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Final Review
Agenda

❑ Overview of the status of the project (10.00 – 10.15 CET)
❑ Assessment and Synthesis of the Results (10.15 – 10.30 CET)
❑ Way Forward – Maturation Plan & Roadmap (10.30 – 10.50 CET)
❑ Lessons Learnt and Recommendations (10.50 – 11.10 CET)
❑ Coffee break (11.10 – 11.30 CET)
❑ Discussions on RIDs (11.30 – 12.00 CET)
❑ Conclusions (12.00 – 12.15 CET)
❑ AoB (12.15 – 12.30 CET)
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Scope and Objectives of the Activity
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Overall of the Status

of the Project
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Planning
Schedule

7 interim progress meetings

o V&V activities

o Study synthesis

o Roadmap
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Project Status
Recalling the Rationale Behind the Work Logic

WP 1000
Literature Review

WP 2000
Mission & Reqs.

WP 3000
Tradeoffs

WP 4000
Preliminary Design

WP 5000
Benchmark & Case Studies Def.

WP 6000
Detailed Design

WP 7000
V&V

WP 8000
Study Synthesis

PRR CRR PDR DDR VR
Scope

(#algorithms

considered)
D1, D2 D3 D4, D5 D6 D7 D8

AR

(Time not to scale)
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Project Status
Recalling the Rationale Behind the Work Logic (cont.’d)

WP 1000
Literature Review

WP 2000
Mission & Reqs.

WP 3000
Tradeoffs

WP 4000
Preliminary Design

WP 5000
Benchmark & Case Studies Def.

WP 6000
Detailed Design

WP 7000
V&V

WP 8000
Study Synthesis

PRR CRR PDR DDR VR AR

Preliminary design:

o Case studies 

based on the 

benchmark

o Design and 

evaluation 

performed for 

nominal conditions 

and simplified 

scenarios

1st detailed design 

loop:

o Design and 

evaluation 

performed also for 

off-nominal 

conditions

o Preliminary V&V

o All running with 

ESA-i4GNC

2nd detailed design 

loop and V&V:

o Design 

consolidation

o V&V

o All running with 

ESA-i4GNC

Design

Implement

Test

Review

Plan
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Project Status
Work Packages

Outputs:
D8 deliverable

❑ Items delivered at FR

o D8: Study Synthesis and Way Forward, Maturation 
Plan

o Technical Data Package

o Brochure

o Abstract

o Technology Achievement Summary

o Summary Report

o Executive Summary Report

o Final Report

❑ WP8000: Study Synthesis
o Assessment and Synthesis of the Results
o Roadmap for Future R&D & Applications

✓

WP8000 end 
event: FR

WP8000 start 
event: VR

FR
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Project Status
FR Deliverable Items

❑ Items delivered at FR

o D8: Study Synthesis and Way Forward, Maturation Plan

o Assessment and Synthesis of the Results

o Way Forward

o Roadmap

o Lessons Learnt and Recommendations

o Conclusions

o Summary of the work done

o Lessons Learnt throughout the project

o Recommendations

o Trade-offs between techniques

o ESA-i4GNC overview

o Benchmark selection

o Case studies drivers and definition

o Techniques and Results

o Points to improve, how to improve, 

application scenarios and potential 

indicator per technique

o Roadmap summary
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Project Status
FR Deliverable Items
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Project Status
Progress Since VR Closeout

❑ Actions from the last meetings

Action # Action Actionee Due

VR_001
DEIMOS to send a Doodle poll for the selection of the date to discuss the potential special 
session at a conference

DEIMOS Closed

VR_JB-01 Add ToF penalization in the reward function DEIMOS Closed

VR_JB-02 Assess the impact of penalizing negative thrust derivative profiles DEIMOS Closed

VR_JB-03
Summarize the pros and cons of the technique and indicate potential improvements as part of 
the roadmap definition in WP8000

TASC Closed

VR_JB-08
Run MC for the linear case and compare it with the one with GP, and to increase the 
dispersion in the initial condition

LUND Closed

VR_JB-09
Discuss the pros and cons of AI-based methods when benchmarked against heritage 
techniques as part of the outcomes of WP8000

