

ESA Contract No. 4000128123/19/NL/FE

(AO/1-9816/19/NL/FE)

"Impro33" – Improved multi-junction solar cells with up to 33% efficiency at end of life

Final Presentation – 13th October 2022

(held via WebEx)

Agenda

9:30	Welcome + Project Overview	AZUR	~ 15 min.
9:45	Results on TBB's @AZUR	AZUR	~ 15 min.
10:00	Results on TBB's @ISE	ISE	~ 15 min.
10:15	Results on TBB's @TF2	TF2	~ 10 min.
10:25	Results on TBB's @CESI	CESI	~ 10 min.
10:35	Results on InGaNAs@TAU	TAU	~ 25 min.
11:00	Results on inno. Ge wafers	AZUR	~ 10 min.
11:10	Summary & Conclusions	AZUR	~ 5 min.
11:15	Discussion / Questions	ALL / ESA	~ 45 min.
12:00	End of Meeting		

Content

- > Objectives
- Project overview (WBS & Gantt)
- Results on investigated ,Technoogy Building Blocks':
 - AZUR: UMM cell technology, thin & flex. cells & SCA's
 - ISE & TF2: IMM cell technology
 - CESI & TAU: InGaNAs cell technology
 - Umicore: innovative Ge substrates
- Summary and Conclusions

Four primary objectives:

- Increase EOL eff.	Req.: >26%	\checkmark	Target: 33%	X
- Increase BOL eff.:	Req.: >30%	\checkmark	Target: 35%	×
- Reduction of weight:	Req.: <50 mg/cm ²	\checkmark	Target: <20 mg/cm ²	\checkmark
- mech. flexibile SCAs:	Req./Target.:	n.d.	R _{bend} = 50 mm	

Project overview - WBS and work share

Work Share:

AZUR:

- BOL: 4J adaption on 4G32 basis
- EOL: Buffer+isotype (for future UMM cell)
- Ultra-thin cells targeting 20 mg/cm²
- thin & flex. SCA's

ISE & TF2:

- BOL: 4J-IMM
- ISE: IMM epitaxial growth & Characteriz.
- TF2: ELO + IMM cell process & Characterz

CESI & TAU:

- EOL: 4J EOL using InGaNAs on Ge
- CESI: Ge junction (MOVPE)
- TAU: InGaNAs growth (MBE)
- CESI: 2J ,overgrowth' (MOVPE)

Umicore:

Innov. substrates for CESI, ISE & AZUR

Project overview – schedule / Gantt Chart

*) significant delays; mainly due to:

- COVID-19 pandemic measures; e.g. limited access to lab's, lockdowns
- Technical issues; e.g. reactor contamination

> Overview on Deliverables & HW:

Deliv	verables	Status	Deliv	verables	Status	Harc	lware	Status	Description
D1	TN1: Assessment of the different solar cell concepts	V Dec'2019	D7	DP2: Development plan for further optimization on investigated solar cell	together with FR	HW1	Component cells for irradiation testing		As a minimum 10 pcs per new semiconductor material
D2	DP1: Development Plan for technology building Blocks	Dec '2019	D8	concepts TDP: Technical data package (including all deliverable documents)		HW2	Solar cell prototypes	 Image: A start of the start of	As a minimum 50 pcs per concept selected:
D3	TN2: Achievement report on technology building blocks	Oct'2021	D9	FR: Final report (public)					
D4	TR1: Irradiation test report on selected		D10	report (public)					
	component cells	together with FR	D11	AB: Abstract (public)	\checkmark				
D5	TP1: Test plan for engineering model tests	together with FR	D12	TAS: Technology achievement summary	 Image: A start of the start of		Submitte	d / finish	ied
D6	TR2: Test report on		D13	FP: Final presentation	(🗸)		🧹 Ready; in	approva	l loop (not subm.)
	engineering model tests including the analysis of data	together with FR	D14	CCD: Contract closure Documentation			× pending		

AZUR – Part 1: Buffer for UMM EOL concept

Background on potential novel UMM cell concept:

Calculated max. efficiencies: **BOI: 34.4%** (EOL adapted to 1E15)

EOL: 32.7%

Final iteration on buffer for UMM EOL architecture incl. InGaAs isotype

→ EQE of isotype demonstrates that the needed bandgap shift is reached!

