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Introduction

Agenda

9.45 - 10.00: Overview of the GSTP activity

10.00 - 10.20: Automation of the VKI Longshot wind tunnel
10.20 - 10.40: Lagrangian modeling of the wind tunnel
10.40 - 11.00: State-of-the-art flow characterization
11.00 - 11.20: Design/testing of a Mach 14 contoured nozzle
11.20 - 11.40: Design/testing of a 6-components aerodynamic balance

11.40 - 12.00: Conclusions and outlook
12.00 - 13.30: Discussions
13.30: adjourn
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Introduction Project overview

Project overview, details on task 2
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Introduction Project overview

Project overview, details on task 3

Task 3:
Meas. techniques
& methodologies
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Introduction Project overview

Project overview, details on task 4
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Introduction Presentation outline

Presentation outline

1 Automation of the wind tunnel
2 Lagrangian modeling of the wind tunnel
3 State-of-the-art flow characterization
4 New Mach 14 contoured nozzle
5 6-components aerodynamic balance
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Automation of the wind tunnel

Presentation outline

1 Automation of the wind tunnel
2 Lagrangian modeling of the wind tunnel
3 State-of-the-art flow characterization
4 New Mach 14 contoured nozzle
5 6-components aerodynamic balance
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Automation of the wind tunnel Framework

Purposes of an automation system for the Longshot

Objectives
1 Reduce manual interaction
2 Automate full test procedures (“before”, “during” and “after” a run)
3 Automate individual procedures (vacuum phases, leak test...)
4 Increase system awareness (add diagnostics + feedback to operator)
5 Gain efficiency (towards two tests per day)
6 Improve test-to-test repeatability
7 Introduce emergency procedures for enhanced safety
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Automation of the wind tunnel Framework

The challenge:
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Automation of the wind tunnel Hardware

Main characteristics of the automation system

Automat: CompactRIO technology
Language: Labview + FPGA
1 control station + 2 remote displays
Interpretation of Sequential Function Charts
Robust emergency procedures (hard coded)
For safety: Watchdog, UPS...
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Automation of the wind tunnel Software

User interface, Labview

2 levels of accreditation: operator / administrator
3 modes of operation: real / simulation / manual
Real time display, on 3 computers
Automation logs saved for each experiment
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Automation of the wind tunnel Safety measures

Enhanced safety procedures

What if...?
power cut
loss of pressurized air
loss of cooling system
crash of control system
early start of the piston
piston cannot be released
use of toxic gases
pressure leak through the piston
overpressure
...

Check-lists introduced
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Check-List #5: BEFORE FIRE PISTON

I. Test section VACUUMED

II. Light in the test section SWITCHED OFF

III. Probes ALIVE

IV. Schlieren light source FULL POWER

V. Schlieren knife position CHECKED

VI. Offset of sensors ADJUSTED

VII. Data Acquisition System RUNNING

& READY to TRIGGER

VIII. Flow visualization (Schlieren, Infra-Red...) READY to TRIGGER

IX. Main laboratory door CLOSED

X. All personnel CLEAR

– 18 –

+ Emergency buttons available throughout the lab in case of emergency
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Automation of the wind tunnel Before/after

Visual summary
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Automation of the wind tunnel Before/after

Visual summary
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Automation of the wind tunnel Before/after

Automation facts

Some numbers...
225 channels (sensors and actuators)
over 4 km of electrical cabling (+ from US to European standard)
over 50m of high-pressure tubing
37 new high pressure valves
13 pressure sensors
4 flow switches
1 temperature sensor
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Automation of the wind tunnel Summary

Summary

Current status
X Automation system is operational
X Optimization phase completed
X Over 60 automated Longshot runs already achieved, many more to go!

