

CRETANMATTERWAVES

Optical Beam Steering Technology For Complex Space Missions

BST

Wolf von Klitzing

ESTEC 15/03/2018

AtomQT

FUTURE & EMERGING TECHNOLOGIES scheme

MatterWave

G. VasilakisS. Pandey, G. Drougakis, K. Mavrakis, P. Christodoulou, K. Poulios, I. Alonso-MiguelM. MikisH. Mas, W. von Klitzing, V. Bolpasi

FORTH

Foundation for Research and Technology - Hellas

ISEL-FORTH

Research in Crete

FORTH in Greece

Institute of

People of FORTH

IESL-FORTH

+ Laser Interactions and Photonics Division

Strong Field Physics Atoms, Molecules and Clusters Theoretical Atomic, Molecular & Optical Physics Photon Science Applications

- Biophotonics
- Laser Processing of Materials
- Diagnostic Methods and Instrumentation
- Lasers in Cultural Heritage

+ Materials and Devices Division

- Micro/Nano-electronics
- . Soft Matter
 - Polymer & Colloid Science
 - Hybrid Nanostructures
- Transparent Conductive Materials
- Magnetic Materials
- Theoretical Condensed Matter Physics
- Photonic, Phononic and Metamaterials
- Astrophysics and Astronomy (Skinakas Observatory)

•FOUNDATION for RESEARCH & TECHNOLOGY - HELLAS **•UNIVERSITY OF CRETE**

•MAX PLANCK INSTITUTE for EXTRATERRESTRIAL PHYSICS

SKINAKAS OBSERVATORY

3m Telescope of Ritchey-Chrétien type

Echelle Spectrograph

Polarimeter **RoboPol**

e

Laserlab Laserlab Europe

Laserlab Europe

- + A network of big European national laboratories
- Transnational Access
 (4000 days of access)

BEC and MatterWaves at IESL-FORTH

Matter-Wave Interferometry

Guided for Matter-Wave Interferometry for inertial navigation

Ultra-Bright Atom Lasers

BEC in Space: Testing Einstein's Weak equivalence principle

Matter-Wave&Quantum Tools

Very long Baseline Matterwave interferometry

Prec Sion Gravity ?

Gravity Gradiometry Using the Meissner Effect and a Squids

ARK&X A member of

Gabon, 2009

Riex

ARKOX NIBICS

۲

Grace Monthly Mass Grid

nterferometry

Cretan Matter-Waves Group

The Double Slit

BEC Ketterle Interference

R.Andrews et al. Observation of Interference Between Two Bose Condensates Science 275:5300 637-641 (1997)

Why Matterwaves?

Matter-Wave Interferometry Why???

A Sagnac Gyroscope:

$$\begin{split} \Delta \phi &= \frac{4\pi}{\lambda v} \Omega A \\ \frac{\Delta \phi_{\text{atom}}}{\Delta \phi_{\text{light}}} &= \frac{\lambda_{\text{light}} c_0}{h/m} = 5 \times 10^{10} \end{split}$$

Plus

- + Internal States
- + Gravitation
- + Atom-Atom Interaction
 - +Heisenberg Limited Detection

Matter-Wave Interferometers

Why not?

BEC.gr

IESL

Why Space?

Breadboards

GRAVITY LABORATORY

LISA Pathfinder showed that it could measure tiny variations in the distance between two free-falling cubes, paving the way for a full-scale experiment in which the falling masses will reside on different satellites, millions of kilometres apart.

At the heart of Pathfinder are two free-falling metal cubes, shielded from all forces except gravity by their housing. The housing monitors each cube's position and commands the craft to move so that the cube is always at its centre.

Any disturbance to the relative motion of the cubes affects the frequency of the laser bouncing between them. The cubes float in a vacuum, surrounded by instruments that mitigate stray forces.

