

Final Presentation -Qualification of the CTJ30-80 Solar Cell Assembly-Contract: 4000114125/15/NL/CBI CCN2

Noordwijk 22/7/2022

CONFIDENTIAL-LIMITED USE

25/07/2022

1

Agenda

1. About CESI

- 2. Qualified CTJ30_80 bare solar cells
- 3. CCN2 activities
- 4. Qualification results at SCA level
- 5. Results of subgroup M
- 6. Conclusion and achievements
- 7. Acknowledgements & AOB

CESI is a Global Player Providing Technology Innovation Services for the Energy Transition

CESI: High-end, Tailor Made Solutions for Global Clients

Testing, Inspection & Certification

KEMA Labs

The Global Leader in Independent Testing, Inspection and Certification for the Electricity Sector

Environmental Consulting & Civil Engineering

Space Solar Cells

CESI

Our Expertise in The Energy Industry at Your Disposal Through Adhoc Consultancies

Renewable Engineering, Remediation, Compliance and Monitoring Services to Drive Circular Economy

CESI

Production of Advanced Multijunction Solar Cells for Space Applications

CESI has over 30-year legacy in high-performance GaAs multi junction space solar cells which achieved a remarkable flight heritage with global Clients from different continents

CESI product portfolio can fulfill the requirements of any mission/client: from the high performance Institutional programs of space agencies (from low orbit to deep space)...

Name	Description	Application	Efficiency** (BOL* AM0, 25C)					
CTJ30 (standard)	High Efficiency Solar cell for Space	high power demand Satellites LEO & GEO	30%					
CTJ30-Thin	High Efficiency, Thin & Flexible Solar cell for Space	New Generation Solar Arrays (e.g. ROSA: Roll Out Solar Arrays) for GEO &LEO	29%					
CTJ-LC (Low Cost)	Low Cost Solar cells for Space	New emerging "low budget" market Minisat/Cubesat/Large constellations LEO	28%					
CTJ-LA (Large Area)	Large Area version for Space (c.a 70cm2 vs std 30cm2)	LA concept supports the simplification and efficiency of the assembly at panel level (less components, less welding, area saving)	29% → CTJ30-LA 28% → CTJ-LC-LA					
"Low Cost", "Thin" and "Large Area" features can be combined as requested by clients to satisfy any specific mission requirements NOTES: (*) BOL: Beginning of Life; EOL: End of Life (**) % of efficiency not directly comparable with terrestrial applications								
CESI		CONFIDENTIAL-LIMITED USE	07/07/2022					

2. Many satellites are using CESI Solar Cells @June 2022

Cell type	Qualification status	First mission in orbit	Nr satellites in the last 5 years	Satellite class	Among others	
CTJ30	Fully qualified according to ECSS E ST20-08C for LEO and GEO orbit at bare and SCA level (2013)	2014	28	Nano Medium Large	ABCS, Stecco Kanopus Meteor M	Kanopus (fop) and Meteor-M (bottom): courtesy of Kvant
CTJLC	Fully qualified according to ECSS E ST20-08C rev.1 for LEO and GEO orbit at bare and SCA level (2020)	2017	37	Nano/Small	alpha, LabSat, SteamSat-2, Stork-1, Stork-2, Stork-3, Stork-4, Stork-5, SW1FT, Bio Nanosatellit A, Aurorasat-1 Commtrail, FSSCAT, Hibari, IHI SAT, NetSat Iperdrone, ELO Copia NeTSat	Image: Second

CONFIDENTIAL-LIMITED USE

07/07/2022 7

- 1. About CESI
- 2. Qualified CTJ30_80 bare solar cells
- 3. CCN2 activities
- 4. Qualification results at SCA level
- 5. Results of subgroup M
- 6. Conclusion and achievements
- 7. Acknowledgements & AOB

The CTJ30-Thin bare solar cells (ESA contract 4000114125/15/NL/CBi)

Qualification completed in 2018

The CTJ30-Thin bare solar cells

External Quantum Efficency (BOL AVERAGE EXTERNAL QUANTUM EFFICIENCY)

Radiation Degradation (Remaining Factors)

Proton Energy	Fluence (p/cm ²)	۱ _{sc}	V _{oc}	P _M
100 keV	1E10	0.99	0.98	0.96
100 keV	1E11	0.86	0.94	0.72
1MeV	1E10	1.00	0.98	0.98
1MeV	1E11	1.00	0.93	0.89
10MeV	1E11	1.00	0.99	0.98
10MeV	1E12	1.00	0.94	0.91
Electron	Fluence	I _{sc}	V _{oc}	P _M

Electron Energy	Fluence (e/cm²)	I _{sc}	V _{oc}	P _M
1MeV	1E14	0.99	0.98	0.97
1MeV	5E14	0.96	0.95	0.91
1MeV	1E15	0.91	0.93	0.84

Temperature Coefficients

Electro n Energy	Fluence (e/cm²)	ΔJ _{sc} /ΔT (μA/cm²/° C)	ΔV _{oc} /ΔT (mV/°C)	ΔJ _{pmax} /ΔT (μA/cm2/° C)	ΔV _{pm} /Δ T (mV/°C)	ΔΡ _m /ΔT (μW/cm²/°C)
0	BOL	15.3	-5.324	12.9	-6.026	-77.8
1MeV	1E14	16.7	-5.589	14.3	-5.964	-73.0
1MeV	5E14	17.2	-5.670	14.0	-6.050	-72.3
1MeV	1E15	16.4	-5.677	17.1	-6.092	-61.5

Qualification

- > Metal Contact thickness 5-10µm
- > Degradation after reverse bias < 1%
- > Contact Pull Strength > 600gr (5.9 N)
- > Humidity and Temperature < 1%

1. About CESI

2. Qualified CTJ30_80 bare solar cells

3. CCN2 activities

4. Qualification results at SCA level

5. Results of subgroup M

6. Conclusion and achievements

7. Acknowledgements & AOB

Qualification of CESI thin solar cells at SCA level (CTJ30-80-SCA)

Materials for SCA manufacturing

- ✓ Bare solar cells: CESI CTJ30-80, size 40.15 mm x 80.15mm and 76.2mm x 37.26mm
- ✓ Diodes: Azur Space part number: P/N 81751 (thin 100 μm)
- ✓ Coverglasses: Qioptiq CMG100:
 - for qualification: P/N 69076
 - for subgroup M : P/N 68088 (toughened/ flexible) (*)
- Interconnects: Ag/Au coated Invar P/N: N6x12 (Cell&diode front); Frog-B (Diode/Cell rear) for SCA size 40.15 mm x 80.15mm; S-Type for SCA size 76.2mm x 37.26mm
- ✓ Bonding resin: DC 93-500

