

HIGH ACCURACY IMAGE STABILISATION BREAD-BOARDING FINAL PRESENTATION

16/01/2023

 Date:
 16/01/2023

 /// 1
 Ref:
 ISABELA FP

 Ref Modele:
 83230347-DOC-TAS-FR-006

© 2022 THALES ALENIA SPACE The copyright in this document is vested in Thales Alenia Space This document may only be reproduced in whole or in part, or stored in a retrieval system, or transmitted in any form, or by any mean electronic, mechanical, photocopying or otherwise, either with the prior permission of Thales Alenia Space or in accordance with the terms of ESA Contract No. 4000126060/1801/FE.

TABLE OF CONTENTS

Management

The ISABELA breadboard

Hosted payload mission survey & requirement analysis

Line of sight stabilization system design and simulation

Conclusions

© 2022 THALES ALENIA SPACE The copyright in this document is vested in Thales Alenia Space This document may only be reproduced in whole or in part, or stored in a trefixeal system, or transmitted in any form, or by any means electronic, mechanical, photocopying or otherwise, either with the prior permission of Thales Alenia Space or in accordance with the terms of ESA Contract NA -000072606/018/UNFE.

STUDY OBJECTIVES AND WORK LOGIC

I MAIN OBJECTIVES

- Design, develop, manufacture a breadboard, and test a line of sight stabilization system suitable for hosted payload cases.
- Determining the achievable performances from results extrapolation.
- Define a preliminary concept of a high frequency angular rate sensor.

I MAIN TASKS

- Mission requirement analysis
- LOS stabilization system design
- High frequency inertial sensor and fast steering mirror design
- Breadboard assembly and test campaign
- Candidate mission survey and conclusions

CSem

InnaLabs

esa

 Date:
 14/06/2023

 /// 3
 Ref:
 ISABELA_FP

 Ref Modele:
 83230347-DOC-TAS-FR-006

The copyright in this document is vested in Thales Alenia Space This document may only be reproduced in whole or in part, or stored in a retrieval system, or transmitted in any form, or by any means electronic, mechanical, photocopying or otherwise, either with the prior permission of Thales Alenia Space or in accordance with the terms of ESA Contract No. 4000126600/1800.VFE.

WORK BREAKDOWN STRUCTURE

Date : 16/01/2023 /// 4 Ref : ISABELA_FP Ref Modele : 83230347-DOC-TAS-ER-006 © 2022 THALES ALENIA SPACE The copyright in this document is vested in Thales Alenia Space This document may only be reproduced in whole or in part, or stored in a retrieval system, or transmitted in any form, or by any means electronic, mechanical, photocopying or otherwise, either with the prior permission of Thales Alenia Space or in accordance with the terms of ESA Contract No. 4000/15600/18MU/EF. **CSEM**

1. PLANNING

 Date : 16/01/2023

 /// 5
 Ref : ISABELA FP

 Ref Modele : 83230347-DOC-TAS-FR-006

© 2022 THALES ALENIA SPACE The copyright in this document is vested in Thates Alenia Space This document may only be reproduced in whole or in part, or stored in a retrieval system, or transmitted in any form, or by any means electronic, mechanical, photocopying or otherwise, either with the prior permission of Thates Alenia Space or in accordance with the terms of ESA Contract No. 4000/15600/1801/FE.

CSEM

2. HOSTED PAYLOAD MISSION SURVEY AND REQUIREMENT ANALYSIS

 Date:
 16/01/2023

 /// 6
 Ref:
 ISABELA FP

 Ref Modele:
 83230347-DOC-TAS-FR-006

© 2022 THALES ALENIA SPACE The copyright in this document is vested in Thales Alenia Space This document may only be reproduced in whole or in part, or stored in a retrieval system, or transmitted in any form, or by any means electronic, mechanical, photocopying or otherwise, either with the prior permission of Thales Alenia Space or in accordance with the terms of ESA Contract No. 4000/15600/1804/JFE.

2. HOSTED PAYLOAD MISSION SURVEY AND REQUIREMENT ANALYSIS **REQUIREMENT ANALYSIS**

I HOSTED PAYLOAD DEFINITION

- Payloads integrated in a platform that is not designed especially for it.
 - A platform with another primary payload performing a different missions
 - A standardized with low pointing performance not compliant alone to the payload requirements.