Requirements LISA vs Atoms

LISA

- 1. Fiber to Free-Space
- 2. Priority: Pointing Stability
- 3. Angular Stability
- 4. Distance Stability
- 5. Low Complexity

ATOMS

- 1. Fiber to Free-Space to Fiber
- 2. Priority: Coupling efficiency
- 3. Active Elements
- 4. High Complexity

STE-QUEST

STE-QUEST

NAUS

Solutions Atoms & LISA

MAIUS

LISA

- 1. Hydroxyl Bonding
- 2. All alignment done by machining and polishing
- 3. Only custom components

- 1. Epoxy/UV Bonding
- 2. Complex Mounts

OBST

- 1. Independent of Bonding technology
- 2. Simple Mounts
- 3. Separate Fine Alignment

Aim of the OBST project

To demonstrate

- 1. Novel Beam Steering for Bread boards
- 2. Very High stability (coupling efficiency)
- 3. Reduction in production difficulties/costs
- 4. Simplification of assembly procedures
- 5. Learn how to deal with ESA

Demonstration of Feasibility and Use

Plate and Wedge

Optical Plate

Pair of Wedges

Alignment methods		Prediction*	Typical Sensitivity	Assumptions*
Beam positioning	beam plate rotation	$\Delta h \approx \theta d \frac{n-1}{n}$	19 µm/mrad	d=1 mm n=1.5
Beam pointing (pitch/yaw)	wedge rotation	$\Delta \varphi \approx \! \frac{4}{\pi} (n \! - \! 1) a \theta$	45 µrad/mrad	α=4 deg n=1.5

The Fully Integrated OBST

Comparison of Couplers

LISA Coupler

OBST Coupler

Side View

ALL Mechanical Elements of OBST

ALL Mechanical Elements of OBST

ALL Mechanical Elements of OBST

Side View

Side View

Side View

Aim of the OBST project

ID	Requirement description	Unit	Required Value	Theory Value	Achieved Values	Better than required by
OBST-010	Reduction in complexity	n/a	n/a	Consider- able	Consider- able	equaled
OBST-041	Coupling Efficiency	%	> 85	≥95%	≥89%	35% Iower
OBST-051	Long & Short Term Fluctuations	% RMS	< 5 %	< 5 %	<2 %	150%
OBST-062	Beam alignment	µrad	< 100	5	< 5	1000%
		μm	< 100	5	< 5	1 300 /0
OBST-061	Positional alignment	μm	< ±100		< 100 µm.	equaled
OBST-052	Operating Temperature Range	°C	10-40		10-40	
OBST-021	Surface polish accuracies	nm	<158		< 63	150%
OBST-053	Temperature stability (Testing environment)	K/ Hz ¹ ⁄2	~ 1x10 ⁻²		< 6x10 ⁻⁴	1500%
OBST-022	Angular tolerances of components	arcm in	5		5	

Assembly: Lens

Zerodur coupler before (left) and after (right) applying the UV adhesive

UV adhesive formed a black ring

Curing with UV light

Side View

Coarse-align and bond in place

Fiber to fiber alignment

The Fully Integrated OBST

Measuring the Coupling Efficiency

Thermal Stability Stable Temperature

Thermal Stability Large temperature *drift*

CE over multiple cycles between 10° and 40°C. Temperature was monitored in air (blue), wedge surface (purple) and breadboard surface (green). Mean value of CE is 88% and is represented by the dashed red line while the black dashed lines correspond to the peak values.

Thermal Stability Origin of the fast fluctuations

Conclusions OBST works:

ID	Requirement description	Unit	Required Value	Theory Value	Achieved Values	Better than required by
OBST-010	Reduction in complexity	n/a	n/a	Consider- able	Consider- able	equaled
OBST-041	Coupling Efficiency	%	> 85	≥95%	≥89%	35% Iower
OBST-051	Long & Short Term Fluctuations	% RMS	< 5 %	< 5 %	<2 %	150%
OBST-062	Beam alignment	µrad	< 100	5	< 5	1900%
		μm	< 100	5	< 5	

- Good to work with ESA !
- How to document
- Deliver on time (workflow)
- We can do it !

Outlook

- Take OBST to the next level
 - Complex setups
 - -Vibration testing
 - Integration of active components
- C-COOL
- Develop a laboratory version (Spinoff?)
- STE-QUEST // Earth observation

www.bec.gr

COST - Network on Atom Quantum Technologies 16-18 April, CRETE

AtomQT 2018

www.bec.gr

FOMO

2018

(ESA) Advanced School on Optics 12-17 May 2019