Standard SCA for Qualification

(*)Qioptiq Space Technology technical paper: D.A.Gray "FLEXIBLE COVER GLASS FOR NEXT-GENERATION SOLAR ARRAYS "10th European Space Power Conference, Conference Proceedings (2014)

- A batch of CTJ30_80 Triple Junction bare solar cells type InGaP/InGaAs/Ge was manufactured for the qualification at SCA level.
- 60 Solar Cell Assemblies, nominal dimension 80.15mm x 40.15mm x 0.25 mm active area 30.15 cm², were selected for the qualification test campaign.

lsc	Voc	Pmax	lpmax	Vpmax	P _{L@2.26V}	I _{L@2.26V}	F.F.	Eff.	Ird+	Vdd
[A]	[V]	[W]	[A]	[V]	[W]	[A]		[%]	[μA]	[V]
0.525	2.594	1.152	0.503	2.289	1.15	0.508	0.85	28.0	<0.5	0.74

Acceptance Test	Results	Sample size
Visual inspection, including ELM	Passed	100%
Dimensions	Passed	100%
Mass	Mass 0.095 g/cm2	3%
Rear SCA interconnect adherence	>800g per leg (0 $^{\circ}$)	1%
Electrical performances (cell + diode)	See table above	100%
Solar Cell Reverse Bias test	No degradation	100%
Humidity and temperature (90°C, 95%RH, 1 day)	No degradation	2% lot

- 1. About CESI
- 2. Qualified CTJ30_80 bare solar cells
- 3 CCN2 activities
- 4. Qualification results at SCA level
- 5. Results of subgroup M
- 6. Conclusion and achievements
- 7. Acknowledgements & AOB

Qualification Test campaign at SCA level

-		
Group	Description	Qualifying tests
A	Front interconnect adherence	Thermal cycling GEO+LEO: 1650 cycles, -170°C/ +130°C for GEO
E	Rear Interconnect adherence	conditions, followed by 6000 cycles, - 140°C / +140°C for LEO conditions.
В	BOL performance data and UV test	UV exposure test: 1000 equivalent sun-hours in vacuum at 90°C
с	EOL performance data	Electron irradiation at 1MeV, 1 $10^{15} e^{-1}$ /cm ² dose
F	Ageing test	3,000 hours standard LEO missions, 150°C under AMO illumination in vacuum and samples biased at Vop=2.26V

		A (20+2)	E (20+2)	B (20+3)	C (10+2)	F (20)
Front Interconnect Welding	FIW	3	4			
Coverglass Bonding	СВ		5			
Rear Interconnect Welding	RIW	3a	6			
Visual inspection	VI	1,4,7, 10	1,7,11,15	1,14,17	1,11	1,5
Dimension and weight	DW			2	2	2
Electrical performance	EP	2,5,8	2,8,12	4,7,11,15	3,6,12,1 6	3,6
Temperature coefficients & Diode Temperature Behaviour	TC TB			9	8,14	
Spectral response	SR				7,17	
Thermo-optical data	то			12,16	18	
Thermal cycling	CY	6	10			
Interconnector adherence	IA	9	14			
Electron irradiation	EI				9	
Photon irradiation and temperature annealing	PH			6	10	
Diode characterization	DC		3,9,13	5,8,18	4,13	
Cell reverse bias test	RB			10	5,15	
Ultraviolet exposure	UV			13 ⁴		
Flatness	FT			3		
Life Test	LT					4

Qualification Test campaign at diode level

Group	Description	Qualifying tests			Bare exte	rnal prote	ction diode	es (92+27) spares	
	Burn in test and	Welded diode infant mortality test: 216 h with the			samples)					
ы	ESD	diodes at 140°C at -5V reverse bias for 92% of the time and to 510mA forward bias for 8% of the time	Test	Symbol	OD (32+8	OB (10+2	BI (20+10	C (10+2	V (20+4	
	Diode				spares)	spares)	spares)	spares)	spares)	
OD	front/rear	Thermal cycling GEO+LEO as per SCA	Welding of Interconnectors	WI			5	1	1	
00	interconnector adherence		Visual inspection	VI	1, 5,8,11	1,5,8,11	1,6,9,12,15	2,5,9,12	2,6,14	
			Dimensions & Weight	DW	2	2	2	3	3	
OR	Extended	Humidity and Thermal cycling GEO+LEO as per SCA	Diode Characterisation	DC	3, 6,9	3,6,9	7,10,13	4,6,10,13	4,7,9,11 ,13	
UB	UB Storage		Thermal Cycling	СҮ	4	7				
	Simulation		Welded diode infant mortality (Burn in)	BI	7		8		5	
	EOL		Humidity & Temperature	HT		4				
С	performance	Electron irradiation at 1 MeV, 10 ¹⁵ e ⁻ /cm ² dos (performed together with the SCAs)	Contact uniformity	CU			3			
	data		Surface Finish	SF			4			
			Contact adherence	CA	10	10				
		Ageing test: 1000 hours GEO and 3000 hours LEO	Pull Floatnen Irrediction		10		14	0	<u> </u>	
		at 140°C						ð 11		
	Welded diode	Switch behavior						11		
v ageing test and	ageing test and	-ground testing mode: 100 cycles at 90°C between					11	7,14		
•	switching behavior	-5V reverse hias and 510mA forward hias	Human body ESD test (ESD)	DE			11		<u> </u>	
		-primary discharge: 100 cycles at 90°C between -	welded diode behaviour in switching mode (Switching)	DS					8,12	
		5.3 reverse bias and +4.5A forward bias	Welded diode long term stability (Life)	DL					10	

Overview of subgroups A and E

SUBGROUP A (GEO and LEO CY) (20+2 samples)									
TEST		Requirement	Results						
Visual Inspection bare	1	In SCD	\bigcirc						
Electrical Performance bare	3	I _{L_min} ≥ 488 mA; I _{L_Ave} ≥ 509 mA	Average IL= 515 mA						
Front interconnect weld	4	Pull on sacrificial samples: >600g each leg	O						
Rear Interconnect weld	5	Pull on sacrificial samples: >600g	I						
VI after FIW+RIW	6	In SCD	No shunt at interconnects welds						
EP after FIW+RIW	7	I _{L_min} ≥ 488 mA; I _{L_Ave} ≥509 mA	Average IL= 512mA (ΔIL=-0.4% wrt BSC)						
Thermal cycling GEO	8	$\Delta I_L < 3\%$ wrt BOL	I						
Visual Inspection	9	In SCD	No degradation observed						
EP after GEO CY	10	Δl _L <3% wrt BOL	Δ IL=-0.5% wrt BOL Δ I _L values in the range 1.1% to +0.0%						
Interconnect Adherence	11	Ultimate Pull strength >600g at 0° or cell breakage value	Carried out after LEO CY						

