OBSIdian On-Board System Identification for Uncertainty Modelling & Characterization A0/1-9509/18/NL/GLC

Final Presentation

Agenda

- 09.30 09.35 Welcome
- 09.35 09.48 Introduction
- 09.48 10.48 Benchmark Problems
- 10.48 10.58 Break
- 10.58 11.26 Study Cases
- 11.26 11.35 SYSID Detailed Design 3D SC1
- 11.35 11.45 Sensitivity, Robustness, Sampling Considerations
- 11.45 11.48 Project Output Exploitation
- 11.48 11.51 Conclusions
- 11.51 11.53 Managerial
- 11.53 12.30 Discussion

Introduction

Problem Statement (1/5)

□ OOS Chaser-Target berthing-type mission

- □ Launch of Servicing satellite (Chaser)
- □ Phasing with Client (Target)
- □ Far Rendezvous sequence/ Homing
- □ Forced Motion/ Closing and Inspection
- □ Final Approach Capture Stabilisation Docking
- OOS tasks

Problem Statement (2/5)

□ Chaser and/ or Target parameters may be unknown or uncertain

- Fuel consumption changes the sloshing model parameters
- Temperature changes affects the flexible appendages modal parameters
- Grasping of Target may result in uncertain change of system inertial parameters
- Completely unknown Target parameters

Problem Statement (3/5)

Parameter change/ uncertainty may be beyond the capabilities of a robust controller to cope with

Recalibration of the controller parameters

 Updated parameter estimates by means of a System Identification (SYSID) process

Problem Statement (4/5)

□ Berthing-type OOS mission can be achieved using a **Space Manipulator System** (SMS)

- Accurate control of the berthing fixture and the captured Target
- Complex system
- We opted to work with an SMS, but results are general
- Uncertainty types considered:
 - System inertial parameters
 - ✤ Fuel sloshing model parameters
 - Flexible appendage modal parameters

Problem Statement (5/5)

□ Inspection and Forced Motion stage (off-line PI)

- Chaser subsystems parameters (inertial/ flexible)
- Chaser fuel sloshing

□ Capture – Mating/ OOS tasks stage (on-/ off-line PI)

- Target subsystems parameters (inertial/ flexible)
- Target fuel sloshing

Level of realism vs. Complexity

□ Not everything can be "unknown"

OBSIdian Framework

07/10/2022

Page 9

Benchmark Problems Considered

Benchmark Problem 1 (BP1A)	Benchmark Problem 1 (BP1B)	Benchmark Problem 2 (BP2)	Benchmark Problem 3A (BP3A)	Benchmark Problem 3B (BP3B)
Identification of inertial parameters	Identification of inertial parameters	Identification of sloshing model parameters	Identification of appendages modal parameters	Identification of appendages modal parameters
(no sloshing, no flexibilities)	(no sloshing, no flexibilities)	(known satellite, no flexibilities)	(known satellite, no sloshing)	(known satellite, no sloshing)
Experimental Identification	Experimental Identification	Experimental Identification	Experimental Identification	Operational Identification
Excitation is user's choice	Excitation is user's choice	Excitation is user's choice	Excitation is user's choice	Excitation by the task
Non-recursive SYSID	Non-recursive SYSID	Non-recursive SYSID	Non-recursive SYSID	Recursive SYSID
(Parametric Identification Algorithm)	(Parametric Identification Algorithm)	(Parametric Identification Algorithm)	(EMA)	(OMA)
Model	Model	Model	Model	Model
2D free-floating space robot (manipulator joints actuated only)	2D free-flying space robot (active manipulator, thrusters and RWs)	2D satellite and 2D sloshing models	2D flexible appendage on hub	2D flexible appendage on hub

Study Cases Considered

Study C	ase 1	Study Case 2					
(SC:	1)	(SC2)					
Full System Identification i.e., identification of inertial parameters, sloshing parameters, and modal parameters of flexible appendages simultaneously (to the extent possible)							
Phase Motion befor	e 1 Te capture	Phase 2 Motion after rigid capture-during berthing					
Experimental I	dentification	Operational Identification					
Excitation is us	ser's choice	Excitation by the task					
Non-recursi	ve SYSID	Recursive SYSID					
(Parametric Identific	cation Method for	(Parametric Identification Method for					
lumped models + EN	MA for continuous	lumped models + OMA for continuous					
mode	ls)	models)					
3D Simulation	2D Experiments	3D Simulation	2D Experiments				

SYSID Algorithms (1/5)

□ Types of SYSID approaches

- White-box Models and SYSID
 - Both *Physical Laws and Model Structure are known*
 - e.g., system dynamics equations of motion
- Grey-box Models and SYSID
 - *Physical Laws are known*, while *Model Structure is partially unknown*
 - e.g., linear models, LPV models etc. of a nonlinear system
- Black-box SYSID
 - Both Physical Laws and Model Structure are unknown
 - More a "curve-fitting" describing the input-output system behaviour

SYSID Algorithms (2/5)

More than 50 Parametric, Non-parametric and Modal SYSID Algorithms were considered

 Based on their basic characteristics, many were discarded outright

- □ 15 Parametric, 2 Non-Parametric and 19 Modal SYSID Algorithms were considered further
 - Trade-off analysis, based on a detailed study of each algorithm's characteristics

SYSID Algorithms (3/5)

4 Parametric and 5 Modal SYSID Algorithms chosen as appropriate candidates for a final trade-off

Parametric SYSID Algorithms: UKF, IV, PEM, TLS

 Modal Analysis Algorithms: FSDD, RFP, LSCE, SSI-COV, SSI-DATA

SYSID Algorithms (4/5)

□ Trade-off to be based on Performance Metrics

- Computational Effort: FLOPS and Big-O Notation
- Relative % error: Parametric error with respect to "true" value
- Convergence rate also was initially considered but is valid for recursive SYSID only

SYSID Algorithms (5/5)

□ SYSID Parametric Algorithms must be applied on equations that characterize the system

- Equations of motion
- Energy balance
- Angular momentum conservation (when applicable)
- Transfer function (when applicable)

□ Choice of appropriate equation is not trivial

- Constitutes the SYSID scheme Method
- Results in the required Regressor Formulation

□ Different SYSID Algorithms (regressor-based or not)

Constitutes the SYSID scheme Algorithm

Benchmark Problems

		BPs					SCs		
OBSIdian Final Presentation	07/10/2022	1A	1B	2	3A	3B	1	2	Page 17

Basic Considerations (1/4)

Sensors

- IMU
- Motor encoders
- Flexible appendage accelerometers
- Sun- Star-trackers (for full scale system) or PhaseSpace MoCap system (for SRE)
- Realistic noise models employed

Actuators

- Joint motors
- Reaction wheels
- Thrusters

Basic Considerations (2/4)

Signal Conditioning

- Low pass filters applied: 'designfilt' MATLAB function
 - Pass dominant system dynamics, & filter noise, to the extent possible
 - First order low-pass Infinite Impulse Response (IIR)
 - Filter cut-off frequencies chosen using signal FFT's
 - Cut-off frequencies values depend on sensor

Basic Considerations (3/4)

Planar Full-scale System Models (simulations)

- □ Final trade-off of the chosen SYSID Algorithms
- □ Insight on the SYSID Algorithms requirements
- □ Develop appropriate Methods to apply the chosen Algorithms

Planar Experiments (scaled-down consortium facilities)

Significant insight on the SYSID Algorithms and developed Methods requirements, capabilities and limitations

Basic Considerations (4/4)

Experimental Setups Models (simulated experiments)

Simulated experiments performed with the aim to:

- Validate the developed Analytical Models
- Design of excitation signal to be used for the h/w experiment
- Gain knowledge on the behaviour of the experimental set-up (limitations, sources of error, etc.) and on the SYSID algorithm
- Validate the Experimentally Identified Models, using Analytical and/ or SimScape models

BP1: Full-scale planar system (1/3)

Model

2D Space Manipulator System (SMS) with a single manipulator

Modelling Assumptions

□ Rigid S/C and manipulator

SMS operational modes

- □ Free-floating mode (**BP1A**): Only manipulator joints actuated
- Free-flying mode (BP1B): Manipulator joints actuated, S/C thrusters and reaction wheels active

Manipulator

System CM

Body CM

У0

 m_0 ,

Spacecraft Observation Frame b

Goal

Estimation of SMS inertial parameters (combination sets)

□ Full reconstruction of free-floating dynamics (BP1A) or of free-flying dynamics (BP1B)

BP1: Full-scale planar system (2/3)

BP1A Methods and Algorithms

- TLS on regressor formulation of angular momentum conservation (M1-TLS)
- TLS on regressor formulation of equations of motion (M2-TLS)
- IV on regressor formulation of angular momentum conservation (M1-IV)
- IV on regressor formulation of equations of motion (M2-IV)
- PEM
- UKF

Trade-off Analysis Result

The best algorithm and method combination for **BP1A** is M1-TLS.

