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 10:00 - 10:15 Welcome and status update

 10:15 - 11:15 Technical Presentations (D7 Update)

 10:15 - 10:45 TUe – Model Augmentation 

 10:45 - 11:15 Aachen/UoS – Robust Guidance

 11:15 - 11:30 Buffer/Mini Break

 11:30 - 12:30 SENER – (D8) Study Synthesis Presentation & Discussion 

 12:30 - 13:30 Lunch Break

 13:30 - 15:00 Project Closure Discussion & Way Forward
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Study Synthesis
Introduction

1. Critical Analysis of Obtained Results

• High-level technical summary

• Recap of obtained results

2. Synthesis of New Capabilities

• Results in larger context for GNC discipline

• Trends and developments supported by AI4GNC project

3. Lessons Learned & Discussion

• Ways to bring techniques into application/adoption

• Conclusions / Discussion



Critical Analysis of Obtained Results

SENER



Critical Analysis of Results
Project Execution

• Project executed as planned

• High-level goals realized

• Some adjustments throughout the project

• Scope clarified during execution

• Focus on most promising ideas

• Explorative nature of project at times difficult



Critical Analysis of Results
Bayesian Optimization for Controller Tuning

Cost Function Optimization

Algorithm Performance

Focus points

• Noisy simulations/function evaluations

→ seamless integration with MC

• Temporal logic constraints

→ direct optimization of requirements

• Interpretability & engineering insights

→ design tool with “human-in-the-loop”

Results

→ highly competitive performance

→ applicable & effective for “real” tasks

→ Loses reliability in higher dimensions

→ Problem needs to be formulated “well”



Critical Analysis of Results
Robust Optimization-Based Guidance

• Extends robust control techniques to guidance level

• Can integrate model uncertainties

• show-cased in ML-based scenarios

• Generates distinct robust behaviour

→ Could generate insights for guidance strategies

Results

→ Significant performance improvements

• Over baseline solution

• Over non-robust variants

→ High design flexibility

→ Complex (both computationally & design)

• Significant steps taken towards implementability

• Essentially real-time capable on Laptop



Critical Analysis of Results
Data-Driven Model Augmentation

• Valuable tool for complex (closed loop) dynamics, 
• Also with simulation data
• LPV (or LTI) also provide good performance
• Nonlinear/ML methods extend range of validity

• The performance depends on formulation
• model structure 
• quality of the data 

• Discussion point: How important/helpful is augmentation?
• Black-box learning/ID easier?
• Interpretability



Synthesis of New Capabilities

SENER



Synthesis of New Capabilities
Model-based Design and Decision Making

• Main models used in current GNC software

• Linear (control design & analysis)

• DKE high-fidelity functional simulator (V&V)

• Trend towards additional models for decision making

• Exemplified by optimization-based guidance, 
data-driven model learning for guidance

• Applies to most potential techniques for 
advanced capabilities & autonomy

• Advantages envisioned & demonstrated in AI4GNC

Performance

Design Flexibility

Increase Autonomy



time

time

V
e
rt

ic
a
l 
ve

lo
ci

ty
S
ym

m
e
tr

ic
 S

tr
o

ke

*Dashed: Linear tf fit

Synthesis of New Capabilities
Data-Driven GNC Design

1. Data-Driven Modelling

• Current designs focused on first principle models

• Data-driven approaches may be underrepresented

◦ Possibly improved model fit since complicated effects 
can be approximately captured

◦ significantly reduced engineering effort

→ actively explored in SR project (linear models)

2. Simulation for GNC design

• Currently the focus of simulations lies on V&V

• Bayesian optimization, RL and related techniques shift focus

◦ Significant potential to streamline tuning process

◦ Overhead in their application needs to be reduced



Lessons Learned & Discussion

SENER



Lessons-Learned and Discussion
Part I: Technical

1. Potential for advanced techniques: Opportunities need to be clearly identified

• Also in this project/benchmark -> what can advanced techniques improve? How?