MAIN ACTIVITIES

- Assessment of different mission candidates and requirement analysis
- Development of a tool to compare the performance with and without LOS stabilization
- Definition of requirement according to three main needs:
 - => APE/AKE Navigation
 - Registration => PDE
 - Integration => RPE
- Computation of expected ASD from parameter assessments

Expected ASD without LOS stabilization

Expected ASD with LOS stabilization (APE, RPE, PDE)

esa

Ref Modele : 83230347-DOC-TAS-ER-006

© 2022 THALES ALENIA SPACE The copyright in this document is vested in Thales Alenia Space This document may only be reproduced in whole or in part, or stored in a retrieval system, or transmitted in any form, or by any means electronic, mechanical, photocopying or otherwise, either with the prior permission of Thales Alenia Space or in accordance with the terms of ESA Contract No. 4000126060/18/NL/FE

/// 7

2. HOSTED PAYLOAD MISSION SURVEY AND REQUIREMENT ANALYSIS MISSION SELECTION

I MULTI SPECTRAL INSTRUMENT ON GEO PLATFORM

- The hosted IR imager is a step and push broom acquisition with a scan mirror, with improved agility
- LOS stabilization based on fast steering mirror and gyro data, with SCAN mirror encoder.
- Image processing as a verification

I SMALL HYPERSPECTRAL IMAGER ON LEO PLATFORM

- Pushbroom Interferometer in UV/VIS/SWIR
- LOS stabilization system should increase the stability of the low cost platform
- Long acquisition durations (10-20s) with or without LOS slowdown

© 2022 THALES ALENIA SPACE The copyright in this document is vested in Thales Alenia Space This document may only be reproduced in whole or in part, or stored in a retrieval system, or transmitted in any form, or by any means electronic, mechanical, photocopying or otherwise, either with the prior permission of Thales Alenia Space or in accordance with the terms of ESA Contract No. 4000126600/1801/FE.

:: CSEM

3. LINE OF SIGHT STABILIZATION SYSTEM DESIGN

 Date : 16/01/2023

 /// 9
 Ref : ISABELA FP

 Ref Modele : 83230347-DOC-TAS-FR-006

© 2022 THALES ALENIA SPACE The copyright in this document is vested in Thales Alenia Space This document may only be reproduced in whole or in part, or stored in a retrieval system, or transmitted in any form, or by any means electronic, mechanical, photocopying or otherwise, either with the prior permission of Thales Alenia Space or in accordance with the terms of ESA Contract No. 4000/15600/1840/LFE.

3. LINE OF SIGHT STABILIZATION SYSTEM DESIGN ARCHITECTURE

I MULTI SPECTRAL INSTRUMENT ON GEO

- The main principle of the system is to control a synthetic line of sight reconstructed in real-time from the available sensors, calibrated using on-ground image processing.
- two axis gyroscope
- scan mirror for Earth scanning
- fast steering mirror for the stabilization
- Image processing for verification.

I HOSTED STATIC INTERFEROMETER

- The main principle of the system is to control a synthetic line of sight reconstructed in real-time from the available sensors, calibrated using on-ground image processing.
- Two axis gyroscope
- Fast steering mirror for the stabilization
- Image processing for verification

Date : 16/01/2023 /// 10 Ref : ISABELA FP Ref Modele : 83230347-DOC-TAS-ER-006 © 2022 THALES ALENIA SPACE The copyright in this document is vested in Thales Alenia Space This document may only be reproduced in whole or in part, or stored in a retrieval system, or transmitted in any form, or by any means electronic, mechanical, photocopying or otherwise, either with the prior permission of Thales Alenia Space or in accordance with the terms of ESA Contract No. 4000/15600/1840/UFE.

3. LINE OF SIGHT STABILIZATION SYSTEM DESIGN FAST STEERING MIRROR DESIGN (CSEM)

I FSM OVERVIEW

- Design based on voice coil actuators for application versatility
- Design is compatible for Eddy current sensors or capacitive sensors according to the application
- Compact configuration to accomodate volume with actuators / sensors at 120°
- Central membrane is main interface between the actuators and the mirror
- Zerodur mirror type considered as baseline (mechanism design compatible with cylindrical or elliptical mirror)
- No launch lock mechanism

FSM shown with elliptic mirror 82mm x 58mm

 Date : 16/01/2023

 /// 11
 Ref : ISABELA FP

 Ref Modele : 83230347-DOC-TAS-FR-006

© 2022 THALES ALENIA SPACE The copyright in this document is vested in Thales Alenia Space This document may only be reproduced in whole or in part, or stored in a retrieval system, or transmitted in any form, or by any means electronic, mechanical, photocopying or otherwise, either with the prior permission of Thales Alenia Space or in accordance with the terms of ESA Contract No. 4000/15600/18MU/FE.