(EQE also is on high level, indicating good crystal quality)

Irradiation tests on 2x2 cm² isotype InGaAs cells on new buffer

- Three irradiation doses tested: 1E15, 3E15 & 1E16 e-/cm² (1 MeV)
- > Data analysis shows promising results
- But interpretation difficult:
 - Optically not filtered
 - Thick absorber
 - > No DBR

	Reference	Isotype on new buffer	
	isotype (4G32)	(high In-content)	
Eg [eV]	1.10	1.02	
V _{oc} BOL [mV]	738	658	
W _{oc} [mV]	362	362) A)
V _{oc} EOL [mV]	591	542	
Delta V _{OC,EOL} [mV]	147	116	
RF V _{oc} [%]	80.1	82.4) B)

*) Isotype on new buffer without optical filter; Ref. with opt. filter

- A) Woc: Demonstrates same level of InGaAs material quality as 4G32 reference!
- B) RF Voc: Indicates good (maybe better) radiation hardness for new InGaAs material

→ UMM buffer development for future UMM cell concept fully successful!

AZUR – Part 2: 4J-UMM with increased BOL eff.

TBBs – Part 2 // UMM 4J cell for incr. BOL performance (WP310)

Background on Cell Concept:

Adopted during project progress:

Top- & Mid-cell thicknesses

Band-gap tuning on top-cell material

Calculated max. efficiency:

BOL: 34.9%

Several iterations with full 4J iteration with MQW structures in J3

MQW's resulted in no improvement of the full 4J cell structure

(upper cells are even affected)

- MQW's seem to become highly challenging & cost intensive
- → Therefore MQW was not further pursued in Impro-33 and other options for BOL efficiency improvements were investigated

(Best 4J-UMM-MQW cell achieved 29.4%; 5x quantum wells)

X

Two further iterations focussing on current matching & band-gap tuning

- → Required BOL eff. of 30% met; max.: 32.4%
- → Targeted BOL eff. of 35% not reached

Note: 4G32 reference also below-avg. performance!

- → Estimated potential: up to 33.5%
- → Both approaches result in almost same BOL improvement

Irradiation tests to check feasibility for LEO missions (low doses)

- IE14 & 2.5E14 e⁻/cm² (1 MeV) tested
- Photon-annealing according to ECSS

Dosis: 1.0E14	Current matching	Band-gap tuning
RF (Isc)	99.5%	99.0%
RF (Voc)	97.5%	97.5%
RF (eta)	96.6%	96.0%
	∆eta ≉	≈ 0.6%

BOL current matched type seems more radiation tolerant than band-gap tuned cell

Dosis: 2.5E14	Current matching	Band-gap tuning
RF (Isc)	98.3%	97.7%
RF (Voc)	96.0%	96.0%
RF (eta)	94.0%	93.4%
	Aeta a	× 0.6%

AZUR – Part 3:

Low mass & mech. flexible cells and SCA's (Ge based)

Ge based **bare solar cells** (by Ge thinning)

- Using a special grinding technique resulted in very thin and low-weight 3G30 solar cells with comparable efficiency as non-thinned references
- The targeted area related mass of <u>20mg/cm²</u> is achieved!

η_{avg} = **29.0%** (AM0, 1367 W/m², 25°C)

As this grinding technique is compatible with AZUR's Ge recycling technology, at high production yield also **attractive costs** seem possible! TBBs – Part 3 // Low weight & flexible bare cells & SCA's (WP340)

Ge based **bare solar cells** (by Ge thinning)

- For the final prototype batch a new cell design with improved wafer utilization was implemented (wafer utilization: approx. 63%)
- > Four cells per wafer ($A_{Cell} = 27.6 \text{ cm}^2$)
- One cropped corner for std. Si-bypass diode allows very high PV ultilization on panel level (>95% possible)

TBBs – Part 3 // Low weight & flexible bare cells & SCA's (WP340)

Ge based **bare solar cells** (by Ge thinning)

With the final batch even ~19 mg/cm² was achieved on bare-cell level! (hero cell → 519 mg / 27.61 cm² = **18.8 mg/cm²**)

- Initially high cell bow was observed
- Finally a soulution was identified to significantly reduce the bow!

Irradiation test on Ge based bare solar cells

> BOL and EOL (2E15) characterization on ultra-thin bare cells:

	sample	lsc	Voc	Imp	Vmp	Pmp	FF	eta
	No.	[mA]	[V]	[mA]	[V]	[mW]	[-]	[%]
	#01	484	2.671	471	2.356	1,109	0.857	29.4
	#02	484	2.667	467	2.348	1,096	0.848	29.0
	#03	484	2.671	469	2.358	1,106	0.856	29.3
O	#04	485	2.671	470	2.360	1,109	0.857	29.4
	#05	483	2.674	469	2.362	1,107	0.857	29.3
	#06	484	2.675	470	2.364	1,110	0.857	29.4
	#07	483	2.670	469	2.363	1,107	0.858	29.3
	#08	484	2.673	470	2.367	1,112	0.860	29.5

Ŋ	sample	lsc	Voc	Imp	Vmp	Pmp	FF	eta
	No.	mA	V	mA	V	mW		%
2	#04	440	2.324	408	2.002	816	0.797	21.6
	#05	431	2.410	398	2.114	841	0.810	22.3
δ	#06	434	2.366	403	2.041	822	0.800	21.8
Ш	#08	432	2.414	400	2.122	850	0.815	22.5

➢ EOL efficiency approx. 1.9%_{abs.} lower than expected @2E15 for 3G30

TBBs – Part 3 // Low weight & flexible bare cells & SCA's (WP340)

Ge based bare solar cells (Ge thinning)

- EQE indicates that Ge cell still has excess current
- > Indeed a lower QE at >1600nm is observed \rightarrow rear mirror/pass. gets feasable!