LUND Closed

VR_JB-12 Increment the verbosity of comments in the code LUND Closed

VR_JB-13
Add a paragraph in D8 on the trade-off of constraint in accuracy and the approach of Fazlyab; 
add discussion in D8 on the uncertainties and on why this is a strength of the IQC framework

LUND Closed

VR_JB-14 Include a discussion in D8 on the use of IQCs for possibly other AI/GNC applications DEIMOS/LUND Closed
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Project Status
Building Blocks Statuses

Requirements
available

Requirements
available

Benchmark selected
and consolidated

RLV simulator 
implemented

Training process  and 
AI/ML/RL methods 
implemented

Visualization tools 
for the simulator 
and the AI/ML/RL 
implemented

Compressed
sensing for LFTs

Compressed
sensing for LFTs

Successive convexification 
and ability to use many 
optimization toolboxes

RL Guidance & 
deep-RL 
integrated G&C

LBMPC
& LBKF

STL-based
analysis

NN verification implemented, 
including IQC-based
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Assessment and Synthesis 
of the Results



DEG-CMS-SUPSC03-PRE-12-E © Copyright DEIMOS 14

Assessment and Synthesis of the Results
Trade-offs between techniques

• Extensive state of the art literature review

• Safe, robust, adaptive control and RL; Robust ML modelling and analytical V&V approaches; 

ML for GNC design and embedded GNC systems; formal guarantees for LB GNC.

• Qualitative trade-off between data-driven and model-based approaches.

• Quantitative trade-off between the most relevant ML techniques for GNC applications

• Explainability, on-board implementability, training dataset need, performance, 

generalisability.

• Quantitative trade-off between the ML toolboxes

• Quantitative trade-off between ML libraries

• Algorithm availability, documentation, code readability, support for embedded devices, 

supported environments, integration with MATLAB.
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Assessment and Synthesis of the Results
ESA-i4GNC overview

• Tool implemented using the Object-Oriented Programming (OOP) approach

• Besides the tool design, other libraries and functionalities were implemented such as:

• CVX

• MPT 3.0

• S-TaLiRo Runtime and Falsification

• M2HTML

• esai4gnc_install

• esai4gnc_clean

• autoDoc_ESAi4GNC

• Profiler
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Assessment and Synthesis of the Results
Benchmark selection

• 6 DOF Landing Burn Scenario of a 

Reusable Launcher Vehicle (RETALT)

• Realistic Aerodynamics DB

• Actuator (TVC) model

• Wind model

• Flexible modes

• Baseline GNC:

• SCVX guidance

• Ideal navigation

• PID controller

1st Stage features Value

Height [m] 71.2

Diameter [m] 6

Dry mass [kg] 59300

Propellant mass (incl. 
descent propellant) [kg]

621500

Specific Impulse SL [s] 401.6

Thrust SL [kN] 11453

Mass [kg] Position [m] Velocity [m/s] Attitude [q]
Angular vel. 

[rad/s]

80334
[2874,-1288, -

82.2]
[-189.9, 151.3, 

9.6]
[0.943, 0.006, 
0.018, -0.329]

[0, 0, 0]

Initial Conditions
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RLVs Challenges
To Support the Case Studies Definition

ID Challenge Why is it a challenge?

1
Trajectory generation for the 
landing phase

Large uncertainty in the initial condition; wind disturbances; potentially large reference tracking errors

2 Attitude control Large disturbances (wind, flexible modes, fuel sloshing); uncertain CoG (see Challenges #3 and #10)

3 Center of gravity estimation
Can be affected by uncertainty, but also by the payload; this means that the torque generated by actuators (and thruster misalignment) will be 
uncertain

4 RCS failure detection Needs to be decoupled from other failures and from disturbances

5 TVC failure detection Needs to be decoupled from other failures and from disturbances

6
Aerodynamic fin failure 
detection

Needs to be decoupled from other failures and from disturbances

7 RCS failure tolerance Roll compensation, for instance, may become impossible; if not compensated for sufficiently fast, can jeopardize the mission

8 TVC failure tolerance If not compensated for sufficiently fast, can jeopardize the mission; can generate very large spurious torques; may require non-nominal trajectory

9
Aerodynamic fin failure 
tolerance

Can generate constant torques; may render the system unstable during the unpowered phases

10 MCI estimation More generic than Challenge #3; can be affected by uncertainty, but also by the payload, and by fuel sloshing