SUBGROUP E (GEO and LEO CY) (20+3 samples)							
TEST		Requirement	Results				
Visual Inspection bare	1	In SCD					
EP+DC bare	3	I _{L_min} ≥ 488 mA; I_{L_Ave}≥ 509 mA Ird <1μA; Vdd <.8V @620mA	Average IL= 516 mA Average Vdd= 0.714				
Front interconnect weld	4	Pull on sacrificial samples: >600g each leg	Ø				
Coverglass bonding	5		~				
Rear Interconnect weld	6	Pull on sacrificial samples: >600g	0				
VI after FIW+CB+RIW	7	In SCD	No occurrences				
EP+DC SCA	8	I _{L_min} ≥ 488 mA; I _{L_Ave} ≥504 mA Ird <1μA; Vdd <.8V @620mA	Average Vdd= 0.724 Average IL= 507 mA (ΔIL=-2% wrt BSC)				
Thermal cycling GEO	9	None, environmental test only	0				
Visual Inspection	10	In SCD	No degradation observed				
EP+DC after GEO CY	11	ΔI_{L} <3% wrt BOL	Average Vdd= 0.726 ΔΙ _L =-0. 7% wrt BOL				
Interconnect Adherence on P contact	12	Ultimate Pull strength >600g at 0° or cell breakage value	Carried out after LEO CY				

Thermal cycling GEO: 1650 cycles between -175°C (-10;0) / +130°C (0;+10), 30°C/min (except around 0°C), no dwell, N2 atmosphere

Thermal cycling LEO: 6000 cycles between -140°C (-10;0) / +140°C (0;+10), 30°C/min (except around 0°C) , no dwell, N2 atmosphere

	Pull strength Front Legs N6x12 (kg)	Pull strength Rear Legs N6x12 (kg)
Average	1.48	1.5
Maximum	2.58	2.04
Minimum	0.82	0.95

Requirement pull strength >600 g per leg

	Pull strength(kg)
Average	1.58
Maximum	2.85
Minimum	0.68(*)

(*) due to a weld break

Overview of subgroup B

SUBGROUP B (20+3 samples)				
TEST		Requirement	Results	
Visual Inspection SCA	1	In SCD	O	
Dimensions, Mass and Flatness	2	Mass <3g;	Average mass: 2.92g Average deflection : 131µm x direction 61µm y direction	
EP+DC SCA BOL	3	I _{L_min} ≥ 488 mA; I _{L_Ave} ≥504 mA Ird <1μA; Vdd <.8V @620mA	Average IL= 509 mA Average Vdd= 0.717V	
Photon Irradiation	4	48h illumination, 60°C annealing 24h	Ø	
EP+DC SCA after PH	5	Degradation <3% on I _L Vdd <0.8V @620mA	 Ø 	
Temperature coefficients (TC+TB)	6	For characterization		
SCA reverse bias	7	Degradation <3%		
Thermo optical properties BOL	8	For characterization	$a_{s'avg} = 0.906 \pm 0.018$ $\epsilon_{N-Avg} = 0.858 \pm 0.03$	
UV Test	9	Δ Isc $\leq 3\%$ variation <3% in TO wrt BOL	Average ∆lsc =-0.3% (measure accuracy 1%)	
TO after UV	12	TO within measurement accuracy wrt BOL	$a_{s'avg} = 0.905 \pm 0.018$ $\epsilon_{N-Avg} = 0.857 \pm 0.03$	

Subgroup B Temperature Coefficients

Average Temperature coefficients for all SCA solar cells in sub B in the range $15^{\circ}/80 {}^{\circ}C$

	Δlsc/ΔT	ΔVoc/ΔT	$\Delta P_{max} / \Delta T$	$\Delta I_{max} / \Delta T$	$\Delta V_{max} / \Delta$
	mA/cm²/°C	mV/°C	mW/cm²/°C	mA/cm²/°C	mV/°C
average	0.0155±0.0021	-6.1 ±0.1	-0.0855±0.0074	0.0110±0.0029	-6.4 ±0.2

Average temperature coefficients for two cells of subgroup B calculated -150°/+150 °C

	∆lsc/∆T	$\Delta Voc/\Delta T$	$\Delta P_{max} / \Delta T$	$\Delta I_{max} / \Delta T$	$\Delta V_{max} / \Delta$
	mA/cm²/°C	mV/°C	mW/cm²/°C	mA/cm²/°C	mV/°C
average	0.0095±0.005	-5.7 ±0.02	-0.0793±0.049	0.0069±0.004	-5.8 ±0.03

Diode Temperature coefficients (Vdd)

 $Tc_{(Vdd)}$ =-1.46±0.06 mV/°C +15°/+80°C

 $Tc_{(Vdd)} = -1.63 \pm 0.01 \text{ mV/}^{\circ}\text{C} - 150^{\circ} / +150^{\circ}\text{C}$

Subgroup B UV Test

TEST CONDITIONS

1 0.995 0.99

0.985 0.98 0.975 0.97 0.965

0.96 0.955

0.95

0.00

200.00

- ✓ UV Illumination: <10 SC in the UV range
 [200-400nm] (average actual: 6.37x)
- ✓ UV Exposure Duration: nominal 1000 EUVH in four stints (actual 1095.8 EUVH)

400.00 600.00 800.00 1000.00

EUVH

- ✓ Samples Temperature: 90°C ± 10°C
- ✓ Pressure: not higher than 10⁻⁵ mbar

TEST RESULTS

- Isc is stable under UV (no darkening)
- Average Δ Isc =-0.3% (measure accuracy 1%) in EP outside the chamber

Remaining lsc [0.01%]

Overview of subgroup C

Sub group C (12 samples	;)		
Test		Requirements	Results
Visual inspection (VI)	1	VI criteria in SCD	
Dimensions and weight (DW)	2	samples shall fit a calibrated jig and their mass shall be $\leq 3g$	Largest mass: 2.98g
Electrical performance (EP)	3	I_{LMIN} = 488 mA (16.2 mA/cm ²) (for single SCA) I_{LMIN_AVG} = 504 mA (16.7 mA/cm ²) (for each qualification lot	Average IL= 508 mA
Diode Characterisation (DC)	4	V _{dd} (max): <800mV @620mA I _{rd} max: <1μA@ -5V	Average Vdd= 0.727V
Solar Cell reverse bias test (RB)	5	$\Delta I_L \leq 3\%$ for all samples in EP Test Sequence 6	Average II=508 mA
Electrical performance (EP)	6	$\Delta I_{L} \leq 3\%$ for all samples with respect to Test Item 3	∆ II=-0.11%
Spectral response BOL	7	Characterization step	
Temperature coefficients and diode temperature behavior	8	Characterisation step (BOL and EOL on same samples)	
Electron irradiation (EI)	9	Process step	