> Difference mainly due to lower FF than expected (RF_{FF} : ~95% instead of ≥97%)

TBBs – Part 3 // Low weight & flexible bare cells & SCA's (WP350)

Flexible Solar Cell Assemblies (SCA's)

 \succ 50 µm cover glasses attached to 50 µm cells:

Sample	Total mass [mg]	mass/area [mg/cm²]	
1	1565	51.9	200 m 200
2	1533	50.8	
3	1531	50.7	before bend
4	1536	50.9	
5	1534	50.8	
6	1530	50.7	

 $R_{bend} = 50 \text{ mm}$ $\rightarrow Flex. SCA!$

after bending tests

- > Approx. 50 mg/cm² achieved on SCA level (!)
- Compared to std.-SCA (non-thinned cell + 100 µm glass: ~115 mg/cm²)
 → mass reduction of -56%

Technology Building Blocks

IMM technology; epitaxy & cell processing

TBBs – IMM epitaxy & cell technology – (Epitaxy / QCP)

Status before project (3J-IMM) and way forward to 4J-IMM

AZUR SPACE

2 laver ARC

J1: AlGaInP. Eg=1.96eV

TD1

J2: AlGaAs, Eg=1.59 eV

TD2

metamorphic Buffer

- > J2 limits the current but has high material quality (+0.5% power)
- J3 & J4 can be further optimized appox. +70 mV
- > Improved current matching \rightarrow +0.4 mA/cm²
- FF improvement (82.8%) of apprx. +4% possible (+4% power)

 η_{BOL}

potential

up to

~33.8%

(+2% power)

power)

(+3%)

ISE

An inv. 'Quick Cell Process' for inv. epi was developed at ISE **Fraunhofer**

- Target: Feedback within days for development on V_{OC} & E_q
- Reduced process effort: RS mtetal / ELO / FS metal (no ARC, no MESA)
- Example (inv. AllnGaP cell; J1 in 4j-IMM):

Summary: i-QCP successfully implemented

> But processing not stable enough yet \rightarrow further development needed

TBBs – IMM cell technology

Final Presentation 13-10-2022 (ESTEC/online)

Impro33 Improved multi-junction solar cells with up to 33% eff. at end of life *tf2 devices* contribution

ESTEC Contract No. 4000128123/19/NL/FE

© tf2 devices B.V.

Introduction

- Back reflector improvement
- IMM cell processing
- Ultra-thin IMM4J solar cells development
- Ultra-thin IMM4J engineering test samples
- Ultra-thin IMM4J solar cell tests

Back reflector improvement (1)

- Ultra-thin (IMM) solar cells can be equipped with efficient back reflector.
- Reflects photons that can then:
 - \circ E_{ph} > E_g: be absorbed (improving Jsc, Voc).
 - \circ $E_{ph} < E_{g}$: leave cell (reducing cell temperature).
- Studied several methods to improve performance of *tf2* back reflector:
 - Other reflector material.
 - Introducing dielectric intermediate layer.
 - Texturing back reflector.

Back reflector improvement (2) *tf2 devices*

Other reflector material

- Performed 'direct comparison' between standard reflector metal (A) and metal with better reflection (B) (in theory). ISE IMM1J test structure.
- Contrary to simulations no significant improvement observed, neither in reflectivity, IV or EQE.

Back reflector improvement (3) *tf2 devices*

Dielectric intermediate layer

- Performed 'direct comparison' between standard reflector and version with dielectric layer in between semiconductor and metal. ISE IMM1J test structure.
- Vias ensure electric contact.
- Dielectric on average 15 mV higher Voc, Jsc marginally higher. FF slightly reduced (via contact area only 55%).
- Further research should focus on:
 - Comparison different types of dielectrics.
 - Improving vias coverage and design.

© tf2 devices B.V.

Back reflector improvement (4)

Textured back contact

- Light reflected from a textured back reflector is scattered.
 - \circ Increases pathlength through absorber \rightarrow higher absorption probability.
- IMM epi-structures already display non-planar back sides, still worthwhile to test whether improvements can be made.
- Technique already demonstrated on GaAs solar cells with AlGaAs back contact epi-layers [1].
- IMM cells have AlGaInAs back contact layer.
- Successful texturing etchant found that increases roughness.
- More research required to incorporate into actual solar cells.