Ñ Longshot operation is safer X, easier X, faster X, more repeatable X

Aero. of hypervelocity bodies (VKI) Final contract meeting (MS4) November 13, 2019 16 / 89



Automation of the wind tunnel

Presentation outline

1 Automation of the wind tunnel
2 Lagrangian modeling of the wind tunnel
3 State-of-the-art flow characterization
4 New Mach 14 contoured nozzle
5 6-components aerodynamic balance
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Lagrangian modeling

Presentation outline

1 Automation of the wind tunnel
2 Lagrangian modeling of the wind tunnel
3 State-of-the-art flow characterization
4 New Mach 14 contoured nozzle
5 6-components aerodynamic balance
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Lagrangian modeling Framework

Purposes of the numerical modeling

Objectives
1 Simulate the Longshot compression process numerically

Accurately
Efficiently: using a simplified quasi-1D geometry

2 Determine sensitivity to initial flow conditions
3 Determine operational maps
4 Evaluate safety margins

pressure along tube
minimum distance left in front of piston before collision

5 Predict Longshot operation using new conditions
6 Open new perspectives: operate the tunnel with additional test gases
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Lagrangian modeling Framework

Description of the Longshot compression process

a.

driver tube driven tube
check valves reservoir

nozzle test section

model

b. not influenced yet

expansion waves compression waves

c. not influenced yet

high-velocity piston shock wave
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Lagrangian modeling Framework

Description of the Longshot compression process

d. not influenced yet

reflected shock wave rupture of secondary diaphragm

e.

stationary piston check valves still open

f.

rebounding piston
check valves

closed
gas trapped at
peak conditions
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Lagrangian modeling Longshot geometry

Simplification of the geometry for numerical investigations
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Lagrangian modeling Numerical modeling

Numerical tool: L1d2

Solver developed by P. Jacobs (Uni. Queensland)
Quasi-one-dimensional Lagrangian solver
Second-order accuracy in both space and time
Robust shock-capturing scheme
Open source

Successfully applied to different tunnels
T4 free-piston shock tunnel (Jacobs, 1994)
HEG free-piston shock tunnel (Jacobs, 2005)
T2 free-piston shock tunnel (McGilvray, 2013)
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Lagrangian modeling Numerical modeling

Modeling approach

Decomposition of the problem
1 Initial part of the compression

ë definition of relevant physical models:
chambrage, equation of state, viscous effects, bore friction...

2 Final part of the compression
ë inclusion of check valves geometry and calibration of associated losses

3 Use of the numerical model to determine operational maps
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Space-time diagram, Perfect gas
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Space-time diagram, improvements with a Real gas

(perfect gas) (real gas)
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Space-time diagram: improvements with viscous effects

(inviscid) (viscous)
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Lagrangian modeling Numerical modeling, validation

Experimental validation

???????

Measurements along driven tube
Fast-response high-pressure Kistler
sensors used to identify:

Shock waves
Reflected shock waves
Piston passage in front of port
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Lagrangian modeling Numerical modeling, validation

Transient pressure along the tube with/without check valves
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Lagrangian modeling Check valves modeling and reservoir pressure

Prediction of reservoir pressure
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Lagrangian modeling Check valves modeling and reservoir pressure

Prediction of reservoir pressure
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Lagrangian modeling Check valves modeling and reservoir pressure

Flow through the check valves
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Lagrangian modeling Check valves modeling and reservoir pressure

Check valves closure and decay rates
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Lagrangian modeling Numerical results

Animation of the Longshot compression process

1-dimensional Lagrangian simulation of the Longshot compression process
Pressure contours (log-scale)
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Lagrangian modeling Results of the numerical model

Sensitivities to initial flow conditions

Perturbation of the initial flow conditions...
... and quantification of the influence on the reservoir flow conditions

Peak pressure p0 Peak temperature T0

Reference case 242.52MPa 2215.8K

pdriver “ 37.95MPa (+10%) Õ +3.7% Õ +2.8%
pdriven “ 258.94 kPa (+10%) Œ -6.4% Œ -6.4%
mpiston “ 3.5365 kg (+10%) Õ +11.3% Õ +3.5%

Tdriver “ 330K (+10%) Õ +6.6% Õ +5.4%
Tdriven “ 322.3K (+10%) Õ +4.4% Õ +7.6%
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Lagrangian modeling Results of the numerical model

Longshot operational map and prediction accuracy
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Summary and perspectives

VKI Longshot modeling using L1d solver (VKI customized)
Whole Longshot compression process modeled
ë Accounts for chambrage, real gas effects & viscous effects
ë Bore friction negligible
ë Simplified check valves modeling
Predictions validated with reference experimental data

Main achievements
X Sensitivities to initial flow conditions determined
X Operational maps determined
X New insight, improved understanding of the facility
X Safer operation whenever using new operating conditions

Perspectives
Extend modeling to the following nozzle
Use different gases...
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Lagrangian modeling