- Max Rel. Error: 1.19%
- RMS Rel. Error: 0.48%

BP1: Full-scale planar system (3/3)

BP1B Methods and Algorithms

- TLS on regressor formulation of equations of motion (M1-TLS)
- TLS on regressor formulation of energy balance equation (M2-TLS)
- IV on regressor formulation of equations of motion (M1-IV)
- IV on regressor formulation of angular momentum conservation (M2-IV)
- PEM
- UKF

Trade-off Analysis Results

The best algorithm and method combination for BP1B is M2-TLS.

- Max Rel. Error: 2.63%
- RMS Rel. Error: 1.10%

Thus, the best algorithm **for** *both* **BP1A and BP1B** is **TLS**.

		BPs					SCs		
OBSIdian Final Presentation	07/10/2022	1A	1B	2	3A	3B	1	2	Page 24

BP1: Experimental Facility & Model (1/4)

Component	Mass	Notes
Robotic System w/o Manipulator	14 kg	N/A
Robotic System w/t Manipulator	15 kg	N/A
Empty plastic Tank	500 g	N/A
Solar Panel	440 g	N/A
CO ₂ Tank (empty) CO ₂ Tank (full)	800 g 1500 g	Pressure: 7 bar

07/10/2022

1A

1B

2

3A

3B

2

BP1: Experimental Facility & Model (2/4)

- **Inertial parameters** in accordance with those of Cepheus
- Sensors and actuators in accordance with Cepheus

SimScape

BP1: Experimental Facility & Model (3/4)

		BPs					SCs		
OBSIdian Final Presentation	07/10/2022	1A	1B	2	3A	3B	1	2	Page 27

BP1: Experimental Facility & Model (4/4)

□ BP1A **Method** based on System Angular Momentum Conservation

$$\mathbf{Y}\left(\dot{\theta}_{1}, \dot{\theta}_{2}, \theta_{1}, \theta_{2}, {}^{0}\omega_{0z}\right)\mathbf{a} = \mathbf{h}_{cm}$$

□ BP1B **Method** based on System Energy Balance

$$\mathbf{Y}\left(\dot{\theta}_{1}, \dot{\theta}_{2}, \theta_{1}, \theta_{2}, {}^{0}\boldsymbol{\omega}_{0z}\right)\mathbf{a} = b$$

SYSID Measurements Required	Sensor	Unit
S/C angular velocity	IMU	rad/s
S/C linear velocity	Computed	m/s²
Manipulator joint angles	Motor encoders	rad
Manipulator joint rates	Computed	rad/s

		BPs					SCs		
OBSIdian Final Presentation	07/10/2022	1 A	1B	2	3A	3B	1	2	Page 28

BP1A: Excitation & simulated response

RW PI Control on $\dot{\theta}_{rw,des} = 150 \ rad/s = 1432.4 \ rpm$

07/10/2022

□ **Manipulator** PD control on $\theta_{i,des}$ -> Fourier series: coefficients obtained by minimizing regressor matrix condition number

1A

1B

9

34

38

Page 29

BP1A: SYSID Results (simulation)

Parametric SYSID by TLS (Algorithm) on Angular Momentum Conservation (Method)

Parameter	True Value	Estimated Value	Relative error (%)
a1	0.041	0.038	5.819
a ₂	0.014	0.014	2.57
a ₃	0	-0.0008	-
a ₄	0	-0.0001	-
a ₅	0.200	0.202	0.779
a ₆	0.033	0.033	0.107
a ₇	0.087	0.089	2.498
a ₈	0.025	0.024	1.703

 OBSIdian Final Presentation
 07/10/2022
 IA
 IB
 2
 3A
 3B
 1
 2
 Page 30

BP1A: Excitation & experimental response

				BPs	SCs				
OBSIdian Final Presentation	07/10/2022	1A	1B	2	3A	3B	1	2	Page 31

BP1A: SYSID Results (experiment)

Parameter	Estimated Value
a ₁	0.030
a ₂	0.024
a ₃	-0.032
a ₄	0.044
a ₅	0.248
a ₆	0.015
a ₇	0.09
a ₈	0.109

- The "true" system parameters can be obtained by the system detailed CAD drawings
- Discrepancies do exist between the CAD and the real system
- It is more appropriate that the validity of the identified model to be evaluated using the validation strategy described next

	1 1		-	BPs			S	Cs	
OBSIdian Final Presentation	07/10/2022	1A	1B	2	3 A	3B	1	2	Page 32

BP1A: Modelling Validation

- Identification Experiment: Experimental vs. Simulated Setup
 - Same excitation
 - Qualitative comparison: $\omega_{0,exp}$ vs. $\omega_{0,pr} = D^{-1} \left(-I_{rw} \dot{\theta}_{rw} \mathbf{D}_{q} \dot{\mathbf{\theta}} \right)$

- Simulated model is based on identified values
- Very good match
- The identified parameters can be used to reconstruct the system motion

BPs

2

34

38

1A

1B

SCs

BP1A: Discussion

□ Simulated data: Parametric SYSID (Agular Momentum & TLS)

- Results within (or marginally outside in a single case) the acceptable relative error margin of 5%
- The execution of the BP1A simulated experiment is deemed as successful

Experimental data: Parametric SYSID (Agular Momentum & TLS)

- Though some parameter clusters were identified acceptably, others were identified with somewhat large relative errors
- However, system reconstruction based on the identified parameters with the experimental data, was successful
- Simulated identified system response matching the experimental system response very well

BP1B: Excitation & simulated response

- Coordinated model-based PD control for Cepheus base position and attitude, and manipulator configuration
 - Cepheus position desired trajectory: sinusoidal in x-y plane
 - Cepheus attitude desired trajectory: 5th order polynomial
 - Desired joint-angles trajectory: Fourier series

	1			BPs		_	S	Cs	
OBSIdian Final Presentation	07/10/2022	1 A	1B	2	3A	3B	1	2	Page 35

BP1B: SYSID Results (simulation)

Parametric SYSID by TLS (Algorithm), Energy Balance Equation (Method)

Parameter	True Value	Estimated Value	Relative error (%)			
a ₁	13.828	13.983	1.1213			
a ₂	2.1385	2.1734	1.6301			
a ₃	0	-0.074213	-			
a ₄	0.26194	0.25793	1.5325			
a ₅	0.093208	0.076095	18.361			
a ₆	0.90348	0.97262	7.6527			
a ₇	0.034487	0.046775	35.631			
a ₈	0.091739	0.087453	4.6718			
a ₉	0.025426	0.019914	21.678			
OBSIdian Final Presentation	07/10/2022	BPs 1B 2 3A	SCs 3B 1 2 Pa			

36
BP1B: Excitation & experimental response

				BPs			SCs			
OBSIdian Final Presentation	07/10/2022	1 A	1B	2	3A	3B	1	2	Page 37	

BP1B: SYSID Results (experiment)

- The "true" system parameters can be obtained by the system detailed CAD drawings
- Results with data from the first 12s.