11 Thruster misalignment Can impact control authority

12 Main engine re-ignition
When the vehicle is returning the fuel will be displaced in the tanks toward the top of the booster; a dedicated maneuver (with the thrusters) could be 
necessary during the return phase before the reignition of the main engine(s) to relocate the propellant inside the tanks

13
Trajectory tracking for the 
aerodynamic phase

Large uncertainty in the initial condition; wind disturbances; potentially large reference tracking errors

14
Inertia estimation during the 
flip over before the boostback 
burn

A quick and accurate flip over maneuver is necessary to limit the propellant consumption during the boostback burn, the inertia of the vehicle is 
affected by the position of the fuel in the tanks, and it can impact significantly the control performance during the flip over maneuver

15 Fuel sloshing Fuel sloshing may induce disturbances that are hard to model in the linear realm

16 RLV navigation
The use of hybrid navigation schemes can reduce costs (as lower accuracy IMUs can be used, for instance, if combined with GNSS measurements), 
although they may also pose assumptions on the vehicle or the sensors’ characteristics that may not be satisfied in practice.
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Case Studies
Definition of Baseline Case Studies

Case Study # Description
Challenge(s) 
Addressed

1 RL-based adaptive control to regulate the attitude in response to disturbances 2

2
RL-based adaptive control to regulate the trajectory in the aerodynamic phase with respect 
to the reference trajectory

13

3
NN approximation of the QUEST algorithm for three axis attitude estimation from vector 
observation data

16

4
Sparse regression, compressed sensing, compressed learning and potential connections 
with LFT modelling

3, 4, 5, 6, 10, 11, 
14

5 Learning Based Model Predictive Controller (LB-MPC) for attitude control 2

6 IQC formalism for NN-based attitude control verification 2

7 Learning-based Kalman filtering with Gaussian process for attitude estimation 16

8 Deep RL for trajectory tracking (integrated G&C) 13



DEG-CMS-SUPSC03-PRE-12-E © Copyright DEIMOS 19

Case Studies
Proposed GNC Architecture

Guidance Control

MVM

Navigation

Reference

Trajectory Reference attitude

and actuation

Actual actuation

GUI mode CON mode

Status & data

Status 

& data

Engine mode

Status 

& data
NAV mode

Estimated state Estimated state

TVC/Engine

RCS

GNSS IMU FADS Altimeter

Position

Accelerations Air angles

Altitude
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Assessment and Synthesis of the Results
Techniques and Results

• Case study #1 and #2 are concerned 

with Reinforcement Learning adaptive 

control algorithms developed on the 

attitude and position tracking problems
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Assessment and Synthesis of the Results
Techniques and Results

• Case study #3 deals with attitude estimation (Wahba’s 

problem) from vector sensor observations by using a Deep NN

• Mainly a tutorial case study, that reduces the computational 

power on-board, while being less sensitive to noise than 

traditional algorithms
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Assessment and Synthesis of the Results
Techniques and Results

• Case study #4 aims to explore machine 

learning system identification techniques 

towards robust modelling using a combination 

of data-driven techniques and consolidated 

model-based techniques such as LFT theory.
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Assessment and Synthesis of the Results
Techniques and Results

• Case study #5 involves controlling the attitude 

dynamics of the RETALT vehicle during its landing 

phase using learning-based MPC

• The LBMPC algorithm design approach considers 

the modeling approach of case study #4 to obtain 

a sequence of linear models at different points of 

the nominal reference trajectory 
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Assessment and Synthesis of the Results
Techniques and Results

• Case study #6 uses Integral Quadratic Constraints 

(IQCs) to validate the closed-loop behavior of a 

reusable launch vehicle, during the landing phase, 

controlled by a neural network (for the 1D scenario)
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Assessment and Synthesis of the Results
Techniques and Results

• Case study #7 demonstrates 

the usage of Learning-based 

Kalman filtering (LBKF) for 

attitude estimation

Filter type Angle MSE
Angular 
rate MSE

Standard Kalman filter 1.09 ∙ 10−2 4.18 ∙ 10−2

Learning-based Kalman 
filter with linear model

6.92 ∙ 10−3 1.77 ∙ 10−2

Learning-based Kalman 
filter with Gaussian 

process

7.68 ∙ 10−3 2.31 ∙ 10−2
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Assessment and Synthesis of the Results
Techniques and Results