4. LINE OF SIGHT STABILIZATION SYSTEM DESIGN FAST STEERING MIRROR PROTOTYPE

- I COMPACT FAST-STEERING MIRROR MECHANISM (FSM) FOR CONTROLLING THE POSITION AND STABILITY OF A PLANAR MIRROR : ENGINEERING BREADBOARD MODEL (EBB) MANUFACTURED
 - Reference specifications from ISABELA static interferometer case
 - Designed with the objective to ease the manufacturing process
 - Actuation of mirror with the use of three voice coils arranged at 120°
 - Capacitive sensors for highest sensitivity and resolution (Easy adaptation for Eddy current sensors)

I TEST CAMPAIGN CARRIED OUT TO CHARACTERIZE BREADBOARD AND EVALUATE PERFORMANCE

Characteristics	FSM performance
Optical angular range (Funct/Max)	±2.4 mrad / ±5.8 mrad
Number of actuators / type	3 / Voice coil
Sensor type	Capacitive
Mirror diameter	60 mm
Typ. Resolution in closed loop	0.34 µrad
Typ. Stability	0.02 μrad up to 100Hz 0.16 μrad at 7'800 Hz
Typ. Repeatability	1 µrad
Dimensions	Ø60 mm x 45 mm
Weight	<200g with Zerodur mirror
Stiffness in Z	0.508 N/μm
Resonant frequency	130 Hz
Operation Voltage/control signal	±10 V
Operating current	±2.5 A

Date: 16/01/2023 /// 12 Ref: ISABELA FP Ref Modele: 83230347-DOC-TAS-ER-006

© 2022 THALES ALENIA SPACE The copyright in this document is vested in Thates Alenia Space This document may only be reproduced in whole or in part, or stored in a retrieval system, or transmitted in any form, or by any means electronic, mechanical, photocopying or otherwise, either with the prior permission of Thales Alenia Space or in accordance with the terms of ESS A Contract No. 4000/2060/19/NU/FE.

3. LINE OF SIGHT STABILIZATION SYSTEM DESIGN HIGH FREQUENCY INERTIAL SENSOR (INNALABS)

I PROTOTYPE DEVELOPED FOR THE ISABELA PROJECT

- Based on CVG technology
- Prototype developed to be used in the breadboard
- Accuracy as expected, bandwidth (>150Hz)

Parameter	Unit	Value
		GI-CVG-N2230D
Number of Axis		Two
Output Format		Digital
Output Interface		Asynchronous RS422 (Note #1)
Output signal rate	Hz	7900
Measurement Range	deg/sec	±1
Bandwidth	Hz	≥ 600 (-3dB)
Maximal phase lag at L3S cut off frequency (60 Hz)	deg	≤ 15
In run Bias Stability (room temp. 1σ)(180 Secs)	deg/hr	0.02 typical
Bias stability, full temperature range, 1σ	deg/hr	≤10
Bias repeatability, turn-on to turn-on, 1σ	deg/hr	1 typical
Angular Random Walk (steady conditions)	deg/√hr	0.002 typical
Quiescent Noise (1 - 100 Hz), RMS	deg/sec	≤ 0.01
Scale factor error, full temperature range, 1σ	ppm	≤ 3,500 [,]
Scale factor Linearity	ppm	≤ 1500 '

ThalesAlenia

esa

: CSEM

Date: 16/01/2023 Ref: ISABELA FP Ref Modele : 83230347-DOC-TAS-FR-006

© 2022 THALES ALENIA SPACE The copyright in this document is vested in Thales Alenia Space This document may only be reproduced in whole or in part, or stored in a retrieval system, or transmitted in any form, or by any means electronic, mechanical, photocopying or otherwise, either with the prior permission of Thales Alenia Space or in accordance with the terms of ESA Contract No. 4000126060/18/NL/FE.

