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2. CONTEXT 

Future spacecraft (S/C) missions will require the ability to adapt to (at least partially) unknown 
conditions and have the ability to perform control reconfiguration. Some examples are In-Orbit Servicing 
(IOS) and Entry, Descent and precise Landing (EDL) missions.  

Among all the technical challenges that characterize EDL missions, it is highlighted that they may 
experience significant changes and uncertainty in aerodynamic coefficients, actuator characteristics and 
initial conditions. Therefore, the ability to autonomously adapt to variations in the dynamics and to re-
plan the trajectory under the presence of changes to the descent conditions, can play a major role in 
ensuring mission success. 

Similarly, in in-orbit servicing and useful life extension missions, there is the need to control the 
attitude of the composite vehicle with the same performance requirements that apply to the target S/C 

during its nominal operations.  

One of the current control design philosophies consists in employing robust control techniques, such as 
structured H∞, to synthetize a limited set of controllers that can robustly stabilize the whole range of 
potential S/C. This solution has the advantage of minimizing the synthesis effort but also has one major 
drawback, which is the well-known paradigm of automatic control: the price to be paid to ensure 
robustness is that of performance, and vice-versa. 

Directly related to the need for adaption is the ability to recognize performance degradation during 
the mission time, which can be done by monitoring relevant performance indexes. Once the performance 
degradation reaches a pre-defined threshold, the parameters of the system may need to be re-evaluated, 
and the controller re-configured. 

For model-based method unable to incorporate past experience from data, the behaviour of the dynamics 
under different situations has to be explicitly modelled, which rapidly increases the complexity of the model. 

Modelling all possible situations is often an unfeasible task, and thus the use of AI/ML1 techniques that 

provide the means to introduce knowledge from data have gained increased popularity and offer 
key benefits. Such techniques promise to provide some advantages over traditional methods regarding 
the ability to explicitly take into account nonlinear environments, the robustness to unmodeled 
events [NBM2017], the support to fast development, and the superior performance levels. 

Moreover, the increasingly more powerful processing units (HW), together with enhanced and less 
computationally intensive AI algorithms, make it possible to explore new AI applications. Given that 
results in this direction indicated the plausibility of implementing onboard spacecraft these algorithms, the 

use of AI within the avionics system is within reach and this is a remarkable target to be pursued2. The use 
of AI in the space domain has been applied to both upstream applications ([STB2018], [S2003]), and for 
downstream ones ([SZS2013], [MKD2015], [DLB2018]), with ESA also promoting AI for space in activities 
such as AI4EO. 

Nevertheless, a significant number of challenges still exist in order to reach the goal of fully exploiting AI 
for space applications. While challenges such as the computational burden of AI algorithms are fairly well 

addressed, both from the HW and the SW sides, solutions for the validation and explainability of AI 
implementations that can be conveyed to critical (including) space applications has only recently started 
to appear [GSH2017], [BDG2005], [CM2014], [ADD2020]. 

These challenges are also motivated by the gap between the performance of AI and the theoretical 
understanding and modelling of the behaviour of those algorithms. Moreover, due to the intrinsic 
nonlinear structure of the AI algorithms, the generalization of the learned features to different scenarios is 
not straightforward. As a consequence, Monte-Carlo (MC) simulations per se are not guaranteed to cover 

the whole space of potential configurations of parameters, as minor changes in the inputs of the AI can 
lead to completely different results in the output [SZS2013], while probability distribution functions are 
typically unknown for these problems. 

 
1 Throughout this report, the terms AI and ML are used interchangeably. 
2 Notably, DME is the prime contractor, and participates in, the ESA FSSCAT mission, technically lead by the UPC, that 
launched in the summer of 2020, and performed the 1st demonstration of on-board AI using a VPU. DME also led the 
application of the same AI HW to implement AI for GNC in the ESA AIVIONIC activity. 
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When it comes to the Space sector, this challenge is 
further amplified by the lack of existing large data sets that 
could be used for training and validation purposes. In 

applications such as EDL, this is further exacerbated by the 
need to fly-right in the first flight, where no incremental 
validation is possible. In addition, there are also 
challenges coming from the software side, such as 
predictability, clear/understandable behaviour, memory and 
CPU usages, compatibility with real-time constraints, etc. 