Parameter	Value from CAD	TLS	Estim Fmax	ated V c=0.6M	TLS Estimated Value Fmax=0.42N					
a ₁	13.83		23	3.73				1	6.90	
a ₂	2.14		4	.75				3	3.39	
a ₃	0.00		-5	5.95			-4.38			
a ₄	0.26			2.20						
a 5	0.09		-1	25				-(0.83	
a ₆	0.91		5	.74			4.33			
a ₇	0.03		0	.36			0.27			
a ₈	0.09		0.37					C).25	
a ₉	0.03	-0.56					-0.39			
			BPs					S	Cs	
OBSIdian Final Pres	entation	07/10/2022	1A	1B	2	3A	3B	1	2	Page 38

BP1B: Modelling Validation

□ Modelling for BP1B validated already in BP1A, except for the thrusters

- Each thruster-valve pair has been calibrated and tested, using a highquality ATI force/torque sensor
- Thruster forces follow the command given
- In prolonged use and when many of them fire simultaneously, their thrust may be reduced

Modelling validation for BP1B is complete, except for thruster action consideration

		BPs						Cs	
OBSIdian Final Presentation	07/10/2022	1A	1B	2	3A	3B	1	2	Page 39

BP1B: Discussion

□ Simulated data: Parametric SYSID (Energy Balance & TLS)

- Most of the results within the acceptable relative error margin of 5%, or close to it (7.6%)
- Three results with larger relative errors of 18.4%, 21.7% and 35.6%
- Limitations in excitation and sensors result in marginal SNR

Experimental data: Parametric SYSID (Energy Balance & TLS)

- Most parameter clusters identified with large relative errors
- Low SNR, comparison with CAD "true" values, and inaccurate knowledge of the excitation force, are the main reasons

BP2: Full-scale Planar System (1/5)

Model

2D Spacecraft (S/C) with mechanical equivalent model to represent sloshing effect

- **Sloshing Model**: mass-spring-damper to represent sloshing effect
- Sloshing parameters "true" values based on CFD model

Assumptions

- S/C inertial parameters assumed known
- S/C states are measurable

Main challenge

- Sloshing parameters need to be identified in the presence of unmeasured states
- Sloshing states are not measurable

Additional challenge: Lack of existing methodologies

BP2: Full-scale Planar System (2/5)

Goal

Develop a method that overcomes the challenges and identifies the sloshing parameters

Contribution

Development of novel methods M1, M2, M3 based on regressor formulation

Design of sloshing SYSID Experiment

- Developed methods M1, M2, M3 eliminate the need for unmeasurable sloshing states
- In this presentation, focus on M2
- Pure translational motion of the system enables the elimination

BP2: Full-scale Planar System (3/5)

Framework of novel method M2

		BPs						Cs	
OBSIdian Final Presentation	07/10/2022	1A	1B	2	3A	3B	1	2	Page 43

BP2: Full-scale Planar System (4/5)

BP2 Methods and Algorithms

TLS on regressor formulation-method	M1 (M1-TLS)
TLS on regressor formulation-method	M2 (M2-TLS)
TLS on regressor formulation-method	M3 (M3-TLS)
IV on regressor formulation-method	M1 (M1- IV)
IV on regressor formulation-method	M2 (M2-IV)
IV on regressor formulation-method	M3 (M3- IV)
UKF	

PEM

Trade-off Analysis Results

The best algorithm and method combination for BP2 is M2-TLS.

07/10/2022

1A

1B

BPs

3A

3B

- □ Max Rel. Error: 3.09%
- □ RMS Rel. Error: 2.59%

SCs

2

BP2: Sensitivity Analysis

 If *e* is the difference between the response of a system based on the identified parameters and the response of the system with the "true" parameters, then

$$e = {}^{0}x_{0}(t, m_{s}, k_{sx}, b_{sx}) - {}^{0}x_{0}(t, \overline{m}_{s}, \overline{k}_{sx}, \overline{b}_{sx})$$
$$= A(t)\varepsilon_{m} + B(t)\varepsilon_{k} + C(t)\varepsilon_{b}$$

07/10/2022

where \mathcal{E}_{m_s} , \mathcal{E}_k , \mathcal{E}_b are the relative errors of the identified sloshing parameters m_s , k_{sx} , b_{sx} respectively, and A(t), B(t)and C(t) are time-dependent coefficients

1A

1B

• Coefficient *C*(t), has negligible effect

BP2: Experimental Facility & Model (1/3)

Page 46

No manipulator

Component	M	ass	ss Notes					
Robotic System w/o Manipulator	14	1 kg		N,				
Robotic System w/t Manipulator	15	15 kg N/A						
Empty plastic Tank	50	500 g N/A						
"Fuel" (water)	80	800 g N/A						
CO ₂ Tank (empty) CO ₂ Tank (full)	80 15	800 gWorking pressure:1500 g7 bar				re:		
				BPs	_		S	
OBSIdian Final Presentation 07	7/10/2022					2D	4	

1B

34

BP2: Experimental Facility & Model (2/3)

- Inertial parameters, sensors and actuators: those of Cepheus
- Mass-spring-damper parameters in accordance with CFD model

		BPs						Cs	
OBSIdian Final Presentation	07/10/2022	1A	1B	2	3A	3B	1	2	Page 47

BP2: Experimental Facility & Model (3/3)

- Analytical vs. Simscape
- Same excitation
- Responses identical=>

analytical model verified

Cepheus linear velocity comparison (difference between SimScape and Analytical)

34

3B

Page 48

OBSIdian Final Presentation

5

10

15

20

25

XLabel

30

35

07/10/2022

1A

1B

×10⁻⁸

0.8

0.6

0.4

0.2

0

-0.2 -0.4

-0.6

-0.8

-1

0

Δv_{0x} (m/s)

BP2: Excitation & simulated response

BP2: SYSID Results (simulation)

Parametric SYSID: TLS (Algorithm), System Transfer Function (Method)

Parameter	True Value	Estimated Value	Relative error (%)
k _s (N/m)	33.2156	13.6968	2.27
b _s (N*s/m)	0.1336	-115.56	-
m _s (kg)	0.650	1.183	8.59

		BPs						Cs	
OBSIdian Final Presentation	07/10/2022	1A	1B	2	3A	3B	1	2	Page 50

BP2: Excitation & experimental response

OBSIdian Final Presentation

 07/10/2022
 1A
 1B
 2
 3A
 3B
 1
 2
 Page 51

BP2: SYSID Results (experiment)

Parameter	"True" Value	Estimated Value	Relative error (%)
m _s (kg)	0.650	0.402	20.32
k _s (N/m)	33.2156	13.44	10.32
b _s (N/m/s)	0.1336	-46.17	-

		BPs						Cs	
OBSIdian Final Presentation	07/10/2022	1A	1B	2	3A	3B	1	2	Page 52

BP2: Modelling Validation

- Identification Experiment: Experimental vs. Simulated Setup
 - Same excitation
 - Qualitative comparison
- Simulated model based on identified values

Very good match

		BPs						Cs	
OBSIdian Final Presentation	07/10/2022	1 A	1B	2	3A	3B	1	2	Page 53

BP2: Discussion

□ Simulated data: Parametric SYSID (TF Method & TLS)

- Damping coefficient not adequately identified (expected), while the other two sloshing model parameters are identified with relative errors within or close to the 5% margin
- The execution of the BP2 simulated experiment is deemed as successful
- **Experimental data:** Parametric SYSID (TF Method & TLS)
 - Identified sloshing mass and stiffness of the sloshing model are meaningful but errors outside the 5% limit
 - "True" values are obtained by CFD model and fitting on a massspring-damper model
 - Sloshing mass excitation is close to the acceleration noise levels
 -> difficult to decipher from noise

BP3: Full-scale Planar System (1/2)

2D Model

- Rotating rigid hub with a flexible appendage mounted on a fixed revolute joint
- Appendage deflection as a function of the modal shapes

Modelling Assumptions

Hub Model: Rigid body

Cases

- □ Experimental Modal Analysis (BP3A): chirp and rectangular signals selected as inputs
- Operational Modal Analysis (BP3B): specific operational task selected

				BPs	SCs				
OBSIdian Final Presentation	07/10/2022	1 A	1B	2	3A	3B	1	2	Page 55

BP3: Full-scale Planar System (2/2)

Design of SYSID Experiment

Algorithms evaluated

LSCE RFP FSDD SSI-COV SSI-DATA

Trade-off Analysis Results

The best algorithm for BP3 is **SSI-COV**, for both EMA and OMA cases.

