. The coherent integration is done in integer 
multiples of the 19.530 ms cycle. The dark gray area around the transmission 
pulses indicates receiver protection, during which receiver is isolated from 
the antenna. In addition to the 350 j1.S long Long Pulses (LP) and 336 j1.S 

long Alternating Codes (AC), the transmission contains short unmodulated 
pulses, but we have not used them in SD search. 
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Figure B.2: Space debris matching windows (tall blocks, blue) in experiment 

cpllt. Note that the drawing is not to scale. The top panel shows the 

matching windows when only Long Pulses are matched, the bottom panel 

when only Alternating Codes are matched. When both are matched, the 

usable window is the intersection of the LP and AC windows: lowest window 

is from 81 km to 638 km in range, next window from 827 km to 1401 km 

in range. If only alternating codes are matched, the seconds window starts 

already at 780 km range. Note that the high altitude boundary of each 

window is placed a pulse length before the receiver protection kicks in. The 

boundary could be moved slightly forward by matching only part of the 

pulse, but then one would need to compensate for the reduced weight. Also, 

some 200 J-I,s from the low altitude boundary of each window is contaminated 

by strong clutter, and has been skipped in actual SD search. The last row 

of numbers in each panel give the sample numbers or "gate" numbers of 

the window boundaries when sampling interval is 0.6 J-I,S, to top row gives 

the corresponding times in J-I,s, counted from the beginning of the respective 

transmission. 
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Figure B.3: Actual SD search windows in cpllt (blue strips). The lower 
window covers ranges 396-666(-700) km and the upper window covers 
(806-)855-1413 km. The range shown in parentheses was matched only 
with the long pulses in the first window and only with the alternating codes 
in the second window. Other parts where matched with both set of codes. 
The top curve (red) shows matching with only the alternating codes, the 
bottom curve (green) matching only with the long pulses. The lower match- 
ing window is rather heavily 'corrupted' due to alternating codes seeing the 
noise injection - there is noise injection only in the IPPs which transmit 
alternating codes. The FastGMF algorithm was used in this example. The 
data comes from near the maximum of the SD event at 22:23:48.3, 19 Febru- 
ary. There is a debris echo visible at about range 1350 km. 
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Figure B.4: The centre scan of an event in experiment cpllt, 19 Febru- 

ary 2001 
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Table B.1: SD events, cp1lt, 19 February 2001, 22:23-24:00. 

UT is time of maximum signal strength, R is range at the given UT, 
VD is the Doppler-velocity, positive away from the radar, deff is the effective 
target diameter. RR is range rate (dR/dt), aD is Doppler-drift dVD/dt, ao 
is circular-orbit acceleration at R. The final column gives the event's event 
number in the compilation of summary plots, 'ac' means matching only 
with alternating codes. There are two rows for each event: the first row 
shows the event analysed with FastGMF, the second row shows the event 
analysed with GMF. 

The list continues in Table B.2. 

, 

UT R de!! RR Ref VD aD ao 
km km/s cm km/s m/s2 m/s2 

2001 02 19 22:23:26.2 821.0 +0.86 3.9 +0.73 82 59.6 1 ac 
820.9 +0.85 3.9 +0.81 52 

2001 02 19 22:23:48.4 1350.2 +1.29 4.6 +1.28 44 31.4 2 

1350.3 +1.31 4.6 +1.28 24 
2001 02 19 22:25:38.1 1127.6 -1.22 5.4 -1.12 -14 39.9 3 

1127.6 -1.18 5.3 -1.19 55 
2001 02 19 22:26:03.2 981.8 -1.26 3.4 -1.21 107 47.6 4 

981. 7 -1.26 3.4 -1.21 34 
2001 02 19 22:31:08.6 1142.7 +0.71 3.0 +0.71 123 39.2 5 

1143.0 +0.68 3.1 +1.14 -8 
2001 02 19 22:31:43.3 951.3 -1. 34 3.2 -1.55 31 49.6 6 

951.4 -1.33 3.2 -1.52 50 
2001 02 19 22:33:24.5 1045.0 +1.50 3.5 +1.50 35 44.0 7 

1045.1 +1.40 3.6 +1.32 96 
2001 02 19 22:35:54.3 1123.7 +0.89 3.0 +1.06 38 40.1 8 

1123.6 +0.84 3.0 +0.89 47 
2001 02 19 22:39:45.7 833.4 -0.59 2.9 - 

- 58.5 9 ac 
833.5 -0.57 3.0 - - 

2001 02 19 22:43:22.1 1160.0 -1.22 5.1 -1.54 2 38.4 10 

1160.0 -1.22 5.2 -1.25 32 
2001 02 19 22:44:13.0 1214.5 +1.53 3.6 +1.57 38 36.2 11 

1214.3 + 1. 54 3.7 +1.40 65 
2001 02 19 22:51:01.9 670.8 +1.37 2.4 +3.06 62 75.9 12 lp 

:50:58.7 661.5 +1.20 2.4 +3.07 68 
2001 02 19 22:54:18.7 506.3 + 1.20 3.5 +1.13 105 105.6 14 

506.3 + 1.21 3.5 +1.22 104 
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Table B.2: SD events cpllt, 19 February 2001, 23:00-24:00. 