[1] van Eerden M., et al. IEEE 46th PVSC (2019) 2637.

© tf2 devices B.V.

IMM cell processing

• Wet mesa etch used to define solar cell boundaries and electrically separate neighboring solar cells.

 \checkmark

 $\sqrt{\sqrt{\sqrt{}}}$

 $\sqrt{\sqrt{\sqrt{}}}$

 $\checkmark\checkmark$

- Good mesa etch should:
 - Have moderate etch rate
 - Etch uniformly
 - Be reproducible
 - Not affect photoresist
 - Not affect the back contact
- Aim: improve existing *tf2* mesa etch procedures and tune towards IMM4J.
- Result: IMM1J mesa etch procedure with improved compromise between requirements.
- Further adapted to IMM4J structures. Positive effects illustrated by ultra-thin IMM4J solar cells' good performance, yield and reproducibility, typically uniform over 4-inch film.

Ultra-thin IMM4J solar cells (1)

• Arrays of BOL and EOL design 2x2 cm² IMM4J cells manufactured (ISE epi).

Ultra-thin IMM4J solar cells (1)

• Selection of IMM4J cells characterized by ISE CalLab.

- Efficiencies achieved (for designated area*, A_{des}):
 - BOL design: 30.0%.
 - EOL design: 28.6%.

* Designated area, $A_{des}(3.92 \text{ cm}^2)$:= aperture area (3.99 cm²) – busbar area (0.07 cm²). © tf2 devices B.V.

Ultra-thin IMM4J test samples (1) tf2 devices

- Manufacturing stage: processing of ultra-thin IMM4J solar cells was further refined.
 - Resulted in efficiency increases:
 - BOL design: 30.0% designated area \rightarrow 30.0% full area.
 - EOL design: 28.6% designated area \rightarrow 28.9% full area.
- Further efficiency improvement achieved with new ISE IMM4J epi-wafer batches (BOL).

© tf2 devices B.V.

- 60 pc 2x2 cm² ultra-thin IMM4J solar cells manufactured.
 - \circ >40 pc with η > 30%, acc. to *tf2* indicative characterization.
 - Cell performance uniform over 4-inch films.

Ultra-thin IMM4J test samples (2) tf2 devices

- 15 IMM4J cells characterized at ISE CalLab.
- Efficiency 30.9% (full area) achieved.
- Together with low mass of the ultra-thin cells
 - Required performances: all achieved.
 - Target performances: several achieved.

IMM4J cell (BOL)	η _{BOL} (full area) (%)	specific power (W/g)	areal mass density (mg/cm ²)
Target performance (SOW)	>35.0	>2.39 🗸	<20.0 🗸
Required performance (SOW)	>30.0 🗸	>0.82 🗸	<50.0 🗸
Achieved (C5118-5-10)	30.9	3.00	14.1
			- 1. et

Requires IMM5J structure (Realistic potential IMM4J (ISE): 33.8%)

Ultra-thin IMM4J test samples (3) tf2 devices

- Also fabricated larger area (20.5 cm²) IMM4J cell.
- Performance similar to best 2x2 cm² cell.
- Demonstrates feasibility of large area IMM4J cells.

Ultra-thin IMM4J solar cell tests

- Temperature coefficient measurements (ISE).
 - IMM4J cell performance decreases (somewhat) less with increasing temperature compared to other 4-junction cell concepts.

	dJsc/dT	dVoc/dT	dFF/dT	dEff/dT
		(1117/ C)		
IMM4J C5118-5-10	0.0038	-8.4	-0.038	-0.067
AZUR 4G32C	0.0175	-8.4	-0.026	-0.085
SolAero Z4J	0.0055	-9.0	-0.048	-0.071

- Low irradiation tests (1.0 and 2.5 E14 1 MeV e⁻/cm²) (AZUR).
 - $_{\odot}~$ Results distorted due to cell mishandling ightarrow temporary support development

desirable.

© tf2 devices B.V.

Summary

- Several back reflector improvements tested, some promising.
- IMM cell processing improved.
- >60 pc 2x2 cm² ultra-thin IMM4J solar cells manufactured.
- 30.9% efficiency demonstrated for ultra-thin IMM4J solar cell.
 - Specific power: 3.00 W/g.
 - Areal mass density: 14.1 mg/cm².
- All required and even several target performances achieved.
- Large area feasibility IMM4J cells demonstrated.
- Development of temporary support desirable.