- Rectangular input signal yields better results than chip signal
- Relative errors for all modal parameters are quite low
 - Max Rel. Error in Natural Frequencies: 0.02%
 - Max Rel. Error in Damping Ratios: 0.01%
 - MAC Value: 1

BP3: Experimental Facility & Model (1/4)

Characteristics	Qu flexi	QuanserSYSIDflexible linkMeasurements40 cmRequired				ts	Senso	or Unit	
Length	4) cm			Requ	ired			
Height	2.	1 cm						Hub	
Thickness	0.0)9 cm	1	Hub attitude				motor	r rad
Flexible link mass	69	9.7 g					of	onoout	
Young's modulus	19	3 GPa	à	poin	ts on	flexi	ble	Accele	ro m/s ²
Density (stainless steel)	7850) kg/r	m³	appendage				meters	S
				BPs			Ę	SCs	
OBSIdian Final Presentation 07/	10/2022	1 A	1B	2	3 A	3B	1	2	Page 57

BP3: Experimental Facility & Model (2/4)

- SimScape model: succession of 10 flexible beams, with acceleration measurements between them
 - Inertial parameters, sensors, and actuators by Quanser

BP3: Experimental Facility & Model (3/4)

□ Compared model response of

- Analytical vs. Simscape
- same excitation

□ Responses very close=>

analytical model verified

07/10/2022

1A

1B

2

34

Page 59

BP3: Experimental Facility & Model (4/4)

Modelling Validation

- **Identification Experiment:** Experimental vs. Simulated Setup
 - Same excitation
 - Qualitative comparison
- Simulated model used CAD values
- Modelling validated
- Some discrepancies exist due to:
 - Damping modelling limitations
 - Intrinsic H/W-S/W differences

07/10/2022

1A

1B

2

BP3A: Excitation & simulated response

Page 61

BP3A: SYSID Results (simulation)

Modal Analysis by SSI-COV

□ Spurious modes linked to the excitation, may be detected

Power spectral density function used to determine the correct modes

BP3A: Experimental response

BP3A: SYSID Results (experimental)

Accelerometer at x/L = 0.5

Parameters	<i>f</i> _{n1} (Hz)	<i>f</i> _{n2} (Hz)	ζ _{n1} (-)	ζ _{n2} (-)
Simulated model	3.62	20.63	0.053	0.016
Hardware	2.98	15.21	0.051	0.014
Relative Error (%)	-17.68	-26.72	-3.77	-12.50

		BPs						Cs	
OBSIdian Final Presentation	07/10/2022	1A	1B	2	3 A	3B	1	2	Page 64

BP3A: Discussion (1/2)

□ Simulated data: Modal Analysis (SSI-COV)

- The natural frequencies considered as identified correctly by the SSI-COV algorithm (max relative error a bit outside the acceptable limit of 5% (i.e., 8.67%))
- The first damping ratio identified better than the second one (-11.04% vs. 58.39%)
 - 2nd damping ratio true value is very small (only 0.010)
- The physical system and its SimScape implementation do not match perfectly

 The execution of the BP3A simulated experiment is deemed as successful (at least in terms of the natural frequencies)

BP3A: Discussion (2/2)

Experimental data: Modal Analysis (SSI-COV)

□ The accelerometer directly influences the flexible link dynamics

Due to link additional mass, its two natural frequencies shifted lower

□ Accelerometer position affects the results

Accelerometer at x/L = 0.75

Accelerometer at x/L = 0.25

Parameters	<i>f</i> _{n1} (Hz)	<i>f</i> _{n2} (Hz)	ζ _{n1} (-)	ζ _{n2} (-)	Parameters	<i>f</i> _{n1} (Hz)	<i>f</i> _{n2} (Hz)	ζ _{n1} (-)	ζ _{n2} (-)
Simulated model	3.62	20.63	0.053	0.016	Simulated model	3.62	20.63	0.053	0.016
Hardware	3.80	20.15	0.071	0.026	Hardware	3.15	17.99	0.059	0.013
Relative Error (%)	4.97	-2.32	33.96	62.50	Relative Error (%)	-12.98	-12.80	11.32	-18.75

				BPs	SCs				
OBSIdian Final Presentation	07/10/2022	1 A	1B	2	3A	3B	1	2	Page 66

BP3B: Excitation & simulated response

2.5

Simulation time (s)

Hub angle (deg)

				BPs	SCs				
OBSIdian Final Presentation	07/10/2022	1A	1B	2	3A	3B	1	2	Page 67

BP3B: SYSID Results (simulation)

Modal Analysis by RSSI-COV

Parameter	f _{n1} (Hz)	f _{n2} (Hz)	ζ _{n1} (-)	ζ _{n2} (-)
True values	33.3	20.68	0.061	0.010
Rel. Error (%)	8.35	-3.40	-63.05	59.88

BP3B: Experimental response

		BPs					SCs		
OBSIdian Final Presentation	07/10/2022	1 A	1B	2	3A	3B	1	2	Page 69

BP3B: SYSID Results (experimental data)

Accelerometer at x/L = 0.5

Parameters	<i>f</i> _{<i>n</i>1} (Hz)	<i>f</i> _{n2} (Hz)	ζ _{n1} (-)	ζ _{n2} (-)
Simulated model	3.61	19.98	0.098	0.016
Hardware	3.73	15.09	0.064	0.021
Relative Error (%)	3.32	-24.47	-34.69	31.25

		BPs						Cs	
OBSIdian Final Presentation	07/10/2022	1A	1B	2	3A	3B	1	2	Page 70

BP3B: Discussion (1/2)

□ Simulated data: Modal Analysis (RSSI-COV)

- The natural frequencies considered as identified correctly by the RSSI-COV algorithm (max relative error a bit outside the acceptable limit of 5% (i.e., 8.35%))
- Both damping ratios are identified with relatively high relative errors (63.05% - 58.39%)
 - Both damping ratios true values are quite small (0.06 0.01)
- The physical system and its Simscape implementation do not match perfectly

 The execution of the BP3B simulated experiment is deemed as successful (at least in terms of the natural frequencies)

BP3B: Discussion (2/2)

Experimental data: Modal Analysis (RSSI-COV)

□ The accelerometer directly influences the flexible link dynamics

Due to link additional mass, its two natural frequencies shifted lower

□ Accelerometer position affects the results

Accelerometer at x/L = 0.75

Accelerometer at x/L = 0.25

Parameters	<i>f</i> _{n1} (Hz)	<i>f</i> _{n2} (Hz)	ζ _{n1} (-)	ζ _{n2} (-)	Parameters	<i>f</i> _{n1} (Hz)	<i>f</i> _{n2} (Hz)	ζ _{n1} (-)	ζ _{n2} (-)
Simulated model	3.61	19.98	0.098	0.016	Simulated model	3.61	19.98	0.098	0.016
Hardware	3.07	19.85	0.095	0.017	Hardware	3.40	15.72	0.057	0.021
Relative Error(%)	-14.96	-0.65	-3.06	6.25	Relative Error(%)	-5.82	-21.32	-41.84	31.25

		BPs					SCs		
OBSIdian Final Presentation	07/10/2022	1 A	1B	2	3A	3B	1	2	Page 72
Discussion on BP1 Experiments

- The SYSID with the BP1A simulated data is deemed as successful
- The SYSID with the BP1A experimental data is deemed as partially successful
 - However, system reconstruction based on identified parameters, was successful

The SYSID with the BP1B simulated data is deemed as partially successful

- Inadequate SNR
- The SYSID with the BP1B experimental data is deemed as unsuccessful

1A

 Main reasons: Low SNR, comparison with CAD "true" values, and inaccurate knowledge of the excitation force

1B

BPs

2

SCs

Discussion on BP2 Experiments

The SYSID with the BP2 simulated data is deemed as successful

The SYSID with the BP2 experimental data is deemed as partially successful

- Accurate estimation of excitation forces resulted in meaningful (if not acceptable) results
- However,
 - "True" values were obtained by CFD model and fitting on a massspring-damper model
 - Sloshing mass *excitation* is close to the acceleration noise levels
 -> difficult to decipher from noise.