/// 13

3. LINE OF SIGHT STABILIZATION SYSTEM CONTROL DESIGN

I CONTROLLER ARCHITECTURE

- The controller architecture involves
 - large band controller
 - Tight band components at fixed frequencies to compensate microvibrations
 - Prefiltering of gyroscope drift to avoid FSM saturation
- H-infinity structured synthesis

ThalesAle

esa

 Date:
 16/01/2023

 ///
 14
 Ref:
 ISABELA FP

 Ref Modele:
 83230347-DOC-TAS-FR-006

© 2022 THALES ALENIA SPACE The copyright in this document is vested in Thales Alenia Space This document may only be reproduced in whole or in part, or stored in a retrieval system, or transmitted in any form, or by any means electronic, mechanical, photocopying or otherwise, either with the prior permission of Thales Alenia Space or in accordance with the terms of ESA Contract No. 4000/15606/1840.VFE.

Open-Loop Gain (dB)

3. LINE OF SIGHT STABILIZATION SYSTEM DESIGN HIGH FIDELITY SIMULATOR

I MAIN ELEMENTS

- System dynamics: integrated optical-mechanical model of the platform and the payload.
- Environment: orbit model to and disturbance torques.
- Guidance: Nadir pointing and the scan mirror guidance law.
- Attitude and LOS estimation: star tracker model, image-processing and gyro model.
- Attitude control
- Attitude determination
- FSM LOS stabilization: line of sight control algorithm for the fast steering mirror.
- Reaction wheel flexible dynamics with microvibrations
- Scan mirror: closed loop model with dynamics, electronics and internal controller.
- Fast Steering Mirror: dynamics, electronics and internal control of the scan mirror.

Date : 16/01/2023 /// 15 Ref : ISABELA FP Ref Modele : 83230347-DOC-TAS-FR-006 © 2022 THALES ALENIA SPACE The copyright in this document is vested in Thales Alenia Space This document may only be reproduced in whole or in part, or stored in a retrieval system, or transmitted in any form, or by any means electronic, mechanical, photocopying or otherwise, either with the prior permission of Thales Alenia Space or in accordance with the terms of ESA Contract No. 4000126060/1801/FE.

CSEM

3. LINE OF SIGHT STABILIZATION SYSTEM DESIGN PERFORMANCE ASSESSMENT

I PERFORMANCE ASSESSMENT

- Improvements of performance at LOS level with respect to the S/C level
- Stability is improved on worst case microvibration assessements and for longer term performance requirement, thanks to tight band controller component

© 2022 THALES ALENIA SPACE The copyright in this document is vested in Thales Alenia Space This document may only be reproduced in whole or in part, or stored in a retrieval system, or transmitted in any form, or by any means electronic, mechanical, photocopying or otherwise, either with the prior permission of Thales Alenia Space or in accordance with the terms of ESA Contract No. 4000/12600/11901/FE.

4. THE ISABELA BREADBOARD

Date: 16/01/2023 /// 17 Ref: ISABELA FP Ref Modele: 83230347-DOC-TAS-FR-006

© 2022 THALES ALENIA SPACE The copyright in this document is vested in Thales Alenia Space This document may only be reproduced in whole or in part, or stored in a retrieval system, or transmitted in any form, or by any means electronic, mechanical, photocopying or otherwise, either with the prior permission of Thales Alenia Space or in accordance with the terms of ESA Contract No. 4000126060/18/NL/FE.

4. THE ISABELA BREADBOARD

ThalesAlenia

CSEM

esa

 Date:
 01/09/2022

 ///
 18
 Ref:
 ALS Bench ISABELA

 Ref Modele:
 83230347-DOC-TAS-FR-006

© 2022 THALES ALENIA SPACE The copyright in this document is vested in Thales Alenia Space This document may only be reproduced in whole or in part, or stored in a refrieval system, or transmitted in any form, or by any means electronic, mechanical, photocopying or otherwise, either with the prior permission of Thales Alenia Space or in accordance with the terms of ESA Contract No. 4000/15600/1804/FE.

4. THE ISABELA BREADBOARD PHOTOS

 Date:
 01/09/2022

 /// 19
 Ref:
 ALS Bench ISABELA

 Ref Modele:
 83230347-DOC-TAS-FR-006

© 2022 THALES ALENIA SPACE The copyright in this document is vested in Thales Alenia Space This document may only be reproduced in whole or in part, or stored in a retrieval system, or transmitted in any form, or by any means electronic, mechanical, photocopying or otherwise, either with the prior permission of Thales Alenia Space or in accordance with the terms of ESA Contract No. 4000/15600/18MU/FE.