Technology Building Blocks CESI Shaping a Better Energy Future & Tampere University

InGaNAs cell technology; MBE & MOVPE

TBBs – 4J cells using InGaNAs cell technology

Shaping a Better Energy Future

Predicted electrical performances

	BOL	EOL		BOL
(mA/cm²)	12.42	11.59	Jsc (mA/cm ²)	16.08
oc (V)	4.464	4.16	Voc (V)	3.379
:	0.87	0.86	FF	0.87
ff. AM0@25°C	35.3%	30.2%	Eff. AM0@25°C	34.6%

- > AllnGaP isotypes showed very low performance compared to previous samples
- > After deep investigation in May 2020 an with the hydrogen purifier was identified
- Due to the COVID-19 pandemic & difficulties in supplying chains, the purifier was replaced only in March 2022. <u>Therefore the BOL concept needed to be set on hold</u>.

Shaping a Better Energy Future

EOL concept Growth Isc[A] Jsc [mA/cm²] Voc[V] F.F. Eff.[%] InGaP ($E_n = 1.85 \text{ eV}$) R6985 0.431 16.264 2.302 0.82 22.48 Theor. 0.427 16.100 2.508 0.84 24.86 $InGaAs (E_{1} = 1.38 \text{ eV})$. Growth Isc[A] Jsc [mA/cm²] Voc[V] Eff.[%] F.F. 16.401 R6978 0.435 0.964 0.81 9.38 InGaNAs ($E_n = 1 \text{ eV}$) 1.047 0.435 16.400 0.84 10.55 Theor. Ge ($E_n = 0.67 \text{ eV}$)

- Experimental performance of InGaP and InGaAs junctions in line with expectations
- But InGaNAs cells constantly limited cell performance (current)
- Interim InGaP / InGaNAs cell:

Growth ID	Jsc[mA/cm ²]		Voc[V]	Pmax[W]	F.F.	Eff.[%]
R7072		8.388	3.122	0.077	0.74	14.05

In a next step 2 optimization options were tested:

- 1. Lowering the thickness of the layer stack on top of the InGaNAs cell
- 2. Reducing the bandgap

➤ Full 4J cells:

Туре	Jsc[mA/cm ²]	Voc[V]	Pmax[W]	FF	Eff.[%]
Reduced MBE cap and MOCVD nucleation layer (A)	9.8	3.058	0.084	0.70	15.34
Reduced MBE cap and MOCVD nucleation layer (B)	9.1	3.042	0.072	0.65	13.15
Reduced InGaNAs Eg, MBE cap and MOCVD nucleation layer	<u>12.8</u>	2.968	0.107	0.71	19.63

Therefore the focus was set on the InGaNAs development to reach a target current density of 16.1 mA/cm² for enabling a feasible full 4J cell structure

In a final step InGaNAs isotypes on passive Ge wafers with & without a <u>DBR</u> were tested:

InGaNAs structure	DBR	MOCVD Run	Jsc [mA/cm ²]	Voc[V]	F.F.	Eff.[%]
As Ref. but thicker	Yes	#1	11.8	0.527	0.52	2.37
As Ref. but with narrower Eg	No	#1	14.8	0.409	0.63	2.81
As Ref. but thicker	No	#1	11.3	0.507	0.63	2.64
As Ref. but with narrower Eg	Yes	#1	11.4	0.481	0.51	2.02
As Ref. but with narrower Eg	Yes	#2	15.9	0.460	0.61	3.26
As Ref. but with narrower Eg	No	#2	13.9	0.399	0.63	2.57

With a slightly reduced bandgap and a DBR optimized for the InGaNAs the target current density is almost achieved! (15.9 of 16.1 mA/cm² = 99%)