Discussion on BP3 Experiments

The SYSID with the BP3 simulated data is deemed as successful (at least in terms of the natural frequencies)

Model and Simscape implementation do not match perfectly

The SYSID with the BP3 experimental data is deemed as partially successful (depends on accelerometer position)

- The accelerometer directly influences flexible link dynamics
- Due to additional mass, natural frequencies shifted lower

Study Cases

		BPs					SCs			
OBSIdian Final Presentation	07/10/2022	1A	1B	2	3 A	3B	1	2	Page 76	

Basic Considerations (1/2)

Full-scale Planar System Models (simulations)

- Insight on the SYSID Algorithms requirements
- Develop appropriate Methods to apply the chosen Algorithms

Scaled-down Planar Experiments (consortium facilities)

 Significant insight on the SYSID Algorithms and developed Methods requirements, capabilities and limitations

Basic Considerations (2/2)

Scaled-down Planar Experiments (simulations)

- Validate the developed Analytical Models
- Design of excitation signal to be used for the h/w experiment
- Gain knowledge on the behaviour of the experimental set-up (limitations, sources of error, etc.) and on the SYSID algorithm
- Validate the experimentally Identified Models, using Analytical and/ or SimScape models

Full-scale Spatial (3D) System Models (simulations)

SC1: Full-scale Planar System (1/7)

2D System

- Manipulator equipped chaser S/C with:
 - a fuel tank
 - a flexible appendage

Modelling Assumptions

- S/C Model: Rigid body
- Fuel Sloshing Model: Lumped model (mass-spring damper)
- Flexible appendage: Continuous model (Euler-Bernoulli beam)

		BPs					SCs		
OBSIdian Final Presentation	07/10/2022	1A	1B	2	3A	3B	1	2	Page 79

SC1: Full-scale Planar System (2/7)

Main challenge

- All system parameters to be identified in the presence of unmeasured states
 - Inertial, sloshing, modal parameters of chaser system to be identified
 - Sloshing states are not measurable
 - Modal states are not measurable

Additional challenge

Lack of existing methodologies

Goal

Develop a method that overcomes the challenges and identify all the Chaser's parameters

Contribution

Development of a method based on two subsequent experiments (stages)

Tank

SC1: Full-scale Planar System (3/7)

SYSID Experiment 1

- The S/C orientation is kept constant
- Inputs: Only net forces act on the S/C

Design of SC1 SYSID

Experiments:

- Experiment 1
- Experiment 2

Modal Analysis for Flexible Appendage

Modal parameters of the flexible appendage can be identified

Parametric SYSID 1 for Sloshing

The sloshing parameters can be identified

SYSID Experiment 2

- The S/C orientation is not kept constant; it is free to change
- Inputs: Net forces/moment act on the S/C, torques act on arm joints

Parametric SYSID 2 for Space Robot

The space robot's inertial parameters can be identified

		BPs					SCs			
OBSIdian Final Presentation	07/10/2022	1A	1B	2	3A	3B	1	2	Page 81	

SC1: Full-scale Planar System (4/7)

Design of SYSID Experiment 1: Pure translation by applying net forces only

SYSID Experiment 1

- The S/C orientation is kept constant
- Inputs: Only net forces act on the S/C

Modal Analysis for Flexible Appendage

Modal parameters of the flexible appendage can be identified

- Modal parameters identified: natural frequencies, damping ratios, mode shapes
- Measurements of flexible appendage tracked points accelerations
- SSI-COV algorithm used based on the BP3 Trade-off Analysis

SC1: Full-scale Planar System (5/7)

Design of SYSID Experiment 1: Pure translation of S/C, arm locked

SYSID Experiment 1

- The S/C orientation is kept constant
- Inputs: Only net forces act on the S/C

Parametric SYSID 1 for Sloshing

The sloshing parameters can be identified

- Novel Method developed based on transfer function formulation (same framework as BP2-M2)
 - Eliminates unmeasurable sloshing and modal states from SYSID equations
 - Decouples sloshing identification from modal parameters identification
 - Allows for sloshing parameters identification to run in parallel with modal analysis
- TLS algorithm used based on the BP2 Trade-off Analysis.

SC1: Full-scale Planar System (6/7)

Design of SYSID Experiment 2: S/C translation & rotation, arm performs trajectories

- > Excitation similar to BP1B
- All Fourier series coefficients obtained by minimizing regressor matrix condition number

- Method developed, consisting of:
 - A SYSID equation based on *energy balance* (same framework as BP1-M2)
 - An estimator for the unmeasurable sloshing states based on *equations of motion*
 - An estimator for the unmeasurable modal states based on *assumed modes method*
- TLS algorithm used based on the BP1 Trade-off Analysis.

SC1: Full-scale Planar SYSID Results (7/7)

- SYSID in Experiment 1, yields good results in general
 - Relative errors for most modal and parametric SYSID, are low
 - Max Rel. Error in Natural Frequencies (SSI-COV): 3.14%
 - Max Rel. Error in Sloshing Estimation (TLS): 3.63% (damping excluded)
 - RTLS was tried also, with Max. Rel. Error in Sloshing Estimation: 2.40%
 - Relative errors of estimated sloshing damping coefficients are large; negligible effect on the S/C response prediction (see sensitivity analysis earlier in this presentation)
- SYSID in Experiment 2 yields acceptable identification
 - Max Relative Error in Inertial Estimation: 4.62%
- Thus, SC1 SYSID for both Experiment 1/2, is deemed as successful

		BPs					SCs		
OBSIdian Final Presentation	07/10/2022	1A	1B	2	3A	3B	1	2	Page 85

SC1: Experimental Facility & Model

3A

2

3B

Page 86

2

Component	Mass	Notes	
Robotic System w/o Manipulator	13 kg	Cepheus has reconfigurable mass (provision for added mass capability).	
Robotic System w/t Manipulator	14 kg	N/A	
Empty Plastic Tank	500 g	N/A	Manipulator
Water Emulating Sloshing Fuel	800 g	Based on CFD model, only about 650g of the 800 g are contributing to the sloshing phenomenon.	Flexible
Solar Panel	440 g	N/A	Appendage Frame 0
CO ₂ Tank (empty)	900 g	Working pressure: 7 bar	Sloshing
CO ₂ Tank (full)	1650 g		Fuel in Tank
		BPs	SCs

1A

1B

07/10/2022

OBSIdian Final Presentation

SC1 EXP1: SYSID Results (simulation)

Experiment 1

Modal Analysis

Parameters	SSI-COV	RSSI-COV	SSI-COV	RSSI-COV	
Туре	Bending	bending	bending	bending	
True values (Hz)	1.	947	12.200		
Est. value (Hz)	1.946	1.942	12.275	12.254	
Rel. Error (%)	0.049	0.222	0.614	0.447	

Parametric (sloshing) SYSID (realistic noise models)

Param	True Value	Est. Value TLS	Relative error (%)	Est. Value RTLS	Relative error (%)
Μ	15.117	15.178	0.4011	15.2072	0.5966
ms	0.625	4.0178	542.84	4.0204	543.27
k _s	33.2156	717.3224		715.9319	
b s	0.1336	3.0551		2.3180	
ρ	0.675	-0.2563	137.96	-0.1739	125.76

Parametric (sloshing) SYSID (increased SNR)

Relative Error for Parameter	Relative Error (%) from Simulation							
	Lower noise,	Lower noise,	Noiseless,					
	3 acc/meters	7 acc/meters	3 acc/meters					
Μ	0.014662	0.0095055	6.5045e-10					
ms	15.026	0.52262	0.028216					
k _s	15.294	0.73895	0.028216					
b _s	24.451	8.6107	0.028216					
ρ	29.036	4.5398	0.061576					

SC1 EXP2: SYSID Results (simulation)

Experiment 2

Parametric SYSID (inertial)

Param	True Val.	Est. Value TLS	Rel. error (%)	Est. Value RTLS	Rel. error (%)	Rel error (%) (lower noise) TLS
a ₁	0.424	0.4068	4.06	0.4051	4.45	0.97
a ₂	0.13626	0.1366	0.29	0.1195	12.30	5.69
a ₃	0.21477	0.2333	8.65	0.2496	16.20	0.40
a ₄	0.20152	0.1192	40.82	0.0959	52.41	8.30
a 5	0.26194	0.2360	9.89	0.2305	11.99	6.13
a ₆	0.03933	0.0841	113.7	0.0807	105.1	2.96
a ₇	0.09321	0.1502	61.11	0.1531	64.30	3.59
a ₈	0.03569	0.0653	83.04	0.0660	84.97	4.84
a ₉	0.05626	0.0645	14.73	0.0715	27.07	4.55
a ₁₀	0.0127	0.0017	86.40	-0.0002	101.5	8.08
a ₁₀	0.02002	0.0386	92.70	0.0407	103.1	7.94
a ₁₂	0.02442	0.0262	7.30	0.0308	26.35	4.00

Estimators used for unmeasurable quantities

		BPs					SCs		
OBSIdian PM1 Presentation: TN1.1	07/10/2022	1A	1B	2	3A	3B	1	2	Page 88

SC1: Experimental response

Page 89

			_	BPS	_	_	S	CS	
OBSIdian Final Presentation	07/10/2022	1 A	1B	2	3 A	3B	1	2	

SC1 EXP1&2: SYSID Results (experimental)