4. THE ISABELA BREADBOARD MAIN COMPONENTS

I VIBRATING BENCH

- Generate the disturbance on the image and stimulates the gyroscope
- Ball bearing 2 axis mechanism
- 2 Piezoelectric stack actuated in closed loop

FAST STEERING MIRROR

- Jena Piezo System PSH-2-SG two axis piezoelectric steering mechanism
- High stiffness (resonance > 600Hz)
- Mirror of 50mm diameter mounted

D-DRIVE

- 4 channels piezoelectric digital controller for
- Vibrating bench control in open/closed loop
- FSM Amplifier

I OPTICS

- The cylinder can be displaced in the optical axis to adjust the focus at the screen distance (2-4m)
- Fast steering mirror with 45° incidence at 50mm from the last lens

electronic mechanical photoconving or of either with the prior permission of Thales Alenia Space or in accordance with the rms of ESA Contract No. 4000126060/18/NL/FE

esa

InnaLabs

#CSe

Date: 01/09/2022 /// 20 Ref: ALS Bench ISABELA Ref Modele : 83230347-DOC-TAS-ER-006

4. THE ISABELA BREADBOARD MAIN COMPONENTS

/// Main principle

- The control PC read, crop and displace (if scrolling scene) the desired image
- Display on the screen using the SDL2 library with the VSYNC
- Wait 3 ms to allow the screen refresh
- Command the image acquisition

ThalesAle

esa

Image

I IMAGE PROCESSING

- Used to estimate the stability of the line of :
- Pyramidal iterative optical flow
- Accuracy better than 3% of pixel

 Date:
 01/09/2022

 ///
 21
 Ref :
 ALS Bench ISABELA

 Ref Modele :
 83230347-DOC-TAS-FR-006

© 2022 THALES ALENIA SPACE The copyright in this document is vested in Thates Alenia Space This document may only be reproduced in whole or in part, or stored in a retrieval system, or transmitted in any form, or by any means electronic, mechanical, photocopying or otherwise, either with the prior permission of Thates Alenia Space or in accordance with the terms of ESA Contract No. 4000/15600/1801/FE.

4. THE ISABELA BREADBOARD **CONTROLLER ARCHITECTURE**

/// Control algorithm

Gyro

- Control architecture based on FSM in closed loop with the strain gauge and the gyroscope measurement in open loop
- The controller is implemented as a state space system

© 2022 THALES ALENIA SPACE The copyright in this document is vested in Thales Alenia Space This document may only be reproduced in whole or in part, or stored in a retrieval system, or transmitted in any form, or by any means electronic, mechanical, photocopying or otherwise, either with the prior permission of Thales Alenia Space or in accordance with the terms of ESA Contract No. 4000126060/18/NL/FE.

4. THE ISABELA BREADBOARD CONTROL BOARD WORKFLOW (TAS-SPAIN)

 Date:
 01/09/2022

 /// 23
 Ref:
 ALS Bench ISABELA

 Ref Modele:
 83230347-DOC-TAS-FR-006

© 2022 THALES ALENIA SPACE The copyright in this document is vested in Thales Alenia Space This document may only be reproduced in whole or in part, or stored in a retrieval system, or transmitted in any form, or by any means electronic, mechanical, photocopying or otherwise, either with the prior permission of Thales Alenia Space or in accordance with the terms of ESA Contract No. 4000/15600/1801/FE. **CSEM**

4. THE ISABELA BREADBOARD CONTROL BOARD WORKFLOW (TAS-SPAIN)

© 2022 THALES ALENIA SPACE The copyright in this document is vested in Thales Alenia Space This document may only be reproduced in whole or in part, or stored in a retrieval system, or transmitted in any form, or by any means electronic, mechanical, photocopying or otherwise, either with the prior permission of Thales Alenia Space or in accordance with the terms of ESA Contract No. 4000126600/1801/FE.

4. THE ISABELA BREADBOARD TEST RESULTS

I Image processing Test

- No disturbance
- No controller

I Scene type

- Ground Truth
- Fixed City scene
- Scrolling City scene

I Main results

 Performance in the order of 2-3 µrad (3sigma)

Ground Truth

Fixed City scene

Scrolling City scene

 Date:
 01/09/2022

 /// 26
 Ref :
 ALS Bench ISABELA

 Ref Modele :
 83230347-DOC-TAS-FR-006

© 2022 THALES ALENIA SPACE The copyright in this document is vested in Thales Alenia Space This document may only be reproduced in whole or in part, or stored in a retrieval system, or transmitted in any form, or by any means electronic, mechanical, photocopying or otherwise, either with the prior permission of Thales Alenia Space or in accordance with the terms of ESA Contract No. 4000/12600/18VU/FE.