• What is the performance/complexity trade-off? Quantifiable?
(E.g. linear augmentation vs ANN-based, Optimization problem classes)

2. Use of techniques has significant overhead

• Can be reduced by good software integration

• Techniques often inherently complex and challenging to design

◦ Toolboxes and software packages can help to some extent

◦ Still likely requires expert personnel



Lessons-Learned
Part II: Project Execution

3. Format of the project right for this type of study? 
(PRR → CRR → PDR → DDR → VR → FR)

• (out of necessity) we took large liberties with the format

• May give structure to development efforts

4. Use of SENER benchmark simulator

• Has caused significant challenges

◦ Reduced flexibility/agility, large overhead for development

◦ Using different environment, we could have produced more results

• But: Provides significant value by enforcing realistic use cases

◦ Avoids demonstration on academic toy problems

• Difficult tradeoff to be carefully considered 



Lessons-Learned

Further discussion points?
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Why we are interested in robust trajectory generation

Target

Nominal trajectory
tracked with nominal 
controller

Robust control in aerospace engineering:
Generate a nominal trajectory.
Track the trajectory with a robust controller.

We propose:
The integration of robust control into trajectory generation.



Why we are interested in robust trajectory generation

Target

Nominal trajectory
tracked with robust 
controller

Robust control in aerospace engineering:
Generate a nominal trajectory.
Track the trajectory with a robust controller.

We propose:
The integration of robust control into trajectory generation.



Why we are interested in robust trajectory generation

Target

Robust trajectory
tracked with robust 
controller

Robust control in aerospace engineering:
Generate a nominal trajectory.
Track the trajectory with a robust controller.

We propose:
The integration of robust control into trajectory generation.



Parafoil payload landing scenario

Goal: Find a control policy that minimizes the functional

∫ tf

0
u2(t) dt +

∥∥∥∥∥∥
 x(tf ) − xf

y(tf ) − yf
ψ(tf ) − ψf

∥∥∥∥∥∥
2

F

while controlling the system below and compensating wind disturbances.



Outline

1 Robust Differential Dynamic Programming

2 Robust DDP: Robust performance benchmark

3 Robust DDP: Sener simulator benchmark

4 Robust DDP & Learning (Joint work with Lukas Hewing)



Robust Differential Dynamic Programming



Robust Differential Dynamic Programming

∆k

xk+1 = f (xk , uk ,wk)
zk = g(xk , uk ,wk)

zk wk

uk xk

The developped robust Differential Dynamic Programming (robust DDP)
algorithm

is applicable to nonlinear generalized plants as above and
provides guarantees for affine linear time-varying systems.



Robust Differential Dynamic Programming

For a nonlinear genearlized plant, we solve the robust Dynamic Program

minimize
(πk )

maximize
(∆k )⊆D

(T−1∑
k=0

f0(xk , uk ,wk) + VT (xT )
)

s.t. xk+1 = f (xk , uk ,wk) k = 0, . . . ,T − 1
x0 = xs

uk = πk(xk) k = 0, . . . ,T − 1
wk = ∆k(g(xk , uk ,wk)) k = 0, . . . ,T − 1,

in a sequential convex programming fashion.



Robust Differential Dynamic Programming

x0

x1

x2

x3

cost(x1)
approx(x1)

cost(x2)
approx(x2) cost(x3)

approx(x3)

δx
1

δx
2

δx
3

min
(uk )

(T−1∑
k=0

f0(xk , uk ,wk) + VT (xT )
)

s.t. xk+1 = f (xk , uk) k = 0, . . . ,T − 1
x0 = xs .

Classical DDP strategy:
Approximate the cost around the reference trajectory (xk , uk)T

k=0.
Compute local update (δx

k , δ
u
k ) that reduces the cost of the trajectory.



Robust Differential Dynamic Programming

x0

x1

x2

x3

δx
1

δx
2

δx
3

min
(πk )

max
(∆k )

(T−1∑
k=0

f0(xk , uk ,wk) + VT (xT )
)

s.t. xk+1 = f (xk , πk(xk),∆k(xk))
x0 = xs .