Presentation outline

1 Automation of the wind tunnel
2 Lagrangian modeling of the wind tunnel
3 State-of-the-art flow characterization
4 New Mach 14 contoured nozzle
5 6-components aerodynamic balance
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State-of-the-art flow characterization

Presentation outline

1 Automation of the wind tunnel
2 Lagrangian modeling of the wind tunnel
3 State-of-the-art flow characterization
4 New Mach 14 contoured nozzle
5 6-components aerodynamic balance
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State-of-the-art flow characterization Framework

The need for accurate free-stream flow quantities

Similarity parameters with flight conditions
Free-stream Mach number M8 “

u8?
γrT8

Free-stream Reynolds number Re8, L “ ρ8u8L
µ8

Non-dimensionalization of experimental data
Wall pressure coefficient Cp “

pw´p8
1
2ρ8u28

Wall heat transfer coefficient St “ 9qw
ρ8u8phaw´hw q

Aerodynamic coefficients CL “
L

1
2ρ8u28S
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State-of-the-art flow characterization Framework

Purposes of the flow characterization

Objectives
1 Establish new theoretical methods for free-stream rebuilding
2 Develop new flow characterization probes
3 Determine free-stream flow properties
4 Validate predictions with independent measurement techniques
5 Quantify uncertainties on free-stream flow properties
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State-of-the-art flow characterization Free-stream rebuilding strategies

The regular flow characterization approach, its drawbacks
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Drawbacks
Requires elaborated equations of state
Subject to severe assumptions (ideal nozzle expansion)
Calorically perfect gas in the stagnation point region
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State-of-the-art flow characterization Free-stream rebuilding strategies

The improved flow characterization approach, its advantages
test section

nozzle

shock conser-
vation eqs.

Fay-Riddell eq.

stagnation
probe1

static
pressure
probe

weak shockviscous correction

2

(iterated)

perfect gas

viscosity law

Advantages
No need for elaborated equations of state
No assumptions about the nozzle flow
Rigorously solves shock conservation equations, including
high-temperature effects
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State-of-the-art flow characterization Intrusive probes

Existing probes, optimized designs
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Mounting support

Electrical insulator

Head

Coaxial thermocouple
within a chromel element

Pitot pressure probe
Slender head design
ë minimizes influence of flow
pollutants on measurements
Minimized internal cavity
ë optimizes response time
Sensor offset from probe axis
ë Better protection of the sensor

Stagnation point heat flux probe
Smaller diameter
ë larger heat flux
ë enhanced sensitivity
Plain thermocouple +
Chromel insert
ë 1D heat flux ensured through
the probe
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State-of-the-art flow characterization Intrusive probes

New probes for free-stream static pressure measurements

Challenges
Low static pressures: ă 1000Pa
Short test times: 20ms
Transient variations during a test
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State-of-the-art flow characterization Intrusive probes

New probes for free-stream static pressure measurements

Characteristics of the probes
Embedded instrumentation Ñ optimizes response time
Absolute pressure measurement Ñ accurate even at low pressure
Contoured nosetip Ñ minimizes influence on measurements
Shallow opening angle Ñ avoids upstream influence of flow separation
3 instrumented locations along large probe Ñ quantify viscous effects
4 taps for each location Ñ reduces influences to flow misalignment
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State-of-the-art flow characterization Intrusive probes

Static pressure measurements appear robust
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State-of-the-art flow characterization Intrusive probes

Static pressure measurements appear robust

29.2mm
502.78mm

8mm

sensor 1

L/D=16.5

sensor 2

L/D=24

sensor 3

L/D=32.7

L=320mm

5

Viscous effects: weak influence along
small and large probes

Instrumentation: different pressure
sensors do not reveal any bias

Angle of attack of the probe:
negligible influence for α ă 0.33 ˝

Probing hole geometries (straight or
chamfered): negligible influence
Aero. of hypervelocity bodies (VKI) Final contract meeting (MS4) November 13, 2019 46 / 89



State-of-the-art flow characterization Intrusive probes

Weak viscous effects along the probe

Flow
direction
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measurements can benefit to the
rebuilding of free-stream flow
properties in hypersonic tunnels
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State-of-the-art flow characterization Comparing different methodologies

Comparing measurements against theory
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State-of-the-art flow characterization Validating our methodology