	Cell	Status	Jsc [mA/cm ²]	Voc[V]	FF	Eff.[%]
FOL concept	#A	BOL	16.41	2.297	0.84	22.5
Loc concept	#A	EOL	14.82	2.207	0.84	19.8
$\ln \operatorname{CaP}(E) = 1.85 \text{ aVA}$		RF	0.903	0.961	0.99	0.878
$\operatorname{Hidar}\left(L_{g}-1.03\mathrm{eV}\right)$	#B	BOL	16.41	2.296	0.83	22.5
	#B	EOL	14.82	2.211	0.82	19.8
InGaAs ($E_g = 1.38 \text{ eV}$)		RF	0.903	0.963	0.99	0.882
InGaNAs (E _g = 1 eV)	Cell	Status	Jsc [mA/cm ²]	Voc[V]	FF	Eff.[%]
InGaNAs (E _g = 1 eV)	Cell #C	Status BOL	Jsc [mA/cm ²] 15.78	Voc[V] 0.408	FF 0.57	Eff.[%] 2.67
InGaNAs ($E_g = 1 \text{ eV}$) Ge ($E_g = 0.67 \text{ eV}$)	Cell #C #C	Status BOL EOL	Jsc [mA/cm ²] 15.78 12.21	Voc[V] 0.408 0.383	FF 0.57 0.54	Eff.[%] 2.67 1.83
InGaNAs ($E_g = 1 \text{ eV}$) Ge ($E_g = 0.67 \text{ eV}$)	Cell #C #C	Status BOL EOL RF	Jsc [mA/cm ²] 15.78 12.21 0.778	Voc[V] 0.408 0.383 0.939	FF 0.57 0.54 0.95	Eff.[%] 2.67 1.83 0.685
InGaNAs (E _g = 1 eV) Ge (E _g = 0.67 eV)	Cell #C #C #D	Status BOL EOL RF BOL	Jsc [mA/cm ²] 15.78 12.21 0.778 15.82	Voc[V] 0.408 0.383 0.939 0.454	FF 0.57 0.54 0.95 0.58	Eff.[%] 2.67 1.83 0.685 3.08
InGaNAs (E _g = 1 eV) Ge (E _g = 0.67 eV)	Cell #C #C #D	Status BOL EOL RF BOL EOL	Jsc [mA/cm ²] 15.78 12.21 0.778 15.82 12.87	Voc[V] 0.408 0.383 0.939 0.454 0.427	FF 0.57 0.54 0.95 0.58 0.57	Eff.[%] 2.67 1.83 0.685 3.08 2.28

> Thus further development is needed to increase radiation tolerance of InGaNAs

Shaping a Better Energy Future

Tampere University

ORC InGaNAs Solar Cell Activities in ESA IMPRO33

Arto Aho

Optoelectronics Research Centre, Tampere University, Finland arto.aho@tuni.fi

Core competence

- Fabrication approach: MBE-grown dilute nitride based Upright Lattice Matched (ULM) multi-junction solar cells (MJSC).

Key benefits: maximize the conversion efficiency by spectral matching using advanced materials

Best suited for space and concentrated photovoltaics

Highly Efficient use of materials, up to 75% savings, provide better volumetric efficiency, sustainability and higher effective payloads

EU PVSEC PAPER 👌 Open Access 🛞 🚯

GalnNAsSb materials

- **Proprietary** ULM MJSC MBE processes
- Simple wafer level processing
- Sustainable : minimal structural thickness (down to ¼ of current SoA)
- Ultra-high efficiency
- **Direct** exploitation to standard space systems to enhance the efficiency

- **Proprietary** ULM MJSC MBE processes
- Simple wafer level processing
 Sustainable : minimal structural thickness
 (down to ¼ of current SoA)
- Ultra-high efficiency
- **Direct** exploitation to standard space systems to enhance the efficiency

- Proprietary ULM MJSC MBE processes
- Simple wafer level processing
- Sustainable : minimal structural thickness (down to ¼ of current SoA)
- Ultra-high efficiency
- **Direct** exploitation to standard space systems to enhance the efficiency

ULM MISCs 3J and 4J on GaAs

Simple and thin design

Flexible structures

Simple wafer level

fabrication

 \bigcirc

Cross-sectional TEM

Two development lines

4J+ MJSCs on Ge

Scalable MBE-MOCVD processes (in development)

NREL 6J 47.1% SC bot SCs

> A. Aho et al., "Dilute nitride triple junction solar cells for space applications: Progress towards highest AMO efficiency" Prog. Photovoltaics Res. Appl., 2018, https://doi.org/10.1002/pip.3011

- Proprietary ULM MJSC MBE processes
- Simple wafer level processing
- Sustainable : minimal structural thickness (down to ¼ of current SoA)
- Ultra-high efficiency
- **Direct** exploitation to standard space systems to enhance the efficiency

ORC

https://projects.tuni.fi/ametist/

IMPRO33 – ESA Project 2019 – 2022

1. Option 1: 4J on p-Ge

- a. Two step strategy MBE + MOCVD (**Preferred**)
 - a. PoC Nucleation studies by MBE
- b. Three step strategy –MOCVD + MBE + MOCVD (Realistic approach in short term)
- 2. Option 2: 4J on p-GaAs

(MBE + MOCVD (Italy))

Our previous record is 30.8% for 3J

PHOTOVOLTAICS

RESEARCH ARTICLE 🛛 🔂 Full Access

Dilute nitride triple junction solar cells for space applications: Progress towards highest AM0 efficiency

rto Aho 🗙, Riku Isoaho, Antti Tukiainen, Gabriele Gori, Roberta Campesato, Mircea Guina

First published: 10 April 2018 | https://doi.org/10.1002/pip.3011 | Citations: 1

IMPRO33 – ESA Project 2019 – 2022

- 1. Option 1: 4J on p-Ge
 - a. Two step strategy MBE + MOCVD (Preferred)
 - b. Three step strategy –MOCVD + MBE + MOCVD (Realistic approach in short term)
- 2. Option 2: 4J on p-GaAs (cancelled due to spare part issues)

(MBE + MOCVD (Italy))

Dilute nitride triple junction solar cells for space applications: Progress towards highest AM0 efficiency

rto Aho 💌, Riku Isoaho, Antti Tukiainen, Gabriele Gori, Roberta Campesato, Mircea Guina

First published: 10 April 2018 | https://doi.org/10.1002/pip.3011 | Citations: 1

Why MBE and/or MOCVD?