Hence, validation limitations need to be considered at all levels, especially because GNC has an 
impact on the S/C itself and possibly on others. 

The structure of the AI4GNC consortium and the associated work breakdown structure are represented in 
Figure 2-1 and Figure 2-2, respectively. 

 

Figure 2-2 - AI4GNC Work Breakdown Structure (WBS) 

Figure 2-1 - AI4GNC consortium structure 
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3. OBJECTIVES 

The overall objectives of AI4GNC are as follows: 

Objective 1: Implement ESA-i4GNC, an AI-based 
GNC E2E design & analysis (D&A) framework for 

layered architectures 

The first goal of AI4GNC is to develop the 
Enhanced Safe Artificial-intelligence 
Guidance, Navigation, and Control (ESA-
i4GNC) tool, which is an AI-based GNC E2E D&A 

framework for layered architectures. This tool is 
able to cover modelling, GNC design, V&V, training 

of ML algorithms, requirements specification, etc., 
being a key building block for, and enabler of, 
Model-Based Systems Engineering (MBSE). The 
tool has been built on well-established design and 
validation paradigms and frameworks, exploiting 
optimization approaches with solid theoretical 

backgrounds, in order to ensure the robustness of 
complex, multi-layered GNC systems. 

Objective 2: Exploit recent advances in control 
and AI 

There are clear advantages and interest in the 
community in integrating classical methods of 
automatic control with methods of AI for complex 

objects and processes [VKK2017]. The use of AI 
can be introduced to work in conjunction with the 
control systems, to expand the capacity of control systems when there exists a failure or a significant 
mismatch of the actual dynamics to the model used for design, when there is no availability of input data, 
or where quantitative models show worse performance compared to AI-based solutions. 

Objective 3: Perform trade-off analyses 

A detailed literature review and thorough comparisons between the different methods, theoretical 

backgrounds, optimization approaches, and AI/ML techniques, has been performed within AI4GNC. 
Performance metrics such trade-offs were defined, being drivers for these metrics the computational effort, 
the availability of dedicated HW architectures, the convergence rate, the usefulness (sub-optimal) of the 
results at intermediate iterations, and the ability to explain the observed results.  

Objective 4: Evaluate the proposed AI-based GNC design and V&V tool in a representative benchmark 

One of the key goals of AI4GNC has been to critically analyze the benefits and drawbacks of using 

ML techniques in the design, analysis, and incorporation (being one additional element) of GNC systems. 
To do so, one benchmark – a reusable launch vehicle - has been proposed in AI4GNC. E2E GNC design and 
analyses have been performed for this benchmark, by using the ESA-i4GNC tool. This allowed 
demonstrating the applicability of the tool and support the definition of a roadmap for future progress in 
the field. In order to complement this analysis, and to support a more agile development process, 
case studies, derived from the benchmark, were proposed. These case studies aimed to allow the 
assessment of specific elements of the ML-assisted GNC solutions to be implemented, and can be 

interpreted as preparatory steps or early iterations for the benchmark GNC design. 

Objective 1: Implement ESA-i4GNC, an AI-based 
GNC E2E design & analysis framework for 
layered architectures

▪ Cover the GNC system modeling, design and V&V process

▪ Supported by efficient optimization algorithms and formal 
mathematical techniques

▪ Ensuring robustness, performance, convergence, and explainable 
results

Objective 2: Exploit recent advances in control 
and AI

•Revisit the theory and techniques developed in the last two 
decades, including, but not limited to, fields such as IQCs, 
robust control, adaptive control, safe and robust 
reinforcement learning, and system identification

▪ Increase autonomy through onboard intelligence

Objective 3: Perform Trade-off analyses

▪ Different concepts to be considered, including full dedicated 
design architectures and augmentation strategies for 
already-existing control architectures

▪ Trade-off the offline design effort with the online real-time 
implementation requirements

Objective 4: Evaluate the proposed AI-based 
GNC design and V&V tool in a representative 
benchmark

•Define the criteria to sleect the benchmark

•Derive study cases and apply the tool to those

•Apply the tool to the benchmark
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4. RESULTS 

An overview of the main tasks within the AI4GNC project, including the trade-offs between several AI- and 
non-AI-based techniques for GNC, learning approaches, Machine Learning (ML) libraries and tools, and 
modelling techniques, is presented next. The selected benchmark to showcase the techniques, libraries and 

tools is presented, together with the ESA-i4GNC framework. Finally, the main results obtained are 
presented and discussed, and conclusions are drawn. 