Subgroup C Overview

Sub group C (12 samples)		
Test		Requirements	Results
Photon soak and temperature Annealing (PH)	10	Characterization step	
Visual inspection (VI)	11	VI criteria in SCD	I
Electrical performance (EP)	12	Same Remaining power factor within 3% after annealing with respect to bare cell values	
Diode Characterisation (DC)	13	Diode performances shall be in line within 3% with respect to the value declared by supplier	
Temperature coefficients and diode temperature behavior	14	Characterization step	 Image: Contract of the second s
Solar Cell reverse bias test (RB)	15	No degradation for all samples in EP Test Item 16	
Electrical performance (EP)	16	$\Delta I_L \leq 3\%$ for all samples with respect to Test item 12	
Spectral response EOL	17	None, characterization step	
Thermo optical properties EOL	18	Characterization step	$a_{s'avg} = 0.904 \pm 0.018$ $\epsilon_{N-Avg} = 0.84 \pm 0.03$

Subgroup C: irradiation electron 1MeV energy, 1. 10¹⁵ e-/cm² dose

	Energy	dose	RF (Isc)	RF (Voc)	RF (Pm)	RF (Im)	RF (Vm)
CTJ30_80_SCA	1 MeV	1.00E+15	0.90 ±0.009	0.94 ±0.002	0.84 ±0.007	0.89 ±0.006	0.94 ±0.005
CTJ30_80_Bare cells irradiated together with the SCAs	1 MeV	1.00E+15	0.90 ±0.0.9	0.94 ±0.005	0.84± 0.009	0.90 ±0.01	0.94 ±0.011
CTJ30_80_ bare cells From quaification report	1 MeV	1.00E+15	0.93 ±0.02	0.93 ±0.003	0.84±0.01	0.89 ±0.02	0.94 ±0.01

The RPF are in line with BSC findings

Comparison spectral response BOL and EOL

Average temperature coefficients for all EOL CTJ30_80_SCA in the range 15°-80 °C

Energy	dose	∆lsc/∆T	ΔVoc/ΔΤ	$\Delta P_{max} / \Delta T$	
MeV	e-/cm²	mA/cm²/°C	mV/°C	mW/cm2/°C	
-	BOL	0.0143±0.003	-6.1 ±0.003	-0.0873±0.006	
1	1.00E+15	0.0133 ±0.003	-6.5 ±0.003	-0.0799±0.006	

EOL Temperature coefficients calculated in the range $-150^{\circ}C$ /+ $150^{\circ}C$ for 2 cells.

Energy	dose	∆lsc/∆T	ΔVoc/ΔΤ	$\Delta P_{max} / \Delta T$
MeV	e-/cm ²	mA/cm²/°C	mV/°C	mW/cm2/°C
-	BOL	0.0104±0.006	-5.6 ±0.03	-0.0711±0.01
1	1.0E+15	0.0135±0.004	-5.8±0.003	-0.055±0.001

Diode Temperature coefficients EOL (Vdd)

 $Tc_{(Vdd)}$ =-1.83±0.6 mV/°C +15°/+80°C

 $Tc_{(Vdd)} = -1.74 \pm 0.01 \text{ mV/}^{\circ}\text{C} - 150^{\circ} / +150^{\circ}\text{C}$

Overview of subgroup F

Subgroup F	Subgroup F					
Test		Requirements	Results			
Visual inspection (VI)	1	VI criteria in SCD	0			
Dimensions and weight (DW)	2	samples shall fit a calibrated jig and their weight shall be < 3 g	Average mass 2.85g			
Electrical performance (EP)	3	I_{LMIN} = 488 mA (16.2 mA/cm ²) (for single SCA) I_{LMIN} = 504mA (16.7 mA/cm ²) (for each qualification lot	Average IL= 508 mA Average Vdd= 0.733V			
LIFE TEST	4	$\Delta I_{L} \leq 3\%$ for all samples in EP Test item 6	O			
Visual inspection (VI)	5	VI criteria in SCD	0			
Electrical performance (EP)	6	$\Delta I_{L} \leq 3\%$ for all samples				

Subgroup F: UV test was carried out at ESTEC

Long Term Test sequence and condition:

- ✓ Sample characterization before test, including visual inspection (VI), electrical performance (EP), electroluminescence (EM) and dark IV (DIV)
- ✓ Facility bake-out and cleanliness verification
- ✓ Long Term Test 1000 hrs (GEO requirement) at 150°C -0°C/+5°C, 80% in forward mode (VL=2.26V) and 20% in reverse mode (VR=-0.35V) under AM0, 1 solar constant illumination.
- ✓ Intermediate characterization (VI, EP, EM and IV)
- ✓ Long Term Test additional 2000 hrs (to reach LEO requirement) at 150°C -0°C/+5°C, 80% in forward mode and 20% in reverse mode
- ✓ Final sample characterization after the test (VI, EP, EM and DIV)

Test passed: all samples meet the requirement $\Delta IL_{average} = -1.73\%$

Qualification Test campaign at diode level

Group	Description	Qualifying tests
BI	Burn in test and ESD	Welded diode infant mortality test: 216 h with the diodes at 140°C at -5V reverse bias for 92% of the time and to 510mA forward bias for 8% of the time
OD	Diode front/rear interconnector adherence	Thermal cycling GEO+LEO as per SCA
ОВ	Extended storage simulation (Bare diode level)	Humidity and Thermal cycling GEO+LEO as per SCA
С	EOL performance data	Electron irradiation at 1 MeV, 10 ¹⁵ e ⁻ /cm ² dose (performed together with the SCAs)
V	Welded diode ageing test and switching behavior	Ageing test: 1000 hours GEO and 3000 hours LEO at 140°C. Switch behavior: -ground testing mode: 100 cycles at 90°C between -5V reverse bias and 510mA forward bias -primary discharge: 100 cycles at 90°C between -5.3 reverse bias and +4.5A forward bias

Qualification Test campaign at Diode level: Subgroup BI

		Bare external p	protection diode	es (92+27 spares	s samples)	samples)			
Test	Symbol	OD (32+8 spares)	OB (10+2 spares)	BI (20+10 spares)	C (10+2 spares)	V (20+4 spares)			
Welding of Interconnectors	WI			5	1	1			
Visual inspection	VI	1, 5,8,11	1,5,8,11	1,6,9,12,15	2,5,9,12	2,6,14			
Dimensions & Weight	DW	2	2	2	3	3			
Diode Characterisation	DC	3, 6,9	3,6,9	7,10,13	4,6,10,13	4,7,9,11,13			
Thermal Cycling	СҮ	4	7						
Welded diode infant mortality (Burn in)	BI	7		8		5			
Humidity & Temperature	HT		4						
Contact uniformity	CU			3					
Surface Finish	SF			4					
Contact adherence	CA		10						
Pull test	PT	10		14					
Electron Irradiation	EI				8				
Temperature annealing	TA				11				
Temperature behaviour	ТВ				7,14				
Human body ESD test (ESD)	DE			11					
Welded diode behaviour in switching mode (Switching)	DS					8,12			
Welded diode long term stability (Life)	DL					10			