• Case study #8 address the Guidance and 

Control (G&C) problem for the landing phase 

of a Reusable Launcher Vehicle (RLV) using 

Deep Reinforcement Learning



DEG-CMS-SUPSC03-PRE-12-E © Copyright DEIMOS 27

Assessment and Synthesis of the Results
Techniques and Results

• The validation of the closed-loop 

behavior for the 1D scenario is also 

performed through reachability analysis
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Way Forward – Maturation 
Plan & Roadmap
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Way Forward  - Maturation Plan & Roadmap
Compressed sparse regression approach

❑ Improvement areas and how to improve

• Quality of the sensors

Estimation results can be improved by using higher quality sensors

• Uncertainty identification

Uncertainty level identification was not possible due to low dispersions. Larger uncertainty ranges will allow to distinguish between uncertainty levels.

• Linearized vs nonlinear estimates of 𝒂𝟔

To determine the quality of 𝒂𝟔 estimation:

i) Further analyses on the aerodynamic database of RETALT

ii) Compare with other estimation techniques

iii) Use the estimates to feed an ideal controller and evaluate in simulation which one is better

• Thrust effect on the estimates of 𝑘1

The estimates of 𝒌𝟏 can be improved as follows:

i) Using the knowledge of thrust changes to modify or temporarily stop the estimation flagging

ii) Use of variable window length

• Variable estimation window length

Sensitivity analysis of different window lengths was performed but it is recommended the use of variable window lengths depending on flight conditions

• Benchmarking against classical system ID approaches

Several approaches can be used: i) least-squares methods; ii) Kalman filtering; iii) MATLAB’s system ID toolbox (ls search or subspace methods)

• Selection of candidate functions library

The effect of the selection of candidate functions library can be further investigated
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Way Forward  - Maturation Plan & Roadmap
ML-based failure detection approaches

❑ Improvement areas and how to improve

• Benchmarking against classical and other advanced FDI approaches

The compressed sparse regression approach could be compared to other well-established FDI methods:

i) Model-based (ℋ∞-based methods)

ii) Potentially with other data-driven, ML-based FDI techniques (NNs or SVM)

• Fault assessment strategy

Connect the compressed sparse regression technique with well-established FDI functions to improve the fault detection assessment
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Way Forward  - Maturation Plan & Roadmap
Deep Reinforcement Learning G&C

• Description

• Investigate possible advantages and/or complementarities of this AI method with respect 

to the classical G&C approaches

• Generate a policy to map the sensor measurements directly to the action commands

• Points to improve

• Robustness to wind

• Robustness to initial condition

• Fuel consumption

• RL hyperparameters fine tuning

• Extension of the convergence analysis to the 3D scenario
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Way Forward  - Maturation Plan & Roadmap
Deep Reinforcement Learning G&C

• How to improve

• Robustness to wind: include a sensor to estimate wind to provide measurements to the NN; 

use a NN to estimate the wind itself, leading to a G&C composed by a concatenation of NNs

• Robustness to initial conditions: increase the dispersion considered during RL training (and 

possibly the number of training steps)

• Fuel consumption VS Landing accuracy: modify the reward used by RL algorithm to look for 

solutions with less consumption maintaining, at the same time, a good landing accuracy

• RL hyperparameters fine tuning: manual fine tuning; define an optimization problem to 

optimize the hyperparameters

• Extension to the 3D scenario: adapt the implementation of the robustness tool to handle the 

3D scenario, in particular the model needs to be adapted to include the attitude dynamics.
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Way Forward  - Maturation Plan & Roadmap
Deep Reinforcement Learning G&C

• Application scenarios

• In-Orbit Servicing (IOS)

• Active Debris Removal (ADR)

• Entry, Descent and Precision Landing (EDL)

• Reusable Launch Vehicle (RLV); Re-entry vehicles with Inflatable Heat-Shields (IHS)

• Potential indicator

• Identified to be High, since:

• Remarkable results of the extensive Monte-Carlo campaign: the NN obtained passed all 

of the V&V tests with high level of confidence, and its results are comparable to SCVX.