4.1. Trade-offs between techniques 

This topic was subdivided into several tasks related to data-driven, model-based, modelling and learning 

methods, and libraries and tools that can be used for this purpose. It is remarked that the trade-offs 

presented in this section are a result of an extensive state-of-the-art literature review presented in [D1].  

4.1.1. Data-driven vs. Model-based approaches 

A qualitative trade-off between the techniques presented in the literature review on safe, robust, adaptive 
control and RL methods has been performed in AI4GNC. The control algorithms considered for comparison 
are as follows: Adaptive ADP/RL control [LV2009],Youla-Kucera RL control [H2021], Deep RL-based control 
[LHP2016], Switched NNs [TFS2015], [CTS2020], Data-driven MPC [BKM2021], and System Level 

Synthesis [ADL2019].  

Overall, it was concluded that model-based techniques are, in general, easier to be verified and validated, 
but techniques like deep-RL can lead to remarkable levels of performance and flexibility (i.e., ability to 
address different types of GNC problems and different models), although posing challenges on the design 
and verification stages. Those techniques were, therefore, further explored and developed in this project. 

4.1.2. Learning approaches 

A quantitative trade-off between the most relevant ML methods, focusing especially on methods with GNC 
applications, was performed. The trade-off was based on the following GNC relevant criteria: explainability 

– 20%, onboard implementability – 10%, training datasets needs – 20%, performance – 30% and 
generalizability – 20%. In a scale from 1 to 5, the methods with the highest score in terms of the criteria 
described above are based upon NNs, due to their capability to generalize, while entailing high levels of 
performance in most nominal scenarios, within the supervised learning methods. Regarding RL methods, 
both DQN and DDPG scored 3.6, although DDPG is preferable for the majority of space-related problems, 
due to its ability to work with continuous-time action and observation spaces. 

4.1.3. ML Toolboxes 

For supervised and unsupervised learning, the comparison criteria considered are: algorithms available, 

documentation, support for embedded devices, and integration with MATLAB. The comparison between the 
most used tools was made, and it can be concluded that the tool with the highest score is the TensorFlow 

library. This library was developed and is maintained by Google and provides support for Deep Neural 
Networks, Convolutional Neural Networks and Recurrent Neural Networks. 

For reinforcement learning, the criteria considered were: algorithms available, documentation, code 
readability, and supported environments. From the analysis performed, it is possible to conclude that the 

tools with the highest score are the MATLAB RL Toolbox and RL Coach. The main disadvantage of the 
MATLAB RL Toolbox is that it is not open-source, when compared to RL Coach, this being the reason why 
RL Coach was selected to implement the RL methods for one of the case studies described below. Since 
the RL coach framework is implemented in Python, a from/to connection had to be established between 
the MATLAB and Python environments. This has been done by implementing a TCP connection between the 
ESA-i4GNC tool and Python which allows (in case study #8, for example) to exchange data needed for NN 
training in a reasonably fast way. 

4.1.4. Modeling & Learning approaches 

The goal of this section is to briefly present two different approaches at opposite ends of the guarantee 

spectrum of learning-based control: IQC and learning-based MPC. 
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4.1.4.1. Integral Quadratic Constraints (IQCs) 

The Integral Quadratic Constraints (IQC) framework provides methods for obtaining global guarantees of 
closed-loop performance for systems that include nonlinear elements. In particular, this is relevant for 
systems with NN as one of its nonlinear parts, that can act as, for instance, the controller or to model the 

nonlinear dynamics of a subsystem. The IQC framework requires the characterization of any nonlinearity 
or uncertainty using a quadratic form, and also the characterization of a target guarantee, e.g., closed-
loop stability, as a quadratic form. From those quadratic forms, an SDP problem can be obtained and, if 
the SDP problem has a solution, then the solution is a verification that a guarantee exists for the system. 