Diode assembly qualification campaign - Subgroup BI

Qualification Test campaign at Diode level: Subgroup OD

		Bare external protection diodes (92+27 spares samples)					
Test	Symbol	OD (32+8 spares)	OB (10+2 spares)	Bl (20+10 spares)	C (10+2 spares)	V (20+4 spares)	
Welding of Interconnectors	WI			5	1	1	
Visual inspection	VI	1, 5,8,11	1,5,8,11	1,6,9,12,15	2,5,9,12	2,6,14	
Dimensions & Weight	DW	2	2	2	3	3	
Diode Characterisation	DC	3, 6,9	3,6,9	7,10,13	4,6,10,13	4,7,9,11,13	
Thermal Cycling	СҮ	4	7				
Welded diode infant mortality (Burn in)	BI	7		8		5	
Humidity & Temperature	HT		4				
Contact uniformity	CU			3			
Surface Finish	SF			4			
Contact adherence	CA		10				
Pull test	PT	10		14			
Electron Irradiation	El				8		
Temperature annealing	TA				11		
Temperature behaviour	ТВ				7,14		
Human body ESD test (ESD)	DE			11			
Welded diode behaviour in switching mode (Switching)	DS					8,12	
Welded diode long term stability (Life)	DL					10	

Diode assembly qualification campaign - Subgroup OD (Thermal cycling+ Pull test)

	H			to						F		
Configuration 1:		Con	nfiguratio	n 2:		7				Diodes after IC welding	(uA)	
(P contact): 20		froi	nt IC +reai	r IC:	009/	n-				Diode (only Front interconnect)	<0.5	0.719
samples	0034	20 :	samples		The	and the				Diodes (both Front and Rear interconnects)	<0.5	0.716
										-		
										After GEO CV	Ird @-5V	Vdd @620 mA
				_					3	Alter GLO CT	(μΑ)	(V)
	CV.	Number of	lem	p. Range		Duration (*)	Envir	onment		Diode (only Front interconnect)	<0.5	0.742
Thermal	CY	cycles	-175 (-1	(0.0) / +130	30 °C	[min] 2/min. max	lr	nert		Diodes (both Front and Rear interconnects)	<0.5	0.734
aucling toot	GEO	1650		0,0,7 · 100	tem	perature	atmo	sphere		·		
onditions			,,,10)	grade	e, no dwell	(Niti	rogen)		After LEO CV	Ird @-5V	Vdd @620 mA	
		140/1	$(0,0)/(\pm 1.40)$	30 °C	:/min. max	lr	nert			(μA)	(V)	
	LEO	6000	1-140 (-1	0,0// · 140	tem	perature	atmo	sphere		Diodes (only Front interconnect)	<0.5	0.742
			(0	J;+10)	grade	e, no dwell	(Niti	rogen)	_	Diodes (both Front and Rear interconnects)	<0.5	0.728
Pull test												
				Interconnect Pull strength	N6x12 (kg)	Interconnect I B	FROG					
OD diode type				2.44	,	Pull strength(kg)				Ird @-5V	Vdd @620 mA
		Average		2.44		-				After burn in	(µA)	(V)
Diodes (only From	nt interconnect)	Maximun	n	3.31		-		<u> </u>		Diodes (only Front interconnect)	<0.5	0.733
		Minimum	า	1.22		-				Diodes (both Front and Bear		
		Average		2.58		1.7				interconnects)	<0.5	0.727
Diodes (both Fro interconnects)	nt and Rear	Maximun	n	3.17		2.54						
		Minimum	า	1.68		0.91						

Requirement: minimum pull strength per leg: 0.6kg or value at cell/IC breakage

Qualification Test campaign at Diode level: Subgroup OB

		Bare external p	rotection diode	es (92+27 spare	s samples)	les)				
					1					
Test	Symbol	OD (32+8 spares)	OB (10+2 spares)	BI (20+10 spares)	C (10+2 spares)	V (20+4 spares)				
Welding of Interconnectors	WI			5	1	1				
Visual inspection	VI	1, 5,8,11	1,5,8,11	1,6,9,12,15	2,5,9,12	2,6,14				
Dimensions & Weight	DW	2	2	2	3	3				
Diode Characterisation	DC	3, 6,9	3,6,9	7,10,13	4,6,10,13	4,7,9,11,13				
Thermal Cycling	СҮ	4	7							
Welded diode infant mortality (Burn in)	BI	7		8		5				
Humidity & Temperature	HT		4							
Contact uniformity	CU			3						
Surface Finish	SF			4						
Contact adherence	CA		10							
Pull test	PT	10		14						
Electron Irradiation	EI				8					
Temperature annealing	TA				11					
Temperature behaviour	ТВ				7,14					
Human body ESD test (ESD)	DE			11						
Welded diode behaviour in switching mode (Switching)	DS					8,12				
Welded diode long term stability (Life)	DL					10				

Diode assembly qualification campaign - Subgroup OB

Average bare diode characteristics

30 days at 60 °C under relative humidity \geq 90%. Vdd @620 Ird @-5V Bare diode (12 samples) mA Vdd @620 Ird @-5V (µA) (V) After HT1 mA < 0.5 0.722 Average (V) (μA) < 0.5 0.721 Average Thermal cycling test conditions Vdd @620 Ird @-5V After GEO CY mA **Cycle Duration** Temp. Range Number CY **Environment** (V) (µA) of cycles [°C] [min] < 0.5 0.739 Average 30 °C/min. max Inert -175 (-10;0) / +130 GFO 1650 temperature grade, atmosphere (0;+10)Vdd @620 no dwell (Nitrogen) Ird @-5V mΑ **After LEO CY** 30 °C/min. max Inert (μA) (V) -140 (-10;0) / +140 LEO 6000 temperature grade, atmosphere (0;+10) Average < 0.5 0.746 no dwell (Nitrogen) No residues of diode material was observed on Peel test (Scotch 600 tape) tape, no delaminated metal area was present on the diode.