• The NN training can be done and repeated whenever the dynamics change

• Non-iterative algorithm with guaranteed computational time

• NN validation approaches exist
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Way Forward  - Maturation Plan & Roadmap
ML-based Guidance Optimization Surrogates

• Description

• Train a NN with demonstrations of the optimal guidance, using a Supervised Learning 

approach

• Points to improve

• Training performance

• Expert guidance optimizer

• Assess performance in simulation

• Validation
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Way Forward  - Maturation Plan & Roadmap
ML-based Guidance Optimization Surrogates

• How to improve

• Training performance: test other optimizers in Keras; test other open-source libraries and 

tools

• Expert guidance optimizer: consider a different sub-problem solver, such as ECOS, instead of 

CVX; consider other external and open-source tools (SCP by Danylo Malyuta et al.)

• Assess performance in simulation: after the training, the NN should be tested in the high-

fidelity simulator; iterative design process may be necessary for tuning the expert guidance 

• Validation: the validation tools used in other case studies may be used to validate the 

resulting NN
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Way Forward  - Maturation Plan & Roadmap
ML-based Guidance Optimization Surrogates

• Application scenarios

• In-Orbit Servicing (IOS)

• Active Debris Removal (ADR)

• Entry, Descent and Precision Landing (EDL)

• Reusable Launch Vehicle (RLV); Re-entry vehicles with Inflatable Heat-Shields (IHS)

• Potential indicator

• Identified to be High, since:

• Good results in the approximation of an online optimization algorithm.

• The training process is typically easier than the Deep RL method, although it requires a 

very high number of expert demonstration

• NN validation approaches exist
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Way Forward  - Maturation Plan & Roadmap
Reinforcement Learning-based Adaptive Control for Attitude Regulation

• Aims at developing a model-free adaptive control law for 

attitude regulation.

• Learns state feedback gains to solve a linear quadratic problem, 

without the assumption of knowing the plant model, by using Q-

learning, and policy RL.

• A state made of derivatives of the plant output avoids the need 

for state observers

• Combination of RL with LB-MPC is a promising issue.

• Include a supervisor that monitors gain learning

• Develop a Validation procedure that is not just based on Monte 

Carlo, by getting inspiration from validation for Deep Reinforcement 

Learning and adaptive control. 
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Way Forward  - Maturation Plan & Roadmap
Learning-based Model Predictive Control for Attitude Control

• The results obtained using the integration of the Learning-based Model Predictive 

Control (LBMPC) into the ESAi4GNC tool had its own merits and demerits.

• Though attitude regulation of RETALT vehicle was achieved by the LBMPC algorithm, it 

came at the expense of high landing errors (in the range of 150m).

• In principle, such shortcomings can be rectified by proper choices of constraints and 

problem parameters although tuning and selection of parameters and constraints value 

was not straightforward to do for this application.

• Though such practical difficulties resulted in mediocre Monte-carlo simulations, the 

potential to solve this using informed choices of constraints and using the well 

established and rigorously proven LBMPC strategy gives us great hope for future work.

• Incorporate additive disturbance into the design of RETALT vehicle simulation using the 

ESAi4GNC tool.   
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Way Forward  - Maturation Plan & Roadmap
Learning-based Kalman Filter

• As compared to a standard Kalman filter, the LBKF can be
used to slightly improve the navigation performance
but at the expense of a larger modelling effort and
rather expensive online calculations and a lack of
guarantees. These are serious drawbacks considering
applications in GNC applications for spacecraft.

• More research is required to make the method useful
and worthwhile for space applications as compared to
heritage techniques.
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Way Forward  - Maturation Plan & Roadmap
Integral Quadratic Constraints

• Main Obstacle: Dimensionality

• We validated the ”1D”-model without attitude dynamics

• Work needed towards ”3D”-model

• Partitioning of state space has scaling issues, unclear to what extent.

• Try to partition a narrow tube around trajectories, which might scale well enough

• IQC Benefit: Uncertainties do not need to be enumerated

• Useful when Monte-Carlo has issues testing all possible values of uncertainties.

• Our focus: Nonlinearities in neural networks.

• Look for other applications witin the GNC problem space.

• Roadmap:

• Work towards higher-dimensional models.