4.1.4.2. Learning-Based MPC 

Learning-Based Model Predictive Control (LBMPC) provides a methodical formulation of the incorporation 
of statistical and machine learning techniques into the control design process. The underlying methodology 

behind this method is: (1) use a constant LTI model to predict the system’s response alongside the 
robustified constraints which guarantees robust constraint satisfaction; (2) use a separate model which 
adaptively approximates the nonlinear dynamics as new data becomes available.  

The comparison between the two approaches is based on the following criteria: Flexibility (10%), Easy 
design (10%) Online computational requirements (15%), Performance (25%), Robustness and verifiability 
(25%), Explainability (10%) and Mission criteria maturity level (5%). The IQC-based method of 
guaranteeing closed-loop stability is currently intended for off-line use, and hence received the highest 

score with respect to online computational requirements. It is also superior in terms of robustness and 
verifiability because of its hard robust performance and stability guarantees. Learning-based MPC, on the 
other hand, can currently handle a much wider range of problems and hence receives the higher 
performance and flexibility scores. Hence, as final result, the overall score is slightly higher for LBMPC. 
However, both methods contain a mix of data-driven and model-based approaches, something that will 
probably be appropriate for future space applications. 

4.2. ESA-i4GNC overview 

This tool was designed such that a general 
GNC architecture could be implemented in a 
systematic and modular manner, while 

allowing the implementation of diverse 
algorithms and the satisfaction of predefined 
requirements, supporting and managing 
models with different levels of 
fidelity/complexity. To fulfil these goals, the 
an Object-Oriented Programming (OOP) 
approach was considered, that allows 

different levels of abstraction and also the 
definition of their properties and methods. 

In Figure 4-1, the yellow boxes represent 

the main OOP classes that, depending on the 
algorithms to be implemented (blue boxes), 
are instantiated to create objects. In 
addition to the implementation of the main 

classes, there are other libraries and 
functionalities of the tool that further generalize the tool, such as: CVX, MPT 3.0, S-TaLiRo Runtime 
Verification and Falsification, M2HTML, esai4gnc_install, esai4gnc_clean, autoDoc_ESAi4GNC, and profiler. 

4.3. Benchmark selection 

The benchmark selected within the AI4GNC project is the RETALT-1 Reusable Launch Vehicle (RLV) from 
the H2020 RETALT project. In terms of actuators, the launcher is equipped with: Thrust Vector Control 
(TVC), Reaction Control System (RCS), and Aerodynamics fins. For the purpose of this project, the flight 
phase of interest is the landing, that involve only the first stage of the launcher after the separation from 
the second stage. 

Figure 4-1 - Proposed GNC Framework architecture 
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The state model of the burn landing problem is defined by the following equation in the state space form 
�̇� = 𝑓 (𝑥(𝑡), 𝑢(𝑡)), where 𝑥(𝑡) = [ 𝑚(𝑡), 𝑝𝑈𝐸𝑁(𝑡), 𝑣𝑈𝐸𝑁(𝑡), 𝑞(𝑡), 𝜔𝐵(𝑡)] is the state vector composed of the mass of 

the rocket, the rocket position and velocity in UEN frame (Up-East-North), the attitude of the rocket in 

quaternions from UEN to Body frame and the rocket angular velocity in Body frame; while 𝑢(𝑡) =
[ 𝛿𝑦(𝑡), 𝛿𝑝(𝑡), 𝑇(𝑡) ] is the input vector containing the thrust vector magnitude and the two TVC gimbal angle 

about yaw and pitch. 

For comparison purposes, the baseline GNC system adopted for the landing phase of the benchmark RLV 
is a non-AI solution that considers SCVX guidance, a PID controller, and ideal navigation. The selected 
guidance algorithm is one of the most well-established techniques to solve non-convex optimal control 
problems with nonlinear dynamics and non-convex state constraints. It is worth to mention that, within the 
project framework, a simplified version of the algorithm has been adopted both to generate a “one-time” 

solution, but also to compute re-optimized guidance trajectories in real-time based on the current flight 
conditions. 