CESI

Humidity test conditions

Qualification Test campaign at Diode level: Subgroup V

		Bare external protection diodes (92+27 spares samples)						
			1	1	1			
Test	Symbol	OD (32+8 spares)	OB (10+2 spares)	BI (20+10 spares)	C (10+2 spares)	V (20+4 spares)		
Welding of Interconnectors	WI			5	1	1		
Visual inspection	VI	1, 5,8,11	1,5,8,11	1,6,9,12,15	2,5,9,12	2,6,14		
Dimensions & Weight	DW	2	2	2	3	3		
Diode Characterisation	DC	3, 6,9	3,6,9	7,10,13	4,6,10,13	4,7,9,11,1 3		
Thermal Cycling	СҮ	4	7					
Welded diode infant mortality (Burn in)	BI	7		8		5		
Humidity & Temperature	HT		4					
Contact uniformity	CU			3				
Surface Finish	SF			4				
Contact adherence	CA		10					
Pull test	PT	10		14				
Electron Irradiation	EI				8			
Temperature annealing	TA				11			
Temperature behaviour	ТВ				7,14			
Human body ESD test (ESD)	DE			11				
Welded diode behaviour in switching mode (Switching)	DS					8,12		
Welded diode long term stability (Life)	DL					10		

Diode assembly qualification campaign - Subgroup V (Diode switching test on 24 samples)

Switch level 1

Time (s)

Diodes after	Ird @-5V	Vdd @620 mA	
welding	(μA)	(V)	
Average	<0.5	0.722	

Diodes after burn in	lrd @- 5V (μA)	Vdd @620 mA (V)
Average	<0.5	0.728

Diodes after switching	Ird @-5V	Vdd @620 mA
test (BOL)	(μA)	(V)
Average	<0.5	0.730

0.6

1.5

Switch level 1

0.6 0.5 0.5 0.5 **Diode switching sequence** -0.5 -1.5 age -2.5 -3.5 0.4 (A) 0.3 0.2 0.2 0.4 (A) 0.3 0.2 **Cycle conditions** No. of cycles Temperature (°C) **Test sequence** 90 Switch level 1 100 V_{reverse diode}=-5V; 0.1 0.1 -4.5 I_{forward_diode}= 510mA; (ground testing and 0.0 0.0 -5.5 1.000005 0.999995 1 bus commutations) T_1 and $T_4 = 1 \mu s$ 2 0 1 Time (s) Time (s) $T_{2} = 50 \mu s$ Switch level 2 $T_{3} = 1s$ Switch level 2 2.0 5.0 2.0 Switch level 2 100 90 V_{reverse diode}=-5.3V; 1.0 1.0 4.0 (primary discharges) I_{forward diode}= 4.5A; 0.0 0.0 0.0 √oltage 0.2- @ 0.5- () 0.5- 0 0.5- 0 0.5- 0 0.0 0.5- 0 0 Current (A) Vrd Voltage (V) 0.2- 0.2-0.2- 0.2-3.0 T_1 and $T_4 = 50 \mu s$ lfd 2.0 T₂= 180µs $T_3 = 2s$ 1.0 -4.0 -4.0 0.0 -5.0 -5.0 -6.0 -6.0 -1.0 1.99990 2.00010 0.00 2.00 4.00

CONFIDENTIAL-LIMITED USE

2.00050

1.5

0.5

-0.5

-3.5

-4.5

-5.5

5.0

4.0

2.0

0.0

-1.0

3.0 €

1.0 ^{UND}

ent

1.00001

r...

2.00030

Time (s)

-0.5 () -1.5 -2.5 -2.5 -3 5

Diode assembly qualification campaign - Subgroup V (Diode long term stability test on 24 samples)

Diode long term stability sequence and conditions

< 0.5

0.730

Average

- 1. About CESI
- 2. Qualified CTJ30_80 bare solar cells
- 3. CCN2 activities
- 4. Qualification results at SCA level
- 5. Results from Subgroup M
- 6. Main benefits and achievements
- 7. Acknowledgements & AOB

Group M: definition of subgroups for BSC and SCA thin flexible solar cells

Subgroup M aimed at verifying the flexibility and the reliability of thin (80 μ m) solar cells / solar cell assemblies mounted on curved surfaces or on flexible supports and identifying methods to test the cell behavior in bending configuration.

BSC level

- Subgroup M1/BSC Long term Bending properties at Bare cell level
- Subgroup M2/BSC Interaction with a flexible substrate at Bare cell level (shrinking test)
- Subgroup M3/BSC Ultimate Bending properties at Bare cell level

SCA Level

- Subgroup B UV test
- Subgroup C Electron irradiation 1MeV, 1 10¹⁵ e⁻/cm² fluence
- Subgroup E Thermal cycling (only LEO CY)
- Subgroup M1/SCA Long term Bending properties at SCA level
- Subgroup M2/SCA Interaction with a flexible substrate at SCA level (shrinking test):
- Subgroup M3/SCA Ultimate Bending properties at SCA level

Subgroup M: four test methods have been implemented

Standard bending (*)

The solar cells are bent to a cylinder 11.5 cm radius in the four modes :

- Face-front, long side
- Face front, short side
- Face- rear, long side
- Face-Rear, short side

(*)these test conditions are also applied for the **multiple bending sequence**

Long duration bending

Flexible BSC and SCA are wrapped around an aluminium cylinder (11.5 cm radius) for **8 months**.

After this period samples are gently unwrapped and BSC and SCA removed from the cylinder to allow further analysis.

METHOD

Methods

Shrinking test

BSC, SCA, and SCA on flexible blanket are submitted to a thermal shock test, consisting of :

20 cycles between -197°C/+130°C (2 minutes per cycle).

The objective is to evaluate how the cells at bare and SCAs level (or the SCAs on blanket) adapt to the abrupt temperature changes in connection with the presence of resin and coverglasses (SCA level) or blanket and resin

Ultimate bending

The solar cells are bent to cylinders with decreasing radius in the four modes. The radius of breakage and mode are recorded Requirement:

no breakage above 7 cm radius for bare cells no breakage above 9 cm radius for SCAs

CESI

METHOD

CONFIDENTIAL-LIMITED USE

25/07/2022 41

Bare solar cells: test matrix

Test	Test Code	M1 (10 samples)	M2 (10 samples)	M3 (10 samples)
Front Interconnect Welding	FIW		4	
Rear Interconnect Welding	RIW		5	
Visual inspection	VI	1, 6,9, 15,21	1,8,11,14,17	1
Dimension and weight	DW	2	2	2
Electrical performance	EP	4,7,10,13,16,19,22,2 5	3,6,9,12,15,18	3,5
Flatness	FT	3,11,17, 23		
Bending standard	BS	5,12,18, 24	10,16	
Shrinking test	ST	8,20	13	
Long bending	LB	14		
Multiple bending	MB			4
Ultimate bending	UB	26		6
Blanket Bonding	BB		7	

Bare cells: electrical performance and flatness

No relevant variation in the electrical performance after standard bending, long bending and multiple bending test and after shrinking test at bare level