• Consider other validation problems with high-dimensional uncertainty sets.
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Way Forward  - Maturation Plan & Roadmap
Roadmap

# Technique name GNC level Typical application
Potential 
indicator

1 Compressed sparse regression approach i-L-DI
1. Consolidation for estimation 
2. Further improvements for FDI 
3. Use for FTC applications

H

2 Deep Reinforcement Learning G&C i-GC-DI

1. Entry, Descent and precision landing (EDL) both 
on Earth and other celestial bodies

2. In Orbit Servicing (IOS)

3. Active Debris Removal (ADR)

H

3
ML-based Guidance Optimization 
Surrogates

i-GC-DI

1. Entry, Descent and precision landing (EDL) 
Guidance on Earth and other celestial bodies

2. In Orbit Servicing (IOS) Guidance

3. Active Debris Removal (ADR) Guidance

H

4
Reinforcement Learning based adaptive 
control for attitude regulation

i-C-DI
Attitude regulation around a reference provided by 
the guidance system

M

5 LBMPC for attitude tracking of RETALT 
Vehicle

i-C-DI Attitude tracking to enable soft landing during the 
re-entry phase 

M

6 Learning-based Kalman filter i-N-DI Adapt to component imperfections L

7 IQC i-C-A Validate full system with NN controller L
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Coffee break?
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Lessons Learnt and 
Recommendations
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Lessons Learnt
Reinforcement Learning

• RL provides a way to develop adaptive regulation controllers that approximate the
LQR for attitude angle regulation.

• Adjusting the dither level is a very important tool.

• The use of RL in an architecture based on the Youla parameterization does not yield a
significant advantage.

• The short time period of operation poses a difficulty in learning the controller gains.

• The gimbal rate constraint poses great difficulties

• When using a cascade control structure, it is very important to have a clear
separation in the time scales between the inner loop and the outer loop

• It was not possible to simultaneously use 2 RL based adaptive regulators.

• The use of a RL based adaptive regulator in the attitude controller allows to tackle
some actuator faults. Strong offsets may cause the learning algorithm to diverge.

• Deep Learning Techniques for attitude determination during landing is a more
robust alternative compared to algorithmic based solutions.
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Lessons Learnt
Compressed sparse regression for online system identification

❑ Lessons learnt

• Compressed sparse regression approach demonstrated the feasibility of online system identification and failure detection

• The proposed approach successfully captured the variability of the main rotational parameters of a launch vehicle

• The implementation is compatible with Simulink code generation

• The results from an intense Monte Carlo campaign highlighted the FDI capabilities of this approach of engine thrust failures

❑ Recommendations

• Use of compressed sparse regression approach for other phases of a launch vehicle flight

• Benchmark against other classical system identification approaches

• Consider the use of flight-dependent (variable) window length

• The estimation results can be improved by using higher quality sensors
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Lessons Learnt
Learning-based Model Predictive Control

• Attitude Control of RETALT vehicle can be effectively performed using LBMPC if the 

nominal model and the bounds on the unmodeled dynamics are exactly known.

• LBMPC gives us the opportunity to learn the unmodeled dynamics apart from its known 

bounds, and based on the usage of different oracles, even complex unmodeled 

dynamics can be learned up to a desired accuracy. 

• LBMPC brings the best of both worlds with enhanced performance due to the learning 

process and ensures constraint satisfaction using the nominal model.

• The hinderances of implementing the LBMPC can be rectified by using informed choices 

of problem parameters and system constraints and by dedicated tuning efforts.

• Combination of LBMPC with reinforcement learning is an interesting future aspect to 

investigate to get both safe learning and control of RETALT vehicle. 
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Lessons Learnt
Learning-based Kalman Filter

• The LBKF technique may be useful in cases where some type of nonlinear dynamics
can be anticipated, but not known beforehand. In the RLV case study, we adapted
the Kalman Filter to actuator degradations in the form of magnitude and rate limited
control signals, which were not known at design time.

• Quite severe nonlinearities must be present for the technique to deliver any noticeable
performance improvements. A well-tuned standard Kalman filter should already
be robust to modest perturbations.

• Learning or adaptation always includes the risk of overfitting to noisy or temporary
problems, which in the end may lead to worse performance. We saw that the LBKF
could introduce additional artificial disturbances when it tried to learn nonlinear
dynamics that were not actually present.