Experiment 1

Modal Analysis

Parameters	SSI-COV	RSSI-COV	SSI-COV	RSSI-COV	
Туре	bending	bending	bending	bending	
True values	1.947	' (Hz)	12.200 (Hz)		
Estimated value	2.271 (Hz)	2.265 (Hz)	11.62 (Hz)	11.566 (Hz)	
Rel. Error (%)	-16.85	-16.33	4.73	5.19	

Parametric (sloshing) SYSID

Parameter	True Value	Estimated Value TLS	Relative error (%)	Estimated Value RTLS	Relative error (%)
M	15.117	11.7012	22.596	12.09	20.027
m _s	0.625	-8.1245		-10.655	
k _s	33.2156	0.3339	98.977	1.5275	95.401
b _s	0.1336	-7.3121		-15.879	
ρ	0.675	0.7711	14.232	0.7856	16.391

Experiment 2

- Estimators used for unmeasurable quantities
- SYSID results not meaningful

		BPs						Cs	
OBSIdian Final Presentation	07/10/2022	1A	1B	2	3A	3B	1	2	Page 90

SC1: Modelling Validation (1/2)

- Identification Experiment: Experimental vs. Simulated Setup
 - Same excitation
 - Qualitative comparison
- Very good match

SC1: Modelling Validation (2/2)

Experiment 1

SC1: Discussion: Simulated Data

- Parametric SYSID with both TLS and RTLS for SC1 (both Experiment 1 and 2), does not yield meaningful results for several parameters
 - Inadequate SNR is observed
 - Increasing SNR (e.g., by lower noise or more accelerometers) leads to significant improvement and good results
- Modal Analysis with both SSI-COV and RSSI-COV for SC1 (Experiment 1), is deemed as successful in identifying the first two natural frequencies

□ **Recursive** implementations of the Algorithms

- yield slightly worse results to the non-recursive ones
- but converge at about halfway through the simulation

SC1: Discussion: Experimental Data (1/2)

- Parametric SYSID with both TLS and RTLS for SC1 (both Experiment 1 and 2), does not yield meaningful results for most parameters
 - Experiment 1 is close to BP2, which yielded good results. But "close" is not "the same":
 - > Added mass rightarrow lower max accel. rightarrow lower excitation rightarrow lower SNR
 - Added oscillations from flexible panel, make the excitation force reconstruction more difficult again, lower SNR
- **Recursive** implementations (same as in simulation)
 - Yield slightly worse results to the non-recursive ones
 - Converge at about halfway through the simulation

SC1: Discussion: Experimental Data (2/2)

- Modal Analysis with both SSI-COV and RSSI-COV for SC1 (Experiment 1), is deemed as successful in identifying the first two natural frequencies
 - ID of 2nd bending frequency is good, but ID of 1st one has 16% relative error.
 - However, all Modal Analysis (with data from >10 experiments) yielded a 1st bending frequency of 2 to 2.3 Hz.
 - CAD-FEM models 1st bending frequency of 1.95Hz, used as "true"
 - Possibly the actual 1st bending frequency is 2 2.3 Hz, yielding significantly lower error

□ Results consistent with the simulated experiment results

SC2: Full-scale Planar System (1/6)

2D System

- Manipulator equipped chaser S/C with:
 - a fuel tank
 - a flexible appendage
- Grasped target S/C with:
 - a fuel tank
 - a flexible appendage

Modelling Assumptions

- S/C Model: Rigid body
- Fuel Sloshing Model: Lumped model (mass-spring damper)
- Flexible appendage: Continuous model (Euler-Bernoulli beam)

07/10/2022

1A

1B

Rigidly grasped Target S/C

BPs

2

3A

38

SCs

SC2: Full-scale Planar System (2/6)

Main challenge

- All system parameters to be identified in the presence of unmeasurable states
 - Inertial, sloshing, modal parameters of Target system to be identified
 - Sloshing states are not measurable
 - Modal states are not measurable

Additional challenge

Lack of existing methodologies

		BPs					SCs			
OBSIdian Final Presentation	07/10/2022	1A	1B	2	3A	3B	1	2	Page 97	

SC2: Full-scale Planar System (3/6)

SC2 Task: Berthing

- Requirements
 - Fixed Chaser attitude
 - Constant relative attitude between Chaser and Target
 - Target translation along the inertial **Y**-axis only.

Control

- Coordinated control
- Control in Cartesian space
- Model-based PD control law

SC2: Full-scale Planar System (4/6)

X

Sloshing Fuel in

Tank 2

Manipulator

Frame t

Motion Direction

Y₀

 \mathbf{X}_{0}

Sloshing

Fuel in Tank 1

Frame 0

Spacecraft 2

Spacecraft 1

- the target S/C's polar moment of inertia
- the sloshing model parameters on the \mathbf{Y}_t -axis
- In the absence of rotation, the Target CoM position is not be identified

				BPs	SCs				
OBSIdian Final Presentation	07/10/2022	1 A	1B	2	3 A	3B	1	2	Page 99

SC2: Full-scale Planar System (5/6)

- Pure translation only in inertial Y-axis, by applying net forces only
- Measurements of flexible appendage tracked points accelerations
- Recursive SSI-COV algorithm used based on the BP3 Trade-off Analysis

		BPs						Cs	
OBSIdian Final Presentation	07/10/2022	1 A	1B	2	3 A	3B	1	2	Page 100

SC2: Full-scale Planar System (6/6)

Parametric SYSID for sloshing and inertial parameters

- Novel method developed based on transfer function formulation (as in BP2-M2)
 - Eliminates unmeasurable sloshing and modal states from SYSID equations
 - Decouples sloshing identification from modal parameters identification
 - Allows for sloshing and S/C mass identification to run in parallel with modal analysis
- Recursive-TLS (RTLS) algorithm used based on the BP1 Trade-off Analysis

SC2: Discussion on Simulated Data (1/3)

□ Modal SYSID yields very good results, within acceptable limits

- Requires enough measurements, leading to a long operation
- Manipulator workspace limits result to very slow operation
 - Benefits Modal Analysis
 - But results in very low SNR

□ Parametric SYSID yields poor results, due to the low SNR

Enhanced trajectory

		BPs						Cs	
OBSIdian Final Presentation	07/10/2022	1A	1B	2	3A	3B	1	2	Page 102

SC2: Discussion on Simulated Data (2/3)

□ Enhanced trajectory case: a two-part trajectory considered

- **Part 1**: General motion of Target, aligning the S/C berthing fixtures
- **Part 2**: Pure translation of Target (as the original SC2 motion)
- Even then, SNR is still not adequate

However, note that lower noise levels result in adequate SNR and very good Parametric SYSID results

SC2: Discussion on Simulated Data (3/3)

For SYSID, two fundamental requirements must be satisfied:

- Behaviours due to parameters must be excited
- Measured quantities of appropriate SNR must be available
- When these requirements are satisfied (e.g., noiseless measurements or exciting enough motion as in SC1), the evaluated/developed methods and algorithms perform successfully
- Else, SYSID results may not be useful

SYSID Detailed Design

3D Study Case 1

(simulations)

OBSIdian Final Presentation

07/10/2022

Page 105

Analytical Full-scale 3D SC1 Model

□ SC1 model

- Quasi-Lagrangian approach
- System equations of motion
- □ Structure & Parameters
 - Parameters in accordance with realistic values provided by TAS-F
 - Manipulator based on DLR's CAESAR
 - Sensors and actuators in accordance with actual ones

Simscape Full-scale 3D Model

07/10/2022

Sensors and Actuators

Sensors

- IMU
- Sun-tracker/ Star-tracker
- Motor-encoders
- Flexible appendage accelerometers
 - Realistic noise models

Actuators

- Joint motors
- Reaction wheels
- Thrusters

□ First order low-pass Infinite Impulse Response (IIR)
Method and Algorithm

□ 2-stage motion (Experiment 1 & 2)

Experiment 1

- Modal Analysis with SSI-COV
- Parametric SYSID (sloshing model parameters) with TLS on a Method based on the System Transfer Function
 - Method decouples Parametric SYSID from Modal Analysis

Experiment 2

 Parametric SYSID (inertial parameters) with TLS on a Method based on the System Energy Balance