Average electrical performant	ce	lsc [A]	Voc [V]	Pmax [W]	Ipmax [A]	Vpmax [V]	PL [W/]	IL [A]	F.F.	<u>д</u> іі Г%1	
BOI	Ston 1	0 / 70	2 554	1.042	0.464	2 246	1.030	0.454	0.85	[/0]	1
		0.475	2.554	1.042	0.404	2.240	1.030	0.434	0.85	1.000/	-
After standard bending	Step 7	0.476	2.553	1.032	0.461	2.238	1.013	0.448	0.85	-1.32%	
After Shrinking test	step 10	0.479	2.549	1.042	0.462	2.256	1.026	0.454	0.85	1.34%	
After bending standard	Step 13	0.476	2.550	1.039	0.460	2.257	1.021	0.452	0.85	-0.44%	
After long bending	Step 16	0.476	2.552	1.030	0.461	2.234	1.016	0.451	0.85	-0.22%	
After standard bending	Step 19	0.476	2.558	1.027	0.460	2.233	1.016	0.450	0.84	-0.22%	
After Shrinking test	Step 22	0.476	2.555	1.028	0.460	2.234	1.016	0.450	0.85	0.00%	
After standard bending	Step 25	0.474	2.557	1.028	0.458	2.242	1.021	0.452	0.84	0.44%]

Sub group M1

Variation of the flatness after shrinking test, this do not affect the mechanical properties

Flatness- Average values		Bowing X direction (mm)	Bowing Y direction (mm)		
BOL	Step 3	0.102	0.333		
After Shrinking test	Step 11	0.095	0.042		
After long bending	Step 17	0.108	0.043		

Bare cells – Shrinking test Subgroup M2

- Ok on bare solar cells
- Not applicable if bare cells are glued on flexible blanket
 - Peek 100 μm thick
 - Kapton 70 μm thick
- Carbon reinforced polymide 50 μm thick
 Resin Wacker RTV-S691

Test conditions:

- blanket free-to-move
- blanket on frame

Cells rolled and twisted on the long size and broke

CONFIDENTIAL-LIMITED USE

25/07/2022 44

Bare cells –ultimate bending results

Requirement: no breakage at 7 cm radius

Subgroup M 1 (long bending)

Ultimate bending Ultimate bending Ultimate bending 5 3 3 2.5 2.5 4 N° of cells 5 5 2 n°of cells 2 N°of cells 1.5 1.5 1 1 0.5 0.5 0 0 0 11 4.5 7.5 6.5 5 4 3.75 3.5 4.5 11 7.5 6.5 4 3.75 5 3.5 11 75 4.5 6.5 5 4 bending radius Bending radius (cm) **Bad handling Bending radius** ■ front long side ■ back long side ■ front short side ■ back short side back long side front short side back short side front long side ■ front long side ■ back long side ■ front short side back short side

Subgroup M 2 (BOL- interconnect welding)

The ultimate average bending radius at bare level is in the range 4-5 cm in all subgroup tested BOL and EOL

CONFIDENTIAL-LIMITED USE

Subgroup M 3 (Multiple bending)

Flexible solar cell assembly: test matrix

Test	Test Code	B (3)	C (4)	E (6)	M1 (10)	M2 (6)	M3 (8)
-							
Front Interconnect Welding	FIVV			4			
Coverglass Bonding	СВ			5			
Rear Interconnect Welding	RIW			6		4	
Visual inspection	VI	1,11	1,7,13	1,7,11,18	1,7,11,17,22	1,6,10,14, 18	1
Dimension and weight	DW	2	2		2,8	2	2
Electrical performance	EP	3,6,12	3,,8,14	2,8,12,15	4,12a,15a,18,23	3,7,11,15, 19	3a,5a
Thermal cycling	СҮ			10 (only LEO CY)			
Pull test	PT			17			
Spectral response	SR		11				
Thermo-optical data	ТО	8,10	10				
Electron irradiation	EI		5				
Photon irradiation and temperature annealing	РН	5,	6				
Diode characterization	DC	4,7,13	4,9,15	3,9,13, 16	5,9,12b,15b,19, 24	4,8,12,16, 20	3b,5b
Ultraviolet exposure ⁴	UV	9					
Flatness	FT				3,13,20		
Bending standard	BS		12	14	6,14,	9,17	
Shrinking test	ST				10;21	13	
Long bending	LB				16		
Multiple bending	MB						4
Ultimate bending	UB				25		6
Blanket Bonding	BB					5	

CESI

Flexible SCAs-electrical performance and flatness

No relevant variation in the electrical performance after standard bending, long bending and multiple bending test and after shrinking test at bare level

Average electrical perfo	ormance	lsc [A]	Voc [V]	Pmax [W]	lpmax [A]	Vpmax [V]	PL [W]	IL [A]	F.F.	∆il [%]
BOL	Step 4	0.48	2.54	1.033	0.461	2.223	1.024	0.448	0.84	
After standard bending	Step 8	0.479	2.54	1.027	0.462	2.223	1.012	0.448	0.85	0.00%
After Shrinking test	step 12	0.478	2.542	1.021	0.462	2.21	1.001	0.443	0.84	-1.12%
After bending standard	Step 15	0.479	2.544	1.021	0.462	2.21	1.006	0.445	0.84	0.45%
After long bending	Step 18	0.478	2.548	1.022	0.46	2.222	1.008	0.446	0.84	0.22%
After Shrinking test	Step 24	0.478	2.55	1.025	0.461	2.222	1.005	0.445	0.84	-0.22%

Sub group M1/SCA

Average diode perfo	rmance	lrd @-5V (μΑ)	Vdd @620 mA (V)
BOL	Step 5	<0.5	0.738
After standard bending	Step 9	<0.5	0.743
After Shrinking test	Step 12	<0.5	0.739
After bending standard	Step 16	<0.5	0.739
After long bending	Step 19	<0.5	0.745
After Shrinking test	Step 24	<0.5	0.753

Variation of the flatness after shrinking test, the test do not affect the mechanical properties

Flateness		Bowing	Bowing
Average values		X direction	Y direction (mm)
		(mm)	
BOL	Step 3	0.083	0.041
After Shrinking test	Step 11	0.149	0.051
After long bending	Step 17	0.137	0.050

Flexible SCAs–Shrinking test

- > Ok on thin solar cell assembly
- Test applicable but critical for SCAs glued on flexible blanket (carbon reinforced polymide 50 um thick)

20 cycles between -197°C/+130°C (2 minutes per cycle)

Cracks were observed on two SCA coverglass after dipping in LN₂.

- In the first case the cracks originated during the first cycle in LN₂.
- In the second case the defect appeared after 7 cycles.

The cracks did not get worse in the subsequent cycles and no breakages at cell level were evidenced.