The list continues in Table B.3. 

UT R VD deff RR aD ao Ref 

km km/s cm km/s m/s2 m/s2 

2001 02 19 23:02:54.7 1088.2 -1.22 13.5 -1.14 58 41.8 16 

1088.2 -1.22 14.5 -1.22 33 

2001 02 19 23:06:01.1 933.3 -1. 35 3.5 -1.27 99 50.8 17 

933.3 -1.38 3.5 -1.22 18 

2001 02 19 23:18:29.7 812.8 -1.03 46.5 -0.99 53 60.3 18 ac 

813.0 -1. 04 51.1 -1.00 57 

2001 02 19 23:22:03.9 1037.2 -1.10 2.7 -1.32 45 44.4 19 

1036.9 -1.18 2.8 -1.36 40 

2001 02 19 23:32:27.6 963.1 +0.49 13.0 +0.54 42 48.8 20 

:27.9 963.4 +0.54 14.8 +0.56 48 

2001 02 19 23:33:07.0 1226.9 -0.31 3.6 -0.35 35 35.7 21 

1226.9 -0.34 3.6 -0.29 24 

2001 02 19 23:33:43.2 839.8 +1.04 42.3 +0.96 45 57.9 22 ac 

839.8 +0.96 45.2 +0.96 52 

2001 02 19 23:40:34.3 956.8 +1.37 3.7 +1.46 -8 49.2 24 

956.8 +1.33 3.7 +1.26 18 

2001 02 19 23:43:51.4 872.8 +0.78 4.2 +0.80 52 55.2 25 

872.8 +0.79 4.2 +0.81 53 

2001 02 19 23:47:49.6 1359.2 -0.97 3.4 -1.04 144 31.1 26 

1359.2 -1.00 3.5 -1.12 -21 

2001 02 19 23:51:49.8 971.0 -1.30 3.4 -1.29 44 48.3 27 

:49.5 971.5 -1.35 3.5 -1.15 48 

2001 02 19 23:56:49.0 928.2 -1.47 2.3 - - 51.1 28 

:49.3 928.2 -1.47 2.3 -1. 30 - 

2001 02 19 23:56:59.3 1391.4 +0.87 4.7 +0.95 33 30.2 29 

1391.4 +0.91 4.7 + 1. 00 37 

2001 02 19 23:59:50.2 1033.1 +1.26 14.4 +1.26 36 44.6 30 

1033.1 +1.22 14.1 +1.27 46 
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Table B.3: SD events epllt, 20 February 2001, 00:00-01:11. 

UT R VD deii RR aD ao Ref 

km kmjs em kmjs mjs2 mjs2 

2001 02 20 00:00:51.8 1353.2 -1. 33 6.0 -1.35 6 31.3 31 

:50.6 1354.8 -1.33 5.9 -1.28 21 

2001 02 20 00:01:18.4 884.4 -0.86 4.3 -0.84 54 54.3 32 

884.4 -0.87 4.4 -0.84 57 

2001 02 20 00:01:51.3 1343.9 -1.33 3.3 -1.31 18 31.6 34 

1343.9 -1.32 3.3 -1.29 -12 

2001 02 20 00:07:02.6 1329.4 -1. 33 3.6 -1.66 0 32.1 35 

1329.4 -1. 34 3.7 -1. 44 27 

2001 02 20 00:11:58.1 1351.3 -1.35 4.0 -1.18 14 31.4 36 

1351.3 -1.34 4.0 -1.20 47 

2001 02 20 00: 12:59.4 1021.4 -1.36 46.6 -1.35 44 45.3 37 

1021.4 -1.36 49.4 -1.36 45 

2001 02 20 00:22:45.1 832.2 +0.97 5.1 +0.99 65 58.6 38 ae 

832.2 +0.97 5.0 +0.98 59 

2001 02 20 00:24:41.8 980.8 -1.36 4.1 -1.34 45 47.7 40 

:42.1 980.4 -1. 35 4.1 -1.32 43 

2001 02 20 00:26:31.9 833.3 +0.69 6.5 +0.63 123 58.5 41 ae 

833.3 +0.64 6.5 +0.63 66 

2001 02 20 00:33:16.2 905.1 -1.34 2.5 -1.41 43 52.8 44 

:16.8 904.9 -1.32 2.6 -1.42 56 

2001 02 20 00:34:17.5 1118.8 +1.21 4.4 +1.21 7 40.3 45 

:16.8 1118.0 +1.19 4.4 +1.06 30 

2001 02 20 00:40:29.6 937.4 +0.66 2.8 +0.77 77 50.5 46 

937.4 +0.69 2.8 +0.68 55 

2001 02 20 00:48:48.2 1067.3 +1.06 4.9 +1.08 65 42.8 47 

1067.3 + 1.07 5.0 +1.10 58 

2001 02 20 00:49:23.4 815.1 -1.17 2.5 -0.84 118 60.1 48 ae 

815.1 -1.17 2.5 -0.81 110 

2001 02 20 00:59:26.8 833.7 +0.94 4.8 +0.96 48 58.5 49 ae 

833.8 +0.93 4.8 +0.95 54 

2001 02 20 00:59:40.0 872.6 -0.83 2.4 - - 55.2 50 

872.6 -0.73 2.4 - - 

2001 02 20 01:01:58.6 890.1 +0.70 3.3 +0.63 20 53.9 51 

890.1 +0.71 3.2 +0.48 44 

2001 02 20 01:04:13.2 1035.0 +1.28 2.9 +1.54 41 44.5 52 

1035.0 + 1.28 3.0 +1.86 115 
, 
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G.1. MODULATION AND TIMING 103 