□ Novel estimators for the unmeasurable quantities

Excitation & simulated response

Experiment 1

Thruster forces: consecutive pulses

07/10/2022

Experiment 2

- **RW torque** input: Truncated Fourier series
- Manipulator torque inputs: PD controller on desired joint trajectories (truncated Fourier series)
- All Fourier series coefficients obtained by minimizing regressor matrix condition number

Experiment 1 SYSID Results

Мос	al Analy	ysis	Parametric (sloshing) SYSID with TLS										
Parameters	(Hz) (Hz)		(Hz)	Parameter	True Value	Estimated Value	Relative error (%)						
Туре	bending	bending	bending	М	1023.55	1022.22	0.129						
True values	0.046	0 286	0 801	m _s	49.6	49.90	3.41						
	01010	01200	0.001	k _{s,x,y,z}	0.41	0.41	0.788						
Estimated value	0.046	0.287	0.800	b _{s,i}	0.02	-	-						
Rel. Error (%)	0.114	0.354	0.245	ρ	2700	2761.17	2.266						

07/10/2022

Experiment 2 SYSID Results

Parametric (inertial) SYSID

Parameter	True Value	Estimated Value	Relative error (%)
π'_m (1)	235904.27	232816.76	1.31
π΄, (2)	42646.93	42500.42	0.34
π΄, (3)	216860.44	215087.54	0.82
π΄ (4)	-43783.03	-44874.32	-2.49
π΄ (5)	-78364.67	-76945.42	-1.81
π΄" (6)	-16799.40	-17113.4	-1.87
π΄, (7)	-674.38	-695.10	-3.07
π΄" (8)	-3145.80	-3127.54	-0.58
π΄ (9)	-1205.82	-1190.96	-1.23
π΄, (10)	-0.50	-0.53	-5.83
π΄, (11)	-1.50	-1.44	-3.85
π΄, (12)	-0.60	-0.62	-4.14
π΄ (13)	837.41	835.22	0.26
π΄ (14)	837.42	837.65	0.03
π΄ (15)	-720.27	-715.63	-0.64
π΄ (16)	720.32	716.36	0.55
π΄_ (17)	150.00	149.28	0.48
π (18)	-117.04	-121.40	-3.72
π΄_ (19)	117.09	122.08	4.26
π (20)	50.00	51.67	3.34
π΄ (21)	-101157.00	-103746.97	-2.56
π (22)	-471870.00	-466707.79	-1.09
π (23)	-180873.00	-177657.18	-1.78
	-33719.00	-35920.32	-6.53
	-157290.00	-161684.34	-2.79
	-60291.00	-61632.43	-2.22
π'_{m} (27)	7500.00	7586.22	1.15

07/10/2022

Discussion on SC1 Full-scale 3D Simulation (1/2)

- Modal Analysis with SSI-COV and Parametric SYSID with TLS for SC1 (Experiment 1), are deemed as successful in identifying the first three natural frequencies and the sloshing model parameters, respectively.
 - Identified parameters within the 5% relative error margin

- □ **Parametric SYSID** with TLS for SC1 (**Experiment 2**), is also deemed as **successful** in identifying the inertial parameters.
 - Two parameter clusters marginally outside the 5% error margin

For computational reasons, the first three flexible panel bending modes and the first three manipulator DoFs only were used

Discussion on SC1 Full-scale 3D Simulation(2/2)

□ Simulations of a full-scale 3D system yield very good results

Most of the scaled-down SC1 actual and simulated experiments did not!

- Sensor resolution is not scaled down according to length scale
- Space-ready sensors (modelled for the full-scale system) are far superior to the available sensors at the SRE
- Small disturbances existing in the experimental facility do not exist in space
- Those small disturbances affect the scaled-down systems more significantly

Sensitivity, Robustness, & Sampling Considerations

1. Sensitivity Analysis (preliminary)

Sensitivity Analysis Examples

□ Identify factors whose variation affects the SYSID process

- What is the various factors impact on the identification results?
- Which estimated variables are impacted most?
- To what extent can a factor be varied before crossing a pre-defined threshold on an estimated variable?

Parametric SYSID Sensitivity Analysis Illustrative Examples

- SC2-Exp2: SNR
- BP1A: Mass ratio of manipulator S/C

Modal SYSID Sensitivity Analysis Illustrative Examples

- BP3: SNR
- BP3: Hub inertia

Parametric SYSID Sensitivity Analysis (1/2)

□ SNR for SC2-Exp2

07/10/2022

Parametric SYSID Sensitivity Analysis (2/2)

□ Manipulator – S/C mass ratio for BP1A

Mass ratio	a ₁ error (%)	a ₂ error (%)	a ₃ error (%)	a ₄ error (%)	a ₅ error (%)	a ₆ error (%)	a ₇ error (%)	a ₈ error (%)
60	-1.204	-4.458	7.497	12.222	0.073	1.845	1.031	4.509
40	-1.199	-4.443	7.475	12.206	0.072	1.839	1.031	4.481
25.92 (nominal)	-1.192	-4.421	7.457	12.181	0.069	1.830	1.033	4.437
20	-1.187	-4.404	7.443	12.162	0.068	1.823	1.034	4.401
10	-1.165	-4.346	7.401	12.092	0.061	1.795	1.039	4.254
5	-1.133	-4.291	7.380	12.015	0.051	1.752	1.041	4.009

- Nonnegligible but small effect
- Almost all relative errors decrease as the manipulator-to-S/C mass ratio increases

Modal SYSID Sensitivity Analysis

□ SNR for BP3 → very small increase of errors with SNR variation, after a quite low dB threshold

□ Hub inertia for BP3 → very small effect

Discussion

- SNR increase leads to a dramatic improvement of SYSID results
- Subsystems mass ratio variations have limited effect
- Future work suggestions
 - Sensitivity Analysis to be run for all BPs and SCs, for those and other Factors
 - Sensitivity Analysis for simultaneous variation of Factors. Monte-Carlo Analysis

2. Robustness Considerations

Robust On-line Capabilities (1/2)

- Robust control of a fundamentally nonlinear system (e.g., space manipulator), is an open research issue
 - Nonlinear robust controllers such as SMC, have known issues (e.g., actuator chattering)
 - NMPC not always convex and computationally expensive
 - Use of LPV, though very good for linearizable systems, is still an open research issue for complex, highly nonlinear systems

Robust On-line Capabilities (2/2)

□ Lines of attack

- Feedback linearization (model-based control), assisted by a linear robust controller (e.g., H∞)
- Partial linearization due to uncertainty results in "disturbance" term with known bounds, related to the uncertainty statistics
- In operational scenarios and as data are collected during task execution, the uncertainty statistics can be obtained on-line
- Online adaptation of controller parameters

SYSID results statistics

□ 100 simulations of BP1A are run with different noise profiles

Different seed number on the random number generator

Inertial Parameters Cluster	Mean value	Mean value 95% confidence interval	σ	σ 95% confidence interval
a_1	-26.917	[-26.927, -26.907]	0.0496	[0.0436, 0.0577]
<i>a</i> ₂	-9.224	[-9.242, -9.207]	0.0893	[0.0784, 0.1038]
<i>a</i> ₃	10.582	[10.553, 10.611]	0.1445	[0.1269, 0.1679]
a_4	3.077	[3.067, 3.087]	0.0504	[0.0443, 0.0586]
a_5	964.646	[964.51, 964.782]	0.6851	[0.6015, 0.7959]
<i>a</i> ₆	16.743	[16.731, 16.755]	0.0612	[0.0537, 0.0711]
<i>a</i> ₇	44.44	[44.428, 44.452]	0.0597	[0.0524, 0.0694]
<i>a</i> ₈	10.933	[10.916, 10.950]	0.0852	[0.0748, 0.0989]

□ Statistics for relative errors (%) are also obtained

Computational Impact Preliminary Analysis

- On-line robust controller adaptation requirements using uncertainty statistics derived from a repetitive SYSID process are discussed:
 - in terms of time requirements for the statistics derivation
 - in terms of buffer size
- □ Additional factors identified
 - CPU available time for the additional computations
 - Additional energy consumed for such computations
 - Closed-loop system stability during robust controller parameter adaptation