4.4. Case studies drivers and definition 

After the identification of the methods, from the literature review and the trade-off analyses, that best suits 

the goals of the project, several case studies were developed and for which specific methods were 
discussed, implemented and tested by exploiting the benchmark presented above, as follows: 

• Case Study #1: Reinforcement Learning (RL) based adaptive controller to regulate the attitude of 
the RLV, in the presence of uncertain dynamics and/or uncertain and strong disturbances. 

• Case Study #2: cascade control to regulate the position around reference values provided by 
guidance, with the outer loop acting on the reference to inner loops controlling attitude. 

• Case Study #3: approximation of an algorithm that is part of a pipeline for state estimation in a 
navigation system by a NN.  

• Case Study #4: compressed sparse regression for online system identification. 

• Case Study #5: learning-base model predictive control (LBMPC) for attitude control, in uncertain 
environments. 

• Case Study #6: IQC formalism for NN-based attitude control verification, under large disturbances 
and uncertain dynamics. 

• Case Study #7: learning-based Kalman filtering for attitude estimation. 
• Case Study #8: integrated Guidance & Control (G&C) Deep-RL approach for trajectory tracking 

for the landing phase. 

4.5. Techniques and Results 

The goal of this section is to briefly present the techniques analyzed under the case studies and some of 
the most relevant results, including Monte-Carlo (MC) analyses, for some of the techniques. The results 
were obtained using the ESA-i4GNC framework. 

4.5.1. Reinforcement Learning 

This section presents the RL adaptive control algorithms 
developed within case studies #1 and #2, on the attitude and 
position tracking problems. Simulations were performed for yaw 
angle control with RL under nominal conditions, developed in case 

study #1 for the attitude tracking problem. From the simulation 
results, it was observed that the tracking performance is very 
good. In the time span in which the RL controller is acting (after 
10 s), the tracking error is smaller then ±0.02𝑜. 

A second controller was also designed for the position tracking 
error, in case study #2. This corresponds to a cascade control 
architecture, where the inner loop corresponds to the attitude 

controller developed in case study #1, and the outer loop 
correspond to a LQ regulator. It was seen that the position 
tracking error is withing the requirements, under a nominal scenario. A MC campaign with 50 shots was 
also executed, and the results in Figure 4-2, showing that 8% (4/50) of the runs resulted in an unstable 

trajectory, thus not compliant with the requirements.  

Figure 4-2 - Position profile form the 
MC analysis 
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4.5.2. Compressed Sparse Regression for Online System Identification 

The dynamical system identification is based on sparse regression and compressed sensing techniques. In 
particular, the proposed approach exploits the fact that the dynamics of physical systems, including launch 
vehicles, are generally defined only by a few non-zero terms, which makes the equations of motion sparse. 

It is remarked that the system identification task is connected with robust control via LFT theory to identify 
the uncertainty range of the system parameters. This allows evaluating the state of the system in real-
time, which paves the way for on-board system monitoring of failures and performance degradation. A 
Monte-Carlo Campaign of 1000 shots under no-fault and fault scenarios was performed and the results 
obtained were satisfactory, as described in Figure 4-3 and Figure 4-4. For the no-fault scenario analysis, 
overall, the proposed approach successfully captured the variability of both parameters, except for the 

region around 𝑡 = 8𝑠, due to the sudden increase of thrust magnitude commanded by the guidance function. 

For the fault scenario, a 30% loss of thrust engine failure is implemented at 𝑡 = 15𝑠. In the second figure, 

it is seen on the upper plot that the engine thrust failure does not have a strong impact on 𝑎6, which is 

rather related to the vehicle aerodynamics, with the failure being captured from the estimation of 𝑘1. 