Robust DDP strategy:
Utilize uncertainty multipliers to bound the cost around the reference
trajectory (xk , uk)T

k=0.
Compute local update (δx

k , δ
u
k ) that reduces the cost upper bound of

the trajectory.



Robust Differential Dynamic Programming

x0

x1

x2

x3

x+
1

x+
2

x+
3

min
(πk )

max
(∆k )

(T−1∑
k=0

f0(xk , uk ,wk) + VT (xT )
)

s.t. xk+1 = f (xk , πk(xk),∆k(xk))
x0 = xs .

Robust DDP strategy:
Utilize uncertainty multipliers to bound the cost around the reference
trajectory (xk , uk)T

k=0.
Compute local update (δx

k , δ
u
k ) that reduces the cost upper bound of

the trajectory.



Robust DDP: Robust performance benchmark



Robust DDP: Robust performance benchmark

Example uncertainties
Ex. 1 wind field 1 with multiplicative uncertainty
Ex. 2 uncertain input delay
Ex. 3 uncertain velocity
Ex. 4 uncertain velocity and input delay
Ex. 5 uncertain velocity, input delay and wind
Ex. 6 wind field 2 with multiplicatie uncertainty
Ex. 7 wind field 2 with constant uncertainty
Ex. 8 wind field 2 with LIDAR uncertainty
Ex. 9 wind field 3 with multiplicative uncertainty

Table: List of example configurations for the Monte Carlo simulation. Note that
in Example 2, there is an exception. In this case, we study the 4 DOF model
with the prescribed uncertainties, but the six DOF model with no uncertainties.



Robust DDP: Robust performance benchmark

Figure: Illustration of nominal (transparent) and robust (dark) trajectories and
the intensity of the uncertainty (red background).



Robust DDP: Robust performance benchmark

Experiment Algorithm Terminal Cost Missed Distance Missed Heading
Example 1 nominal DDP 1.8862 43.255 m 2.2311°
Example 1 robust DDP 0.21558 14.2683 m 1.9848°
Example 2 nominal DDP 0.22312 13.6583 m 3.4648°
Example 2 robust DDP 0.42834 13.0901 m 9.1851°
Example 3 nominal DDP 0.029267 3.5746 m 2.3266°
Example 3 robust DDP 0.025571 4.7954 m 0.9195°
Example 4 nominal DDP 0.39618 19.8599 m 0.7608°
Example 4 robust DDP 0.071304 8.2416 m 1.0535°
Example 5 nominal DDP - - -
Example 5 robust DDP - - -
Example 6 nominal DDP 0.16619 12.8245 m 0.75264°
Example 6 robust DDP 0.11103 10.4436 m 0.80161°
Example 7 nominal DDP 4.2123 64.7013 m 2.9226°
Example 7 robust DDP 0.51526 22.4701 m 1.8431°
Example 8 nominal DDP 0.44822 21.0997 m 0.99691°
Example 8 robust DDP 0.28449 16.6594 m 1.5105°
Example 9 nominal DDP 2.2398 47.2049 m 1.9455°
Example 9 robust DDP 2.3306 47.8559 m 3.643°

Color code: best, worst.



Robust DDP: Sener simulator benchmark



Simulator Monte Carlo benchmark

1D wind scenario without constraints:
Parafoil payload landing scenario.
Disturbances by a height dependent wind field.

3D wind scenario with constraints:
Parafoil payload landing scenario.
Disturbances by a wind field depending on all space coordinates.
Valley constraints.



1D wind scenario without constraints

algorithm wind error 90% quantiles mean accuracy median accuracy
Baseline 0m/s 27.8517 (27.6395) 27.5154 (19.5091) 16.1469 (19.3674)
Baseline 2.5

3 m/s 39.9353 (35.45) 34.9835 (22.5425) 17.594 (20.651)
Baseline 5

3 m/s 97.5034 (100.233) 59.1223 (39.3975) 21.4595 (22.7324)
Baseline 7.5

3 m/s 185.8093 (252.9832) 108.3531 (104.7632) 26.7415 (30.2102)
DDP 0m/s 24.7212 (27.2009) 20.2993 (15.7265) 11.7073 (17.0487)
DDP 2.5