Validating free-stream Mach number using schlieren

Comparison between experiments and numerics
Experimental flow visualization (Schlieren)

For numerics:
inlet BC: p8, T8, u8

(from free-stream method)
M8=11.6

main shock X
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State-of-the-art flow characterization Summary

Summary

Longshot free-stream flow characterization
3 probes: Pitot, stagnation point heat flux, free-stream static pressure
Free-stream rebuilding method:
ë accurately solves shock conservation equations
ë accounts for high temperature effects (vibrational excitation)
ë applicable to other test gases
Ñ potentially applicable to other hypersonic facilities

Cross-checks on free-stream flow properties:
X Free-stream Mach number Ñ using Schlieren flow visualization
X Free-stream static temperature Ñ via flow condensation experiments
X Free-stream Reynolds number
X Free-stream velocity

*

Ñ via BLT investigations
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State-of-the-art flow characterization

Presentation outline

1 Automation of the wind tunnel
2 Lagrangian modeling of the wind tunnel
3 State-of-the-art flow characterization
4 New Mach 14 contoured nozzle
5 6-components aerodynamic balance
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New Mach 14 contoured nozzle

Presentation outline

1 Automation of the wind tunnel
2 Lagrangian modeling of the wind tunnel
3 State-of-the-art flow characterization
4 New Mach 14 contoured nozzle
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New Mach 14 contoured nozzle Framework

Purposes of the activity

ESA requirements
Bring back the Longshot wind tunnel with Mach 14 capabilities

Objectives
1 Implement a methodology to design axisymmetric contoured nozzles
2 Account for real gas effects
3 Identify optimum nozzle design (parametric studies)
4 Manufacture the nozzle, instrument it
5 Run experiments and characterize the hypersonic flow
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New Mach 14 contoured nozzle Design code development

New tool: code for axisymmetric hypersonic nozzle design

Main features of the code
Handles Perfect gas/Real gas (via tabulated EoS) X
Designs subsonic contour X
Designs transonic contour X
Designs supersonic/hypersonic contours (method of characteristics)X
Corrects for viscous effects X
Optimizes nozzle length for maximum core flow diameter X
Exports inviscid meshes towards numerical solvers X
Includes graphical output X
Accepts scripts for parametric studies X

Performances
1 design (using fine meshes) < 1min
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New Mach 14 contoured nozzle Design code development

Nozzle design, illustration step by step

Aero. of hypervelocity bodies (VKI) Final contract meeting (MS4) November 13, 2019 55 / 89



New Mach 14 contoured nozzle Design code development

Inviscid nozzle design using the method of characteristics

New Longshot Mach 14 nozzle
Gas is pure nitrogen + follows a real gas equation of state (dense gas
effects and high-temperature effects are accounted for)
6th order polynomial for the convergent (reservoir volume matches
existing configurations)
Parabolic arc for the transonic region
5th order velocity/Mach number polynomials along segments IE and
BC, method of characteristics used to infer the corresponding contour

Improvement with respect to earlier design
1 X No more discontinuities on the first derivative of the contour
2 X Better transonic design: coherent with Hall’s theory
3 X Longer segment AJ: avoids coalescence of compression waves
4 X Second order accuracy on the method of characteristics
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New Mach 14 contoured nozzle Definition of operating conditions

Definition of the design Mach number
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New Mach 14 contoured nozzle Parametric studies

Identification of optimum design: parametric studies
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New Mach 14 contoured nozzle Parametric studies

Summary of the design parameters

The following initial conditions for the Longshot tunnel:
driver tube pressure: pdriver “ 345ˆ 105 Pa
driven tube pressure: pdriven “ 1.586ˆ 105 Pa
piston mass: mpiston “ 2.5 kg

... compress the test gas up to the following reservoir flow conditions:
stagnation pressure: 166MPa
stagnation temperature: 2400K

... which enable to reach Mach 14 in a condensation free environment.
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New Mach 14 contoured nozzle Numerical results

Numerical simulations

Flow Mach number:

Good agreement between inviscid predictions (top, issuing from the
method of characteristics) and Navier-Stokes ones (bottom)
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New Mach 14 contoured nozzle Technical design and nozzle installation

Technical drawings

A-A ( 1/8 )

B-B ( 1/8 )

C-C ( 1/8 ) D-D ( 1/10 )

E ( 1/2 )

F ( 1/2 )
G ( 1/2 )

