
Optical Beam
Steering Technology

For Complex Space Missions
Wolf von Klitzing

ESTEC
15/03/2018

FORTH—IESL

ESA-OBSTQTea ITN
MatterWaveAtomQT

OBST



S. Pandey, G. Drougakis, K. Mavrakis, P. Christodoulou, K. Poulios, I. Alonso-Miguel
H. Mas, W. von Klitzing, V. Bolpasi 

G. Vasilakis
M. Mikis





ISEL-FORTH

FORTH  
Foundation for Research and Technology - Hellas



T U of C
U of C 

FORTH 

Agric. 
Research 

Inst.

Agric. 
Research 
Center

ΙMBC 

Univ. 
Hospital 

Technical 
Educational 

Inst. 
RCC

Research in Crete



Institute of  
Electronic Structure  

and Laser, 
Heraklion

Institute of  
Computer Science, 

Heraklion

Institute of  
Molecular Biology  
and Biotechnology, 

Heraklion 

Institute of  
Applied &  

Computational  
Mathematics, 

Heraklion

Institute of  
Chemical Engineering  

Sciences,  Patras

Institute for 
Mediterranean  

Studies, 
Rethymnon

Ioannina  
Biomedical Research 

Institute

Crete University Press 
STEP-C

FORTH  
in Greece



0
50

100
150
200
250
300
350
400
450
500
550
600
650
700
750
800
850
900
950

1000
1050
1100
1150
1200
1250
1300
1350
1400
1450
1500

1983
1985

1987
1989

1991
1993

1995
1997

1999
2001

2003
2005

2007
2009

2011
2013

2015

Ερευνητικό
Τεχνικό
Υπότροφοι
Διοικητ. & Βοηθ.

Administrative and auxiliary staff Fellowships
Technical staff Research Staff

People of FORTH



+ Laser Interactions and Photonics Division 
. Strong Field Physics 
. Atoms, Molecules and Clusters 
. Theoretical Atomic, Molecular & Optical Physics 
. Photon Science Applications 

- Biophotonics 
- Laser Processing of Materials  
- Diagnostic Methods and Instrumentation 
- Lasers in Cultural Heritage 

+ Materials and Devices Division
. Micro/Nano-electronics 
. Soft Matter 

- Polymer & Colloid Science 
- Hybrid Nanostructures 

. Transparent Conductive Materials 

. Magnetic Materials 

. Theoretical Condensed Matter Physics 

. Photonic, Phononic and Metamaterials
+ Astrophysics and Astronomy (Skinakas Observatory)

IESL-FORTH
2.7 fs



Comet Hale-Bopp 
Skinakas Observatory

 S K I N A K A S 
OBSERVATORY

At an altitude of 1750 m on 
Psiloritis mountain at an excellent 

observing site Skinakas Observatory 
operates 3 telescopes equipped 

with a large suite of modern 
astronomical instruments

•FOUNDATION for RESEARCH & TECHNOLOGY – HELLAS 

•UNIVERSITY OF CRETE 

•MAX PLANCK INSTITUTE for EXTRATERRESTRIAL PHYSICS 

1.3m Telescope of Ritchey-Chrétien type

Near Infrared Camera Echelle Spectrograph  Polarimeter 

RoboPol



Laserlab Europe 
+ A network of big European 

national laboratories  
+ Transnational Access 

(4000 days of access) 
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Guided for Matter-Wave 
Interferometry for inertial navigation

Matter-Wave Interferometry

 Matter-Wave&Quantum Tools

120327_ 1335_ 35 

Ultra-Bright 
Atom Lasers

BEC and MatterWaves
at IESL-FORTH

Very long Baseline 
Matterwave interferometry

ELGAR

BEC in Space: 
Testing Einstein’s  
Weak equivalence 

principle

STE-QUEST

SAGE7 23 34

C 
C 
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Why
Precision 
Gravity ?



Gravity Gradiometry 
Using the Meissner Effect and a Squids

A member of 

Gabon, 2009

Images used with the kind permission of ARKeX



Grace Monthly Mass Grid



Matterwave
Interferometry

& Clocks



Cretan Matter-Waves Group

FORTH—IESLThe Double Slit
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BEC Ketterle Interference
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 R. Andrews et al.  Observation of Interference Between Two Bose Condensates Science  275:5300 637-641 (1997)
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Matter-Wave Interferometry 
Why???