3 m/s 38.3248 (47.2506) 28.8612 (22.0739) 14.4037 (16.3496)
DDP 5

3 m/s 82.8809 (97.7824) 52.1305 (36.6703) 20.4581 (18.8947)
DDP 7.5

3 m/s 145.9398 (182.7431) 94.1244 (64.4572) 27.9901 (32.1246)
robust DDP 0m/s 21.4472 (28.3516) 19.8503 (17.7563) 11.6286 (14.1737)
robust DDP 2.5

3 m/s 24.3172 (36.6898) 21.7991 (23.5991) 12.7784 (15.4815)
robust DDP 5

3 m/s 49.698 (88.8988) 38.3896 (44.01) 16.2578 (20.0285)
robust DDP 7.5

3 m/s 127.2579 (147.6379) 80.0665 (69.2864) 22.0501 (31.0435)

Color code: best, middle, worst.



3D wind scenario with constraints

algorithm wind error 90% quantiles mean accuracy median accuracy
Baseline 0m/s 95.7631 (71.0752) 51.9363 25.2396
Baseline 2.5

3 m/s 130.8552 (91.2114) 67.8491 27.0211
Baseline 5

3 m/s 215.6164 (190.0191) 93.7852 31.8473
Baseline 7.5

3 m/s 328.166 (314.3696) 131.7685 43.6718
DDP 0m/s 39.5696 (60.384) 50.5451 19.3913
DDP 2.5

3 m/s 73.7915 (147.7287) 67.9683 21.9754
DDP 5

3 m/s 146.9501 (160.418) 92.1789 26.9091
DDP 7.5

3 m/s 259.5951 (221.2534) 116.3121 38.8167
robust DDP 0m/s 40.3008 (139.2251) 56.2837 16.8733
robust DDP 2.5

3 m/s 73.7171 (152.2869) 59.6432 19.7793
robust DDP 5

3 m/s 152.6772 (-) 83.5045 24.6162
robust DDP 7.5

3 m/s 271.3544 (229.1841) 131.6672 34.4236

Color code: best, middle, worst.



Robust DDP & Learning (Joint work with Lukas
Hewing)



Robust DDP & Learning (Joint work with Lukas Hewing)

Learned system models can be inaccurate!
Model errors exist even in the proximity of the training set.
Model errors can increase significantly, outside of the support of the
training set.

Idea: Use robust planning for learned models.
Improves performance in the data domain.
Avoids leaving the data domain.



Robust DDP & Learning (Joint work with Lukas Hewing)

Studied setup:
Nominal model

ẋ(t) = v(t)cos(γ(t)) cos(ψ(t))
ẏ(t) = v(t)cos(γ(t)) sin(ψ(t))

ψ̇(t) = L(v(t)) sin(u(t))
mv(t) cos(γ(t))

v̇(t)= −D(v(t))/m − g sin(γ(t))

γ̇(t)= L(v(t)) cos(u(t)) − mg cos(γ(t))
mv(t)

ż(t)= v(t) sin(γ(t))

u̇(t) = ucom − u(t)
τu

.

Learned model

ẋ(t) = v̄ cos(ψ(t))
ẏ(t) = v̄ sin(ψ(t))
ψ̇(t) = c̄u(t) + w(t)
u̇(t) = µ(u(t), ucom)

∥w(t)∥≤ 2σ(u(t), ucom).

Here, µ(u, ucom) and σ(u, ucom) are
the mean and standard deviation of a
gaussian process.



Robust DDP & Learning (Joint work with Lukas Hewing)

∆k

xk+1
yk+1
ψk+1
ũk+1

 ≈

 xk + hv̄ cos(ψk)
yk + hv̄ sin(ψk)
ψk + h(c̄ ũk + wk)

ũk + µ(ũk , u)


zk = 2σ(ũk , u)

zk wk

uk xk

Figure: Generalized plant from the GP augemented model.

The uncertainties of the above generalized plant are characterized by
∥∆k∥ ≤ 1, i.e., the family of multipliers(

∆k
I

)⊤(−λI 0
0 λI

)(
∆k
I

)
⪰ 0 ∀λ ∈ R≥0.