Détail H : 9 trous pour thermocouples

J  ( 1/1 )

K ( 1/2 )

Détail L : 11 trous pour capteurs de pression

Vue du haut thermocouple

N ( 1/2 )

1234567891011

1234567891011

A

B

C

D

E

F

A

B

C

D

E

F
10 020304050100150200

mm

ModificationIndiceNomDate

Remplacé par:

Symbole ISO

72, chaussée de Waterloo, Rhode-Saint-Genèse, Belgique

von KARMAN INSTITUTE FOR FLUID DYNAMICS
INSTITUT von KARMAN DE DYNAMIQUE DES FLUIDES

Echelle Plan n°Code

Soufflerie

Plan d'ensemble n°Date

A.

V.

D.

TITRE

Fini:Tolérances:

Rep. MatièreDésignationPlan n°

Remplace

Quant.

Tuyère en forme 4m

LB

S.Paris

G.Grossir1/8;1/2

16-11-18  

Longshot

ARR 1314 3962

 

E

F
G

H

J
K

AcAnneau de levage 311
AluPlat pour oeillet de levage3962-29301
Ac.ressortRondelleDIN 7980 - 12 148
Ac 8.8Vis hexa DIN 933 - M12 x 60 138
Ac 8.8Vis DIN 963 - M5 x 20 1224
St 50Glissière - demi coquille3962-06a112
Ac CL8Ecrou DIN 934 - M12 1032
Ac 8.8Vis DIN 931-1 - M12 x 70 932
1.6773convergent3962-1681
1.6773Plateau support col convergent3962-1771
1.6773convergent support de col3962-1561
1.6773support divergent de guidage part 2 3692-1351
1.6773support divergent de guidage part 13962-09a41
Alu 5083divergent 3a 3962-14a31
Alu 5083divergent 2a 3962-08b21
Alu 5083divergent 1a 3962-07b11

L

N

1.6
1.6

0.8

0.4

11
,3

5

10
,3

3

26
,4

7

R8

6

400

M5x
0.
8 
lg 

20

64
8,

3
Ø

60
0

Ø

51
0

Ø

34
5

Ø39
1,

16
Ø

864,8

1162,7
1162,7

467155

269,4

42
,2

7

11

2

3

1

4

6

peut varier suivant épaisseur de tôle cintrée

12,1Ø

M14x1 - 6H

0,8Ø

M3x0.5 - 6
H

n 12
,5 

dé
bo

uc
ha

nt

M12x1.75 - 6H

M12
x1

.75
 - 

6HPlat sur chaques brides
pour détrompeurs

89

23
0

Ø

M20x2.5 - 6
H

M12
x1

.75
 - 

6H

H7/k6H7/k6

H7/k6

H7/k6

864,8

1162,7

1162,7

486,8

21
1,

06
Ø

37
9,

33
Ø

48
5,

3
Ø 54

5,
94

Ø

64
8,

3
Ø

60
0

Ø

51
0

Ø

34
5

Ø10
6,

01
Ø

en TZM
150

420

550

700

1000

1500

2500

3500

2

4066,83

381,628

848,628

1998,828

3149,028

239,098

59,698

5

7

12

Poids : ±600 Kg

9

10

8

30
31

Aero. of hypervelocity bodies (VKI) Final contract meeting (MS4) November 13, 2019 61 / 89



New Mach 14 contoured nozzle Technical design and nozzle installation

Nozzle manufacturing

Nozzle throat: Titanium-Zirconium-Molybdenum alloy (TZM)
Other pieces: either Steel 36NiCrMo16 (close to the throat), or Alu 5083

(for the downstream sections)
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New Mach 14 contoured nozzle Technical design and nozzle installation

Nozzle installation

Overall nozzle length: 4.06m
Exit diameter: 541mm
Total weight: « 600 kg
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New Mach 14 contoured nozzle Operation and characterization

Measurements along the new nozzle

Wall heat flux measurements Wall pressure measurements
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New Mach 14 contoured nozzle Operation and characterization

Flow uniformity across the new nozzle
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New Mach 14 contoured nozzle Operation and characterization

Free-stream Mach number
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New Mach 14 contoured nozzle Operation and characterization

Longshot operational map
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New Mach 14 contoured nozzle

Presentation outline
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6-components aerodynamic balance