Plus  
+ Internal States 
+ Gravitation 
+ Atom-Atom Interaction 

+Heisenberg Limited Detection

A Sagnac Gyroscope:
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Conclusion

Europe needs bold strategic investment now in order to lead the second quantum revolution. Building on 
its scientific excellence, Europe has a window of opportunity to foster the competitive quantum 
 technology industry essential for the delivery of long-term prosperity and security. 

To that end, this Manifesto calls upon Member States and the European Commission to launch an 
ambitious, long-term, flagship-scale initiative combining education, science, engineering and entrepre-
neurship across Europe. 

To succeed, this initiative should aim, on the one hand, at consolidating Europe’s excellent position in 
research, keeping a broad scope and allowing the time it takes to achieve the basic results. On the other 
hand, it should engage with industry to unlock the full innovation potential of quantum technologies, 
thus accelerating their development and take-up by the market in order to deliver fully on their promis-
ing economic and societal benefits.

Integrated quantum sensors (iSense) project funded in 
the FP7 FET Open programme.

A micron-scale nanowire device for demonstrating concepts of topological 
quantum computing. D. Razmadze, Center for Quantum Devices, University 
of Copenhagen.
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Requirements   
LISA vs Atoms

1. Fiber to Free-Space
2. Priority: Pointing Stability
3. Angular Stability
4. Distance Stability
5. Low Complexity

LISA ATOMS
1. Fiber to Free-Space to Fiber
2. Priority: Coupling efficiency
3. Active Elements
4. High Complexity



LISA



STE-QUEST



STE-QUEST



M
A

IU
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Solutions  
Atoms & LISA

1. Hydroxyl Bonding
2. All alignment done  

by machining and polishing
3. Only custom components

LISA

OBST
1. Independent of Bonding  

technology
2. Simple Mounts
3. Separate Fine Alignment

MAIUS
1. Epoxy/UV Bonding
2. Complex Mounts



Aim of the  
OBST project

1. Novel Beam Steering for Bread boards 
2. Very High stability (coupling efficiency)
3. Reduction in production difficulties/costs
4. Simplification of assembly procedures
5. Learn how to deal with ESA

To demonstrate



Demonstration of Feasibility and Use 

Innovation Triangle Initiative 
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Fig. 2a: Wedge based tuning of 
the angle of a beam. Fig. 2b: Beam displacement 

based on optical flats. 
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Fig. 2a: Wedge based tuning of 
the angle of a beam. 

Fig. 2b: Beam displacement 
based on optical flats. 
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Plate and Wedge 

Pair of WedgesOptical Plate

Page: 9/72 

Initial system designs 

Overview of proposed OBST systems characteristics (ray‐tracing predictions). 

Proposed 
system  Alignment methods  Prediction*  Typical 

Sensitivity  Assumptions* 

1. Optical 
wedges, 
combined 
with a glass 
block 

Beam 
positioning  

beam 
block 

rotation 
  19 μm/mrad  d=1 mm 

n=1.5  

Beam  
pointing 

(pitch/yaw)  

wedge 
 rotation    45 μrad/mrad  α=4 deg 

n=1.5 

 

 

Proposed 
system  Alignment methods  Prediction*  Typical 

Sensitivity  Assumptions* 

2. Optical 
wedges 

Beam 
positioning  

1st and 
2nd 

wedge 
rotation 

  10 μm/mrad  L=10 mm 

Beam  
pointing 

(pitch/yaw)  

3rd and 
4th wedge 
 rotation 

  45 μrad/mrad  α=4 deg 
n=1.5 

 

 

* α is the wedge angle, n is the refractive index, d is the glass block thickness, L is 
the distance between the two wedge systems, θ denotes a small rotation (roll) of one 
wedge, ∆φ is the total rotation of the beam, and ∆h is the beam displacement.  