 

Figure 4-3 - MC campaign with 1000 shots, scenario 
with no failures 

 

Figure 4-4 - MC campaign with 1000 shots, scenario with 
engine failures (30% loss of thrust) at t=15s 

4.5.3. Learning-Based MPC 

The LBMPC algorithm design approach considers the 
estimation provided by the compressed sparse 

regression algorithm (defined and implemented in case 
study #4) to obtain a sequence of linear models based 
on the time evolution of the parameters 𝑎6 and 𝑘1, 

called the aerodynamic instability coefficient and the 
control efficiency parameter, respectively. From the 

time evolution of the two parameters described above, 
six linear models were obtained from which the 
corresponding LBMPC controllers were designed. The 

state to be controlled corresponds to the error between 
the attitude angles and the reference attitude angles, 
and the angular velocity, being the output the gimbal 
angles for the TVC actuator. As it was implemented, the 
algorithm is quite general and can handle various types of model errors. The simplest option is to use a 
linear oracle, and this was deemed sufficient for the attitude control benchmark. Furthermore, LBMPC was 

shown to result in attitude regulation for RETALT vehicle model at different points along its reference 
trajectory, as observed in Figure 4-5.  

Figure 4-5 - Regulated attitude error states 
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4.5.4. Learning-Based Kalman Filter 

To showcase the LBKF algorithm, the RLV landing problem was 
slightly modified to generate sensor measurements that are rich 
enough to clearly see differences between using different 

estimators. Three techniques were implemented and 
compared: the standard Kalman Filter (KF), the LBKF with linear 
regression model and the LBKF with Gaussian process model. 
Comparing the mean square errors (MSE) of the three 
techniques, it is possible to conclude that using the LBKF with 
the linear regression model, the best estimation results are 

obtained. A 100-shots MC analysis was also performed and, 

from these results, it was possible to conclude that the LBKF 
with Gaussian process model is able to satisfy the attitude 
estimation requirement of 2.5 deg, as observed in Figure 4-6. 

 

4.5.5. Deep Reinforcement Learning 

This technique has been adopted in case study #8 to address the 
Guidance and Control (G&C) problem for the landing phase of the RLV. 

A NN was trained to directly map the sensor input (observation state) 
to the control actions (action state), through the RL Coach library. The 
agent is the DDPG algorithm while the environment is the 3D complete 
landing scenario. A fine reward function shaping was required to find a 
suitable reward function able to teach the agent (launcher) to land 
properly. From the results obtained, it was possible to conclude that the 

NN was able to make the launcher land successfully and smoothly with 

a reasonable fuel consumption compared with the baseline non-AI 
solution. Nevertheless, it is worth to remark that, in the context of case 
study #8, several different NNs have been trained and tested, including 
NNs with a lower fuel consumption with respect the baseline solution. 

Moreover, a 1000-shots MC campaign has been carried out for the NN presented above in order to assess 
the robustness with respect the landing requirements. Figure 4-7 shows the maximum required velocity at 

touchdown with the green horizontal line. As observed, only 30/1000 shots (3%) failed. The failures are 
mainly related to slightly higher horizontal component velocity; however, it is worth to remark that the NN 
has not been trained with the presence of wind, and in fact it led to a 100% success rate for the scenario 
without wind. Moreover, the comparison between the NN and the baseline SCVX re-computed each 5 
seconds along the trajectory, was done in terms of landing accuracy and fuel consumption. It is interesting 
to note that, while the baseline SCVX method show an average better velocity accuracy at touchdown, the 
NN model yields a better position accuracy.   

4.5.6. Validation of NN 

The main goal of this section is to present the results obtained with the validation with IQC’s and the 
reachability analysis performed by the robustness analysis tool [EHH2021][EHH2021B], which are fully 
compatible with the ESA-i4GNC framework. Both approaches consider a neural network (NN) trained for 
the vertical landing (1 DoF) scenario of the RLV benchmark, using the method defined and implemented in 
case study #8. 

Figure 4-7 - Final horizontal 
velocity for the MC simulation 

Figure 4-6 - Yaw error for each 100 MC run 
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4.5.6.1. IQC validation 

Figure 4-8 shows the large-scale view, where we selected validation for 
initial altitudes of 80 to 100 meters, and initial downward speeds between 
10 and 20 meters per second. Our blue curve describes a narrow corridor 

which the trajectories enter, and the second figure shows a closer view 
of the position at which our corridor begins. The end of the corridor shows 
that all trajectories are guaranteed to pass through a state with, e.g., an 
altitude of 22 meters and a downward speed between 8 and 8.3 meters 
per second. Furthermore, the following points have been identified as 
relevant for future work on this topic: fuel consumption; higher 

downwards speeds; attitude dynamics.  