Fig. 2: Basic principle of the combined MBE-MOCVD technique.

Table 1. Performance comparison table for MOCVD and MBE.

	Process maturity level				
Process step	MOCVD	MBE			
1. n-Ge emitter nucleation (Note: Needed only for the Concept 1)	Well established / industry standard	Novel , some scientific reports are availa- ble, but best to our knowledge there is no functional III-V/Ge SC demonstrations.			
1. InGaNAs SC and interfaces	Widely studied (NREL / Fraunhofer), but not applied due to process limitations and device quality. Expensive precursors and low J _{sc} values.	Fundamentally proven and formerly com- mercially applied for fully MBE grown 3J structures. High performance demon- strated with MBE-MOCVD grown GaInP/GaAs/InGaNAs (ORC + CESI)			
2. <u>Ga(</u> In)As SC and interfaces	Well established / industry standard, high speed.	Well established (optional method)			
3. GaInP SC and interfaces	Well established / industry standard	Well established (optional method)			

Direct III-V nucleation on p-Ge by MBE

APD "pyramids" visible for the samples that were unoptimized. For the optimized buffers, SEM and TEM investigations showed similar III-V/Ge interface characteristics for MBE and MOCVD references.

"We have planned to conduct more measurement, such as cathode luminescence for analysis of the APDs."

MBE nucleation: Junction profile and PV characteristics

Diffused Ge junction by MBE

Summary: It works, but it is not practically usable <u>yet</u>.

Concept 1: GaInP/InGaAs/InGaNAs/Ge 4Js

IMPRO33 PoC GaInP/InGaAs/InGaNAs/Ge 4J

EQE and analysis

→ EQE/IQE measurements for GaInP, InGaNAs and Ge junctions. Ga(In)As biasing is challenging → EQE modeled for $\overset{\square}{\odot}$ InGaAs.

 \rightarrow J_{sc}(EQE) from **11** to **14** mA/cm² by InGaNAs quality optimization (Simulations). *Photons are absorbed but are not collected*.

 \rightarrow ARC refleflection losses @ IR are significant: InGaNAs (0.5 mA/cm²) and Ge (3 mA/cm²)

\rightarrow Maximize InGaNAs J_{sc}

→ Optimal InGaNAs, optimal Eg and thicknesses → Novel ARC for 4J might provide significantly better efficiencies Novel ARC has been PoC tested on TAU 4J (MBE grown), significant J_{sc} boost for long IR SCs

J_{sc} evolution during 2021(Q3/Q4) and 2022 (Q1/Q2) for the 4J on p-Ge concept

Ge (Eg = 0.67 eV)

IQE for the growht optimized SCs

The (successful) MBE Growth iterations

Background doping

- By optimizing the background doping, IQE max varies from 45 to 90%

Further E_{g} tuning down to 1.03 eV:

- Lessons were learned from the optimization and further reduction of Eg was made by 60 meV. E_g is now 1.03 eV and the performance is good for an InGaNAs SC.

Tampereen yliopisto Tampere University

The Last iterations w/ structural changes: more E_g tuning and DBR incoporation

<u>E_g (1.09 eV)</u>:

- The effect of thicker junction + 0.5 mA/cm²
- **DBR** effect: +0.7 mA/cm²
 - Est. total enhancement pot recorded: 1.2 mA/cm²

More E_g tuning (1.03 eV):

- Minus 60 meV Eg: +3.7 mA/cm²
- Minus 60 meV Eg + DBR: +3.7+0.7 mA/cm²

CE0116: Eg = 1.03 eV, w/o DBR: 14.7 mA/cm² CE0117: Eg = 1.03 eV, with DBR: 15.4 mA/cm² -11.0 mA/cm²+3.7 mA/cm²+0.7 mA/cm² = 15.4 mA/cm²

Simulation for CE0117 structure: 16.0 mA/cm2

The Last iterations, more E_q tuning and DBR in

<u>E_g (1.09 eV)</u>:

- The effect of thicker junction + 0.5 mA/cm²
- DBR effect: +0.7 mA/cm²
 - Est. total enhancement pot recorded: 1.2 mA/cm²