C.l Mod ulation and timing 

The EISCAT UHF tau2 transmission consists of 16x 36p,s alternating code, 

on two frequencies that are sent on alternating interpulse periods, 6510 p,s 

apart. The duty cycle is 8.8%. Timing diagram of the experiment is in 

Fig. C.1. In this experiment all IPPs are of same length. The blind zones 

are larger than in cpllt, the lowest one is between about 880 km and 1080 km. 

With more careful programming of the scanner, the lower part of this gap 

could in fact be accessed, but with reduced accuracy. 

C.2 Detection and analysis 

From the recorded 1. 7 hours of tau2 data we analysed the contiguous 1.3 h 

set 20 February 2001, 21:26-22:40. We searched SD in the two lowest match- 

ing windows, starting from 485 km range. In the lower window we used 0.9 s 

coherent integration, scan repetition period 1.0 s and range step 1.5 km. In 

the higher window we used coherent integration 0.27 s, scanning period 0.5 s 

and range coverage 1095-1800 km with 1.5 km resolution (471 gates). We 

used only a single acceleration value per range gate. 

We did the the final analysis both with GMF and, for comparison, also 

with FastGMF, using 0.3 s integration and range steps 0.15 km or 0.075 km, 

the latter corresponding to the 0.5 p,s sampling interval. 

We found five clear events in the lower window. We found seven clear 

events in the higher window, but one of these was actually a "ghost" of the 

very strong event 5 in Table C.1 from the low-altitude window. The strength 

of the echo in the lower window (Rmax= 640) was more than 30 dB stronger 

than the ghost echo (Rmax= 10). In tau2 experiment, the same phase code 

pattern K is sent on two consecutive IPPs, although in different frequencies. 

The frequency difference is only 900 kHz, so it is not inconceivable that K 

could match the 900 kHz shifted copy of itself on the -30 dB level. 

Listing of the tau2 events is in Table C.1. We display graphically various 

properties of the events in figures 2.2, 3.4, 4.1, 4.2, 4.3, 4.4, 4.5 and 4.12. 
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Table C.1: SD events, tau2, 20 Feb 2001, 21:26-22:40. 

UT is time of maximum signal strength, R is range at the given UT, 

VD is the Doppler-velocity, positive away from the radar, deff is the effective 

target diameter. RR is range rate (dR/dt), aD is Doppler-drift dVD/dt, ao 

is circular-orbit acceleration at R. The final column gives the event's event 

number in the compilation of summary plots. There are two rows for each 

event: the first row shows the event analysed with FastGMF, the second 

row shows the event analysed with GMF. 

UT R VD deii RR aD ao 
I 

Ref II 

km km/s em km/s m/s2 m/s2 

2001 02 20 21 30 09.4 609.1 +1.47 1.8 - - 85.2 1 

609.1 +1.47 1.9 - 
- 85.2 

2001 02 20 21 31 34.4 656.2 +0.57 2.5 +0.58 144 78.0 2 

656.2 +0.55 2.6 +0.43 92 78.0 

2001 02 20 21 38 02.9 1140.1 -1.17 4.7 -1.12 33 39.3 3 

1140.1 -1.15 4.7 -1.24 38 39.3 

2001 02 20 21 46 50.4 1124.0 -1.15 2.6 - - 40.0 4 

1123.7 -1.11 2.6 - - 40.1 

2001 02 20 21 52 39.2 575.5 -1.42 12.9 -1.40 70 91.1 5 

575.5 -1.42 13.3 -1.41 87 91.1 

2001 02 20 22 07 05.0 692.3 -0.81 2.3 - 
- 73.2 6 

692.3 -0.82 2.4 - - 73.2 

2001 02 20 22 16 21.2 1209.4 -1.20 3.4 -1.21 40 36.4 7 

1209.5 -1.21 3.5 -1.26 50 36.4 

2001 02 20 22 19 16.2 1516.5 -1.22 52.0 -1.22 25 26.8 8 

1516.5 -1.22 55.4 -1.21 25 26.8 

2001 02 20 22 23 15.4 1353.1 +1.29 3.1 - 
- 31.3 9 

1353.4 +1.32 3.1 - 
- 31.3 

2001 02 20 22 25 09.2 836.0 -0.57 2.1 -0.62 6 58.2 10 

836.0 -0.57 2.2 -0.62 32 58.2 

2001 02 20 22 26 45.1 1402.2 -1.05 15.6 -1. 04 29 29.8 11 

1402.3 -1.04 15.6 -1.07 28 29.8 
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