4. THE ISABELA BREADBOARD TEST RESULTS

/// Main results

- Vibration at 1Hz (SADM)
- Static interferometer results

=> rejection as expected at -20dB

=> RPE 8.4s S/C [14 10] µrad , LOS [3.8 3.4] µrad

 Date:
 01/09/2022

 /// 27
 Ref:
 ALS Bench ISABELA

 Ref Modele:
 83230347-DOC-TAS-FR-006

© 2022 THALES ALENIA SPACE The copyright in this document is vested in Thales Alenia Space This document may only be reproduced in whole or in part, or stored in a retrieval system, or transmitted in any form, or by any means electronic, mechanical, photocopying or otherwise, either with the prior permission of Thales Alenia Space or in accordance with the terms of ESA Contract No. 4000/15600/1801/FE.

4. THE ISABELA BREADBOARD *TEST RESULTS*

Video link

PROPRIETARY INFORMATION

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space. © 2019 Thales Alenia Space

THALES ALENIA SPACE INTERNAL

4. THE ISABELA BREADBOARD MAIN RESULTS EXTRAPOLATION

I MISSION SURVEY SUMMARY

- 5 instruments are considered:
 - Static interferometer
 - TDI
 - Small Hyperspectral
 - Multispectral imager
 - GEO Sounder
- Platforms:
 - Nanosatellite 6-16U
 - Microsatellite
 - Telecom Platform LEO
 - Telecom Platform GEO

Instrument	Platform	Driving Pointing stability Requirements	Expected performance
LEO Static Interfero	Nanosatellite Microsatellite medium performance Telecom LEO	7µrad (1sigma) over 8.4s (Goal) 0.7µrad 1- sigma over 8.4s	Performance assessed in the breadboard, the system improve the platform stability by a factor x3 to x5
LEO Time Delay Integration Imager	Any	1µrad over 1ms	The gain for this type of mission is limited due to the very short time window of the RPE requirement, mainly driven by high frequency micro-vibrations
LEO Hyper- spectral Imager	Nanosatellite	6 µrad over 17s	The platform is not compliant, ISABELA enables the implementation of the payload.
	Microsatellite medium perf		The platform almost compliant, ISABELA can provide the additional stability.
	Telecom LEO		The platform not compliant. ISABELA enables the implementation of the payload.
GEO Multi spectral Imager (FCI)	Telecom GEO	2.8 µrad over 180ms	As presented in the simulations, the performance is compliant with the requirement with the ISABELA system.
GEO Sounder	Telecom GEO	5 µrad (3sigma) over 10s	The platform not compliant. ISABELA enables the implementation of the payload

© 2022 THALES ALENIA SPACE The copyright in this document is wasted in Thates Alenia Space This document may only be reproduced in whice or in part, or stored in a retrieval system, or transmitted in any form, or by any means electronic, mechanical, photocopying or otherwise, either with the prior permission of Thates Alenia Space or in accordance with the terms of ESA Contract No. 4000/15600/1801/FE.

esa

6. CONCLUSIONS

I MAIN ACHIEVEMENTS OF THE STUDY

- Assessing LOS stabilization for several potential hosted payload missions using inertial approaches.
- The first part of the work focused on the main application cases,
 - Multispectral instrument in GEO as a simulation scenario,
 - Static interferometer as a breadboarding scenario.
- On GEO multispectral imager stability performance can be improved for longer performance index (>100ms), and also in presence of payload vibrations
- Breadboard Design and manufacturing
- The stabilization results eventually confirmed the results obtained by analysis with representative spacecraft pointing disturbances.
- Extrapolation of results allowed to identify the future hosted payload missions that will benefit from ISABELA system.

 Date:
 28/06/2022

 /// 30
 Ref:
 ISABELA TRR

 Ref Modele:
 83230347-DOC-TAS-FR-006

© 2022 THALES ALENA SPACE The copyright in this document is vested in Thales Alenia Space document may only be reproduced in whole or in part, or stored in a retrieval system, or transmitted in any form, or by any mean tronic, mechanical, photocopying or otherwise, either with the prior permission of Thales Alenia Space or in accordance with the terms of ESA Contract No. 4000/20600/18/NUFE.