OBST – Optical Breadboard Technologies for Complex Space Missions 

plate



The Fully Integrated OBST



MAIUS Couplers

OBST Coupler

Comparison of Couplers

LISA Coupler



ALL Mechanical Elements  
of OBST



ALL Mechanical Elements  
of OBST



ALL Mechanical Elements  
of OBST



ID Requirement 
description Unit Required 

Value
Theory  
Value

Achieved 
Values

Better than  
required by

OBST-010 Reduction in 
complexity n/a n/a Consider- 

able
Consider- 

able equaled

OBST-041 Coupling Efficiency % > 85 ≥95% ≥89% 35%  
lower 

OBST-051 Long & Short Term 
Fluctuations

% 
RMS < 5 % < 5 % <2 % 150%

OBST-062 Beam alignment μrad

μm
< 100
< 100

5
5

< 5
< 5

1900%

OBST-061 Positional alignment μm < ±100 ______ < 100 μm. equaled

OBST-052 Operating 
Temperature Range ̊C 10-40 ______ 10-40 ______

OBST-021 Surface polish 
accuracies nm <158 ______ < 63 150%

OBST-053 Temperature stability  
(Testing environment)

K/
Hz½ ~ 1x10-2 ______ < 6x10-4 1500%

OBST-022 Angular tolerances 
of components

arcm
in 5 ______ 5 ______

Aim of the OBST project



Zerodur coupler before (left) and after (right) applying the UV adhesive

UV adhesive formed a black ring
Curing with UV light

Assembly: Lens



Assembly: Fibre
X-Y-Z
θ - φ

Beam
Profiler
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The next step is to collimate the coupler with a fiber. The laser source for every 
laser beam produced, henceforth, is a standard laser diode at λ=780nm. The 
zerodur coupler is free standing on a glass plate, which will permit curing light to 
arrive from almost all directions. Simultaneously, the bare ferrule end of a 
polarization maintaining (PM) fiber is held by a 6 degree of freedom mount 
assembly (Figure 3.4). The assembly consists of a translation mount (Newport M-
562 series) for lateral movement, a mirror mount (Thorlabs KC1 cage mount) for 
aligning the ferule with the coupler and a rotation mount (Thorlabs CRM1 cage 
rotation mount) for fixing the polarization.  

 

 
Figure 3.4 Collimation set up 

 
The fiber used is a standard Thorlabs PM780-HP fiber with FC/APC 

connector on one side and bare ceramic ferrule on the other side (Figure 3.5).  The 
provider of the fiber has been changed from TN2 (TN2 table1 p10) due to shorter 
delivery time of Thorlabs. The bare ceramic ferrule end will be inserted in the 
zerodur coupler to assemble the component. Each fiber that is used is first 
measured to ensure that the NA and M2 factor are within specifications. 

 

 
Figure 3.5 Thorlabs PM780-HP fiber with FC/APC connector on right side and bare ceramic ferrule on left 

side. 
 



Coarse-align and  
bond in place



Fiber to fiber alignment



The Fully Integrated OBST



Measuring the 
Coupling Efficiency



Thermal Stability
Stable Temperature 

0.6%
RMS=0.2%  
for 15 hours. 

0.3K



Large temperature drift

2%

Thermal Stability

RMS of 0.4%  
over 36h

8K



Thermal Cycling

4%

CE over multiple cycles between 10o and 40oC. Temperature was monitored in 
air (blue), wedge surface (purple) and breadboard surface (green). Mean value 
of CE is 88% and is represented by the dashed red line while the black dashed 
lines correspond to the peak values.

RMS=1.7%. 

30K



Thermal Stability
Origin of the fast fluctuations

AR to AR coated fiberAR coated to non-coated fiber



Conclusions

ID Requirement 
description Unit Required 

Value
Theory  
Value

Achieved 
Values

Better than  
required by

OBST-010 Reduction in 
complexity n/a n/a Consider- 

able
Consider- 

able equaled

OBST-041 Coupling Efficiency % > 85 ≥95% ≥89% 35%  
lower 

OBST-051 Long & Short Term 
Fluctuations

% 
RMS < 5 % < 5 % <2 % 150%

OBST-062 Beam alignment
μrad

μm

< 100
< 100

5
5

< 5
< 5

1900%

OBST works:



Lessons
• Good to work with ESA !

• How to document

• Deliver on time (workflow)

• We can do it !



Outlook
• Take OBST to the next level  

- Complex setups 
- Vibration testing 
- Integration of active components 
- …

• C-COOL 

• Develop a laboratory version (Spinoff?) 

• STE-QUEST // Earth observation
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