Flexible SCAs – ultimate bending results

■ front short side ■ back short side ■ front long side ■ back long side

	Bending	Mode	Type of breakage
CELL ID	radius (cm)		
TCTF002 009	5	back long side	cell breakage
TCTF002 010	5	back long side	cell breakage
TCTF002 020	6	back long side	cell breakage
TCTF003 015	6.5	front long side	cell and coverglass breakage
TCTF003 016	7.5	back long side	cell and coverglass breakage
TCTF003 019	5	back long side	cell breakage
TCTF003 020	5	front long side	coverglass breakage
TCTF003 022	5	back long side	cell breakage
TCTF005 006	7.5	back long side	cell and coverglass breakage
TCTF005 012	6.5	back short side	cell and coverglass breakage

Requirement: no breakage at 9 cm radius

Subgroup M 3 (Multiple bending)

	Bending radius		
CELL ID	(cm)	Bending mode	Type of breakage
TCTF002_008	7.5	back long side	cell breakage
TCTF002_026	7.5	front long side	coverglass breakage
TCTF003_013	6.5	front long side	coverglass breakage
TCTF003_018	6	front long side	coverglass breakage
TCTF002_023	6.5	front long side	coverglass breakage
TCTF004_020	4.5	front long side	coverglass breakage
TCTF005_008	6	back long side	cell breakage
TCTF005 019	5	back long side	cell breakage

The ultimate average bending radius at SCAs level is about 6.5 cm: in most cases the break occurs during the bending in the "long side" mode and only the coverglass or only the solar cells crack.

Subgroup M/B and M/E

UV test and thermal cycling condition satisfied

	NUV- SOLAR AB	Vis-NIR SORPTANCE	MIR EMITTANCE		
SAMPLE ID	BOL	EOL	BOL	EOL	
A-TCTF001_019	0.90	0.90	0.85	0.85	
B TCTF002_002	0.90	0.90	0.85	0.85	
C TCTF002_004	0.90	0.90	0.85	0.85	

Isc remaining factor as a function of the EUHV illumination measured in the UV chamber

	TCTF001_019	TCTF002_002	TCTF002_004
EUVH	(A)	(B)	(C)
0	1	1	1
198.92	0.9925	0.9929	0.9953
464.47	0.9944	0.9963	0.9938
809.17	0.9956	0.9948	0.9936
1044.46	0.9933	0.9933	0.9911

СҮ	Number of cycles	Temp. Range [°C]	Cycle Duration (*) [min]	Environment
LEO	6000	-140 (-10;0) / +140 (0;+10)	30 °C/min. max temperature grade, no dwell	Inert atmosphere (Nitrogen)

✓ The ΔI_{L} values of the solar cells range between -1.29% to -0.11%

✓ Bending standard after CY succesfully passed

	Leg 1	Leg 2	Leg 3	Leg 4	
	(L1)	(L2)	(L3)	(L4)	
Cell ID	Pull	Pull	Pull	Pull	
	strength	strength	strength	strength	
	(kg)	(kg)	(kg)	(kg)	
Average	1.82	1.46	1.88	1.90	
min	1.74	1.41	1.74	1.78	
Max	1.85	1.45	1.80	1.93	

Subgroup M/C

Flexible CTJ30_80 SCAs with the 68088/CMG coverglass have similar EOL properties of the qualified CTJ30_80 SCAs after electron irradiation.

Remaining factor after electron irradiation (1 MeV fluences 1 10¹⁵ e-/cm²)

	Energy	dose	RF (Isc)	RF (Voc)	RF (Pm)	RF (Im)	RF (Vm)
Subgroup M/C	1 MeV	1.00E+15	0.90 ±0.01	0.94 ±0.001	0.84 ±0.01	0.89 ±0.01	0.94 ±0.01
CTJ30_80_SCA from qualification	1 MeV	1.00E+15	0.90 ±0.009	0.94 ±0.002	0.84 ±0.007	0.89 ±0.006	0.94 ±0.005
CTJ30_80_ bare cells	1 MeV	1.00E+15	0.93 ±0.02	0.93 ±0.003	0.84±0.01	0.89 ±0.02	0.94± 0.01

Bending standard after electron irradiation successfully passed

- 1. About CESI
- 2. Qualified CTJ30_80 bare solar cells
- 3. Description of the activities
- 4. Qualification results at SCA level
- 5. Results of subgroup M
- 6. Conclusion and achievements
- 7. Acknowledgements & AOB

Conclusion on the qualification

All performed qualification tests have been passed successfully and all requirements have been met for Thin GaInP/GaAs/Ge triple junction Solar Cell Assemblies CTJ30_80 manufactured by CESI using the qualified CTJ30-80 thin.

WP	ltem	Target Requirement	Minimum Requirement	Results on qualification lot
WP111	Manufacturing CTJ30-80 SCA (size 30 cm ² and 27 cm ²)	 eff. 28.5% (AM0, 25°C) Mass <0.1 g/cm² SCA thickness <230µm 	minimum eff. 28.0% (AM0, 25°C)	Eff 28% Mass <0.1 g/cm ²
WP120	EOL (Electron 1 MeV energy, 1E15 e ⁻ /cm ²)	Remaining Power Factor 0.85	minimum RPF 0.82	Remaining Power Factor 0.84
WP130	Flexibility	No degradation after 8 months in bent configuration	Maximum I _{Load} degradation 2%	Average Degradation ∆II=-0.2% Maximum degradation -1%

The qualification of thin and flexible triple junction solar cells at bare and SCA level demonstrated that the thinning of such devices from 150 μ m down to 80 μ m does not affect the suitability and reliability in space environment.

The specific engineering tests described in this report allowed collecting information on the reliability of the thin (80 μ m) solar cells CTJ30_80 SCAs with flexible coverglass.

- flexible CTJ30_80 SCAs with the 68088/CMG coverglass have similar EOL properties of the qualified CTJ30_80 SCAs after electron irradiation, UV test and thermal cycling.
- the electrical properties of CTJ30_80 (both bare cells and SCAs) are in line with standard BSC/SCA, after long and multiple bending
- The ultimate average bending radius at bare level is in the range 4-5 cm in all tested subgroups
- The ultimate average bending radius at SCA level is in the range 6-7 cm in all tested subgroups

The test methods and procedures implemented and verified in this activity may offer a base for discussion in view of future implementation of specific tests to characterize the mechanical properties (bendability) of thin solar cells in the ECSS standard.

Perspective (Further Technical And Commercial Evolution) for thin CTJ30_80 cells

CESI

CONFIDENTIAL-LIMITED USE

25/07/2022 55

We wish to thank ESA and ASI and for the support to this project.

The GSTP Programme helped CESI to enhancing the confidence of the thin solar cell product and improving the Customer portfolio.

We thank Laurent Challoy for the support in the project and we are particularly grateful to Emilio Fernandez Lisbona for his continuous valuable technical support and advice.

Finally, we would like to acknowledge the valuable insights of TAS-F and AIRBUS-DE in the design of the tests in subgroup M