More E_g tuning (1.03 eV):

- Minus 60 meV Eg: +3.7 mA/cm²
- Minus 60 meV Eg + DBR: +3.7+0.7 mA/cm²

CE0116: Eg = 1.03 eV, w/o DBR: 14.7 mA/cm² CE0117: Eg = 1.03 eV, with DBR: 15.4 mA/cm² $-11.0 \text{ mA/cm}^{2}+3.7 \text{ mA/cm}^{2}+0.7 \text{ mA/cm}^{2} = 15.4 \text{ mA/cm}^{2}$

Simulation for CE0117 structure: 16.0 mA/cm2

Summary

LM InGaNAs 4J MBE-MOCVD architectures were studied

- ✓ PoC diffused Ge junctions demonstrated by MBE
- ✓ PoC GaInP/InGaAs/InGaNAs/Ge were fabricated
- ✓ Over 90% IQE achieved, similar than for 3J concept on GaAs
- ✓ Further iterations would result in better BOL and EOL
- ✓ Based on these observations, we claim that high current (/ efficiency)
 GaInP/InGaAs/InGaNAs/Ge can be made using MBE-MOCVD

InGaP (E _g = 1.85 eV)
InGaAs (Eg = 1.38 eV)
InGaNAs (E _g = 1 eV)
Ge (E _g = 0.67 eV)

MBE + MOCVD

Thank you!

projects.tuni.fi/ametist Arto Aho @ Google Scholar arto.aho@tuni.fi

MOKOMA

European Research Council Established by the European Commission

Wafer types and 3J solar cells made at CESI, ISE & AZUR

- Three different types of innovative Ge substrates have been provided by Umicore to CESI, AZUR and ISE
 - → Type1: 'Basic' / Type2: 'Mid-range' / Type3: 'High-range'
- > All partners applied MOVPE of 3J-LM (SoA) space cell structures on them
- Finally std. space solar cell manufacturing was performed and AM0 measurements were performed at each partner directly comparing <u>Inno. Ge substrates</u> vs. <u>Ref. Ge substrates</u>

Results at AZUR SPACE ('3G30'):

- > All types after epitaxy optically show significant issues (rough, wavy)
- \succ 'Basic' type → 100% outage (eta: ~20%)
- On 'Mid-range' wafers up to 28.3% eff. is reached (approx. 1.5 – 3.5%_{abs.} less than ref. & high deviations)
- On 'High-range' wafers good reproducibility achieved, but on relatively low level (η_{avg.}: ~26%; approx. 3%_{abs.} less than for Ref.)

Results at CESI ('CTJ30'):

- > All types after epitaxy optically show significant optical issues (rough, wavy)
- > Basic type shows significant losses in V_{oc} , FF and efficiency \rightarrow outage (also)
- ➢ But 'Mid-range' & 'High-range' wafers achieve highly promising electrical results;
 → 'Mid-range': approx. -0.7%_{rel.} / 'High-range': approx. -0.3%_{rel.}
TBBs – Part 6 // Innovative Ge substrates (WP360 / WP420)

Results at FhG ISE (DHS + 3J structures):

- RMS measurements locally (2x2µm²) for all types <1nm and similar!; On 10x10µm² area: 4 .. 2 nm -> 'Basic' to 'High-range'; Ref. <1nm</p>
- Cathodoluminescence on DHS shows <u>TDD</u> for ,Basic' type is clearly increased, but for other types <1E5 cm⁻² and almost on same level as reference (<4.5E4 cm⁻²)
- ECCI confirms 'waviness' but low defect rates on surface after epi on inno. Ge substrates
- > On 'Mid-range' η =26.7% reached ($\Delta \eta_{\text{Ref.}}$: -1.5%_{abs.})

AM0 efficiencies Low-weight & mech. flexibility

AM0 solar cell efficiencies:

- Max. AM0 BOL efficiency achieved by 4J-UMM cell (32.4%)
- ➢ 4J-IMM developed and 30.9% achieved (potential of approx. 33.8%)
 - → Next step towards 5J-IMM in reach (next major development step)
- InGaNAs after issues on ,good level again'; unfortunately no optimization of sub-cells for full 4J structure was possible; but J_{SC,InGaNAs} target almost reached (15.9 mA/cm²)

Specific cell mass/area:

- ➤ Extremely low area-related mass achieved by IMM (14.1 mg/cm²) → >2.7 kW/kg
- Target also achieved with thinned 3G30 bare cell (19.1 mg/cm²)
- Thin & mech. Flexible SCA's manufactured successfully (R_{bend} = 50 mm)

Innovative Ge substrates

➢ Highly promising results for 3J-LM space cells achieved (especially at CESI)

Thanks for your kind attention!

... and stay healthy!