3. Sampling Rate Considerations

Parametric SYSID Sampling Rate Considerations

□ Non-recursive implementation

- 2.5 Hz to 66 Hz
- High sampling rate is not a requirement for SYSID
 - Lower sampling rate improves regressor condition number
 - However, enough data with low sampling rate, leads to prolonged experiments (see 3D SC1)
- **Recursive** implementation
 - Several measurements at 50Hz per step, but only a few steps to converge
 - Important future work: Trade-off between measurements requirement per step vs. steps required for convergence, considering sampling rate and computational realistic constraints

Modal Analysis Sampling Rate Considerations

□ For both SSI-COV and RSSI-COV

- To be able to:
 - Identify the largest natural frequency considered having significant effect on system motion
 - Distinguish it from identified spurious modes
- Then, sampling rate must be at least 2 to 3.5 times the natural frequency

Project Output Exploitation

In-Flight Experiments (1/2)

- Identification of inertial parameters using Parametric SYSID with SPHERES-like
 - With varying inertial parameters
- Identification of modal parameters using Modal SYSID with SPHERES-like
 - Simple panels attached in various positions of chassis

07/10/2022

- Identification of inertial parameters of a manipulator using Parametric SYSID with a SPHERES-like or Astrobee-like system
 - Use of manipulator with custom made links (variable inertial parameters)
 - Experiments with emphasis in uncertain grasping and manipulation

In-Flight Experiments (2/2)

□ Full Mated Experiments

- Orbital Express Mission or EROSS-like experiments
- Satellites for these experiments do not need to be of medium/large scale
 → exploit the Newspace trend of small satellites

Components

7dof manipulator-equipped Chaser satellite

07/10/2022

- Active Target satellite, with varying inertial properties (e.g., by use of simple mechanisms).
- Control Room can activate/deactivate subsystems, to allow for different SYSID scenarios

□ Indicative experiments

 Experiments like SC1 and SC2 (both with Experimental and Operational excitation) can be considered.

ECSS Requirements Guidelines

- Accuracy of the Model Parameters
- Measurement Noise & SNR Improvement
- Experimentation

Conclusions

Conclusions (1/4)

Linearization of a fundamentally nonlinear system, such as a space manipulator, around an equilibrium point, would result in derived system dynamics valid only close to that point.

□ Study of the full nonlinear system was opted

Analytical models were verified by comparison to Simscape models responses and (when applicable) by comparison to the experimental facilities system responses

Conclusions (2/4)

Modal analysis is found to be quite successful with SSI-COV and RSSI-COV (except for the damping ratios identification)

Parametric SYSID with TLS and RTLS is also found to be quite successful (except for the sloshing damping coefficients identification), provided adequate measurements SNR exists

Recursive implementations of the Algorithms provided similar results than the non-recursive ones (somewhat higher relative errors), but required about half the time to yield these results

Conclusions (3/4)

It was observed that the SYSID results were affected by four main factors:

Accuracy of the model parameters knowledge

When comparing SYSID results with inaccurate estimations of the actual system parameters, then even perfect SYSID may seem erroneous

Signal to Noise Ratio (SNR)

Solutions: higher excitation (if possible), better sensors, filtering (be careful of the time-shift when online)

- Sampling Rate
- Experimental facilities disturbances

Conclusions (4/4)

- Even for a highly-nonlinear, complex system such as a fullscale spatial Space Manipulator System, the SYSID results are quite promising
- For easily linearizable systems (e.g., satellite operating around certain attitude "equilibrium-points"), the results are expected to be at least equally good
- Standardized off-line and especially on-line SYSID can be very useful in enhancing robust control performance in space
- We are not "there" yet, but these initial results are definitely promising, and the goal looks both "doable" and "worth doing"!

Managerial

Status

The project has been completed

Significant delays due to:

- Covid-19 lockdowns (force majeure)
- Technical complexity
- Certain steps where needed that SoW did not include (CCN has been issued for this reason)

Deliverables completed

Final Gantt Chart

				T0+1	T0+2	T0+3	T0+4	T0+5	T0+6	T0+7	T0+8	T0+9	T0+10	T0+11	T0+12	T0+13	T0+14	T0+15	T0+16	T0+17	T0+18	T0+19	T0+20	T0+21	T0+22	T0+23	T0+24	T0+25	T0+26	T0+27	T0+28	T0+29	T0+30	T0+31	T0+32	T0+33	T0+34	T0+35	T0+36	T0+37	T0+38	T0+38	T0+39
	Title		End Date>	14/4/19	14/5/19	14/6/19	14/7/19	14/8/19	14/9/19	14/10/19	14/11/19	14/12/19	14/1/20	14/2/20	14/3/20	14/4/20	14/5/20	14/6/20	14/7/20	14/8/20	14/9/20	14/10/20	14/11/20	14/12/20	14/1/21	14/2/21	14/3/21	14/4/21	14/5/21	14/6/21	14/7/21	14/8/21	14/9/21	14/10/21	14/11/21	14/12/21	14/1/22	14/2/22	14/3/22	14/4/22	14/5/22	14/6/22	31/7/22
WP Number		Responsible	Start Date>	15/3/19	15/4/19	15/5/19	15/6/19	15/7/19	15/8/19	15/9/19	15/10/19	15/11/19	15/12/19	15/1/20	15/2/20	15/3/20	15/4/20	15/5/20	15/6/20	15/7/20	15/8/20	15/9/20	15/10/20	15/11/20	15/12/20	15/1/21	15/2/21	15/3/21	15/4/21	15/5/21	15/6/21	15/7/21	15/8/21	15/9/21	15/10/21	15/11/21	15/12/21	15/1/22	15/2/22	15/3/22	15/4/22	15/5/22	15/6/22
1000		NTUA-CSL										T											Τ		T						Τ											T	
1100	Concept studies & System Ident. Framework	NTUA-CSL	CSEM, TASF							_																																	
1200	Preliminary Def Dev And V&V Infrastructure	INTUA-USL			1				_																																		
2000)	CSEM										_																										-	-				_
2100	Consolidation Mission and Design Specs	CSEM	NTUA-CSL		1																							ł															
2200	SYSID Methods, Study Cases/ Def/ Metrics	NTUA-CSL	CSEM																									:	:														
2300	Simulation & Exper. V& V Infrastructure	CSEM	NTUA-CSL									1																															
3000		CSEM																																									
3100	SYSID Study Case/ Benchmarks/ Des. And Coding	CSEM	NTUA-CSL																	1					1																		
3200	Simulator S/W/ Experimental Test	NTUA-CSL	CSEM		ļ																	_										_											
4000		NTUA-CSL															- 1			- 1		-			1					1	1	1								1			
4100	Simulation Based & H/W based SYSID V&V	NTUA-CSL	CSEM, TASF	-													i	i	i	i	- 1	i				-	-	-	-	-	-+	-		-	-			-	-				
5000	J Sumtheorie of Decults	NTUA-CSL	CCENA TACE																												1.	- 1	- 1									_	
5100	Discomination & Poadman	INTUA-USL	NTUA-CSL TASE																													1	- 1	1	1							1	
0000	Project Management		CSEM TASE		-				_	_	_	_	_	_		_		_	_	-	-	-	_		-	-	_	-	-	-	- 1	-	-	-	-			-	-	-	-	-	
	roject management		00 LIN, 17 01																						1			i	Ī														
Initial	Plan		Meetings/ MS	δ			R1 PM1				R2 PM2																DR PM3											DR PM4			R PM5		R PM6
				Ý			Я				1 R																ā											0			۷		E m
TDAY			Payment MS	AP							MS																											MS					MS.
DM1	LLS (Estimated dates)						1.1		1.1a	1.3				1.3a					2.1				2.1a		2.2a										3.1	3.1a	3.1b				4.1		
PM2	-> ALIELD (20-27/0/13) -> FSTFC (13/11/19)		Deliverables				1.2		1.1b	1.4				1.4a					2.2				2.3a		S2.1										3.2	3.2a	3.2b				S4.1		
PM3	-> TFI(O) (xy/xy/20)		(including						1.2a	1.5				1.5a					2.3				2.4a													\$3.1							
PM4	-> TELCO (xx/xx/20)		reviewed and																2.4																	\$3.2							2
PM5	-> Cannes (xx/xx/20)		updated																																								De
PM6	-> Athens (xx/xx/20)		Versions as TNa,																																								her
PM7	-> ESTEC (xx/xx/21)		TNb, etc.)																																								ğ
BONU	IS> TBD (TBC) for Paper presentation									\$1.1																																	AII

07/10/2022

Page 141