Presentation outline
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6-components aerodynamic balance Framework

Objectives

Objective: enable aerodynamic measurements on reentry capsules
1 Range definition for the 6 components balance
2 Design of the balance
3 Numerical calibration of the balance
4 Real calibration of the balance
5 Test in the Longshot tunnel
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6-components aerodynamic balance Balance design

Definition of the range for the balance
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6-components aerodynamic balance Balance design

Design of the balance

Characteristics
6 components
Small size: 40 ˆ 40 ˆ 24mm3

Model interface with angular
positioning
Sting interface with angular
positioning
Cables are passing inside the sting
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6-components aerodynamic balance Balance design

Finite element method

The finite element method was used for:
Optimization of the geometry
Location of the strain gauges
Virtual calibration
Limitation of the interferences
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6-components aerodynamic balance Balance design

Virtual calibration

Finite element method is used to compute the stresses at the strain gauge
locations for pure forces and moments

Inverted matrix allows to find the forces and moments from the stresses
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6-components aerodynamic balance Balance calibration

Real calibration
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6-components aerodynamic balance Balance calibration

Real calibration
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6-components aerodynamic balance Experimental investigations

Longshot tests

3 Longshot tests performed at Mach 14
Balance installed at CG
(58% from the nose)
6 accelerometers in the model
2 accelerometers on the sting
Model made of resin by 3D printing
Pressure transducer at nose tip
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6-components aerodynamic balance Experimental investigations

Longshot tests

Comparison with data from HyFIE Present results
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6-components aerodynamic balance Summary

Summary

Balance was successfully designed, build and instrumented
Numerical calibration shows good behavior
Real calibration confirms the good behavior
Application of an impulse force can be measured with a good accuracy
Tests were performed. Results are very close to the reference
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6-components aerodynamic balance

Presentation outline
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2 Lagrangian modeling of the wind tunnel
3 State-of-the-art flow characterization
4 New Mach 14 contoured nozzle
5 6-components aerodynamic balance

Aero. of hypervelocity bodies (VKI) Final contract meeting (MS4) November 13, 2019 80 / 89



Summary

Summary
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Summary

General summary

3 main axes of investigations:

1. Hardware / wind tunnel development
(wind tunnel automation, design new hypersonic nozzle...)

2. Measurement techniques and methodologies
(new flow diagnostic techniques, new aerodynamic balance...)

3. Numerical support, data processing, Uncertainty Quantification
(wind tunnel modeling, modeling of nozzle flow expansion, free-stream rebuilding...)
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Summary

General summary

The greatest Longshot adventure ever written...

21 Technical Notes
ë TN3200, TN3300 & TN5000 uploaded
over 1400 pages
over 900 figures
over 250 equations
over 50 tables
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Summary

General summary

Main achievements
X Highest Mach/Reynolds numbers achievable across Europe
X Modernized wind tunnel for improved safety, efficiency, repeatability
X Well-characterized free-stream environment

ë recommended methodology for other hypersonic facilities
X New numerical tools to plan future investigations
X Hypersonic VKI expertise strengthened

Ñ Ready to support future missions
from the European Space Agency
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Summary

Future and perspectives

Suggestions
Aerothermodynamics of reentry vehicles, space debris, rockets...
Reach higher Reynolds, higher enthalpies in the Longshot
Use different test gases (Mars, Venus, Ice giants...)

Ñ What else do you have in mind?
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List of publications 1/2

Contributions to books
G. Grossir & Z. Ilich “Numerical modeling of the VKI Longshot compression process”,
VKI Lecture Series 2018/19 [1]
G. Grossir & B. Dias “Flow characterization of the VKI Longshot wind tunnel”, VKI
Lecture Series 2018/19 [2]

Journal articles
G. Grossir, B. Van Hove, S. Paris, P. Rambaud & O. Chazot “Free-stream static pressure
measurements in the Longshot hypersonic wind tunnel and sensitivity analysis”
Experiments in Fluids, 2016, 57, 1-13 [3]
G. Grossir, B. Dias, O. Chazot & T. E. Magin, “High temperature and thermal
non-equilibrium effects on the determination of free-stream flow properties in hypersonic
wind tunnels”, Physics of Fluids, 2018, 30, 1-13 [4]
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List of publications 2/2
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T. Wammen “Investigating high driven gas temperatures in the VKI Longshot hypersonic
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