• Recommendation: The small potential estimation performance improvement probably
does not outweigh the risk and runtime cost of adding a learning component to
the Kalman Filter.
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Lessons Learnt
Deep Reinforcement Learning

• In a Deep-RL framework, the reward should be defined such that the final step has a
positive reward if the landing is successful. The results were observed to be more benign if
this positive reward at the end is constant, as long as a satisfactory region (for the state) is
attained.

• Using a target velocity helps accelerate the training process.
• Selecting the initial state as random points around the reference trajectory significantly

improves learning.
• The longer the training, the better the final results in terms of robustness and accuracy.
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Recommendations

• Within reinforcement learning scenarios it is recommended to perform an intensive simulation
study to define the dither noise variance and the weight on the control variable.

• If multiple control loops based on adaptive control are to be used, it is recommended to tune each
one at a time, while the controller gains of the other are forced to be constant.

• The estimation results can be improved by using higher quality sensors with lower noise levels and
higher sampling rates.

• The use of compressed sparse regression approach is recommended for other phases of a
launch vehicle flight, and to benchmark it against other (classical) identification methods, as well
as to assess the performance of this estimation approach using variable window lengths.

• For the LBMPC approach, consider the additive disturbance in the integration.
• It is recommended to study the attitude dynamics carefully to infer proper bounds for the

unmodeled dynamics to be used for constraint satisfaction (tightening).
• It is recommended to relax the unmodeled dynamics from linear to nonlinear models and learn

them from input-output data using neural networks (nonlinear oracle modules) in the future.
• It is recommended to learn how to switch between models and try using the respective learning-

based MPC controller.
• It is recommended to study the regret incurred by the learning-based MPC for operating without

knowing the exact unmodeled dynamics
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Recommendations

• The small potential estimation performance improvement probably does not outweigh the risk and
runtime cost of adding a learning component to the Kalman Filter, except in very special cases.

• In the case of possible actuator degradations (as studied here), a safer, alternative approach could
be to add additional sensors to the vehicle. Another approach is to design a standard Kalman Filter
to be robust towards more plant variability.

• In Deep-RL, the exploration noise should be adjusted to the magnitude and type of actions. In
particular, improved results were obtained by reducing the exploration noise for the gimbal action.

• The target velocity profile is the main driver for the trajectory to be followed. To have a different
trajectory, e.g., one with a better approximation to a bang-bang solution of the thrust, the target
velocity should be different.

• The RL hyperparameters should be adjusted every time there is a significant modification in the
overall setting. For instance, a different reward shape or a modification in the environment
dynamics (adding or removing actuation, etc).
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Review of RIDs
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Next Steps
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Next Steps
Planning

❑ Implement actions from RIDs

❑ Update D8, and other items accordingly
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AoB
Dissemination and Exploitation of the Results

❑ We propose to disseminate the results of AI4GNC in one of the following conferences 
(e.g. in a special session):

o ESA GNC Conference 2023

o EUCASS/CEAS Aerospace Europe Conference 2023

❑ The consortium is internally discussing the possibility of making ESA-i4GNC (and 
possibly some of the case studies) publicly available

The inputs from ESA are very welcome on the two topics!
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AoB

❑ Any other points to be discussed?
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Trademarks "Elecnor Deimos", "Deimos" and the logo of Deimos (Elecnor Group) encompass Elecnor Group’s companies of Aerospace, Technology and Information Systems: Deimos Space S.L.U. (Tres Cantos, Madrid, Spain), Deimos Engineering and Systems S.L.U. (Puertollano,Ciudad Real, Spain), Deimos Engenharia S.A. (Lisbon, Portugal), 
Deimos Space UK Ltd. (Harwell, Oxford, United Kingdom), Deimos Space S.R.L. (Bucharest, Romania).

Thank you!

56
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BACKUP SLIDES
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Answer to RIDs VR_JB-01 & VR_JB-02
Deep Reinforcement Learning G&C

• Two simulations were performed following the suggestion and the thrust profile was still not the 

desired one;

• The target velocity profile is the main driver for the thrust profile

• Therefore, the target velocity should be modified to allow for a bang-bang thrust profile.

• Modifying the target velocity may lead to a complete new reward shaping procedure, which 

could entail a large effort.
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Answer to RIDs VR_JB-01 & VR_JB-02
Deep Reinforcement Learning G&C

• Penalization added for the Tof in the reward 

function

• Improvement in the overall Tof (less than 1 

sec) but still not bang-bang solution 
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