4.5.6.2. Reachability analysis 

The analysis [EHH2021][EHH2021B] has been performed 
considering the NN trained for the vertical 1DoF scenario. 
The NN receives as input the altitude and the difference 
between the actual velocity and a target velocity (function 
of the state) and output the thrust magnitude. In the 
context of the analysis, a smaller NN was trained and 

“attached in front” of the main NN, so that the observation 
state change to simply the altitude and actual velocity. 
Moreover, in order to tackle the lack of support for ‘Tanh’ 
activation function by the tool, another small NN has been 
trained to approximate the ‘Tanh’ function present in the 
last layer of the original NN, with only ‘relu’ and ‘linear’ 
layers. An additional operation, crucial for the convergence 

of the results, consisted in the training of the smaller NN with a supervised approach, using data coming 
from the original larger NN. This approach is also called ‘teacher-student’. After having the new small NN 
and the launcher discrete time dynamics defined, the close loop propagation has been performed 
considering the Greedy Sim Guided partitioner and the CROWN propagator. Setting an initial range for the 
initial conditions, the propagation of the dynamics and the reachable sets has been carried out showing 
considerably satisfying results, as showed in Figure 4-9. 

Figure 4-9:Validation results obtained with the 
smaller NN that mimics the larger NN 

Figure 4-8 - Allowed region 
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5. CONCLUSIONS 

This document very briefly presented the main work developed during the entire AI4GNC project, starting 
with the overall context and main objectives of the project. An extensive literature review was made, 
from which a first screening of the most relevant methods was made. From the methods selected, several 

case studies were identified, developed, implemented and their results analyzed in a benchmark that 
uses the RETALT RLV dynamics. The benchmark also considers realistic aerodynamics and wind models. 

In parallel to the implementation of the methods, the ESA-i4GNC framework was developed for the 
design and validation of AI-based GNC system. This framework was developed in MATLAB/Simulink 
considering an Object-Oriented Programming approach, allowing to tool to be flexible and modular. 
Besides the integration of several tools, such as CVX, MPT 3 and S-TaLiRo, an interface between MATLAB 

and Python was developed, allowing the extension of the MATLAB functionalities to the Python libraries 

and toolboxes, that also allowed the interface to other external frameworks, such as Julia. 

After a brief description of the identified case studies, the techniques considered and their results were 
presented here, from which the following conclusions can be drawn: 

• Learning-based KF: Although the satisfactory results, it is deemed to have a low potential 
indicator mainly due to the non-existence of formal guarantees for its performance as well as 
expensive online calculations. 

• Learning-based MPC: Although the LBMPC controller was able to control the tracking error to 
zero, the associated tuning process is not straightforward. Therefore, the results indicate the 
associated potential, with no further research, to be low. However, it is stressed the credibility of 
the approach. 

• Compressed sparse regression for online system identification: The compressed sparse 
regression approach showed very satisfying and promising results, as the intense MC campaign 

stresses. Therefore, the potential indicator for this approach is considered high. 

• Reinforcement learning applied to a realistic RLV scenario: Although the technique provides 
a way of tackling uncertainty in the dynamics of regulation problems, the resulting closed-loop 
dynamics is quite complicated and prone to unstable behaviour that is not completely understood. 
Hence, the potential indicator is considered to be medium. 

• Deep reinforcement learning applied to a realistic RLV scenario: The Deep RL approach 
yielded remarkable results on the extensive MC campaigns, passing all of the V&V tests with a 
significantly high level of confidence, being onboard implementable. This was further confirmed by 

the fact that the results obtained were comparable to the ones from approaches such as SCVX, 
besides being prone to formal validation. Thus, the potential indicator is considered to be high. 

• Validation of NNs: 

o IQC-based analyses: Since the technique was only used on the 1D scenario without any 
attitude dynamics, and the expectance of difficulty on extending its use to the 3D scenario, 

the potential indicator selected is low, at the moment, although research on the topic is 

encouraged. 

o Reachability analyses: Similarly to the IQC-based methods, the reachability analysis has 
been performed only for the 1D scenario NN. Therefore, a medium potential indicator has 
been associated to the study, with further work towards the complete 3D scenario being 
required but promising. 
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