Robust DDP & Learning (Joint work with Lukas Hewing)
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Robust DDP & Learning (Joint work with Lukas Hewing)

Statistics GP augmented DDP nominal DDP
90% Terminal Cost Quantile 0.31043 1.4633
Terminal Cost Median 0.060813 0.24776
Terminal Cost Mean 0.1607 0.69561
90% Position Error Quantile 15.2541 21.5877
Position Error Median 7.2427 8.8074
Position Error Mean 8.2827 11.0035
90% Heading Error Quantile 4.6454 19.4048
Heading Error Median 0.77642 6.4613
Heading Error Mean 2.0768 9.0401

Color code: best, worst.



Conclusion

Robust planning can improve robustness over a robust controller.
Robust DDP has demonstrated the advantages of robust planning in
extensive benchmarks.
Robust planning can be a useful addition to learning based control
methods.



Conclusion

Thank you:
Valentin Preda,
Samir Bennani,

Lukas Hewing and
Sener.

For all the support during our work for AI4GNC.
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Overview

• Overviewed the state-of-the-art LPV identification and control (D3)

• Developed an LFR-ANN based model-augmentation concept (D4)

• Developed 6/12 DOF models of the parafoil return vehicle (de Lange, 2021) (D4)

• Applied model-augmentation concept on the developed models (D4)

• LTI baseline augmentation ➝ excellent results (BFRs of ~95%)

• Investigated augmentation of the unicycle baseline (D6)

Next step?
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Problem setting

Goal: Integrate the augmented model in guidance

 Capture closed-loop flight dynamics as an LFR-ANN augmented unicycle
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Augmentation scenario

Simulation environment: based on TU/e simulator (developed in D4)

• 6 DOF vehicle model

• LPV controller designed for reference tracking of 

• Generated noise to match state observer error (based on recorded specturm)
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Augmentation scenario

Velocity-based training on the unicycle model

State derivatives  Outputs
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Augmentation scenario

Velocity-based training – new baseline model

Approximation of         by the model:

• Dependent on                  norm of         

• Dependent on                noise

 Only dependent on the approximation error of      , i.e., 
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Augmentation scenario

Quality of baseline model only dependent on the mapping

• Identity mapping

 Identification problem: Estimate such that              is close to zero.

Solve this identification problem in the model-augmentation framework
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Data-generation 

Use our own model:

• 6 DoF GPRV

• Controlled with LPV controller (Matthis’ MSc work)

• Reference tracking scenario

• Tracks 

• Use heading-rate reference from SENER simulator

Divide reference in sub-windows
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Data-generation 

Divide reference in sub-windows

• Simulate sub-windows with ball of 
random initial conditions

• 12 sub-windows, 25 initial conditions

• 300 trajectories, Ts = 0.1 [s], 250 [s]

• 750k datapoints

• Generate with/without wind
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Data-generation 

Divide reference in sub-windows

• Simulate sub-windows with ball of 
random initial conditions

• 12 sub-windows, 25 initial conditions

• 300 trajectories

• 750k datapoints

• Generate with/without wind 
(seen as the noise source)

Size of ball initial conditions: 
15% deviation from nominal
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Preliminary analysis

Q: How nonlinear the behavior is? 

Identify the mapping                        with LTI system 
identification techniques

• Use wind/noise-free data  OE-estimation

• Process part estimated well with order 2 mainly 
linear behavior with minor nonlinearities

• Best-Fit-Rate (BFR) of 99.43% on validation data

• With wind disturbance: BFR of 89.66%
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Preliminary analysis

Identify the mapping                      with LTI system identification techniques

• Use wind-infected data  BJ-estimation

• Best-Fit-Rate (BFR) of 89.67% on validation data

• Autocorrelation can not be brought 
further down

• Best-Fit-Rate on noise/wind-free data: 99.37%
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Preliminary analysis

OE simulation results BJ simulation results
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Preliminary analysis

However, there were a few data-sets where the fit drasticaly dropped. 

 Worst-case BFR: 65% 

 The controller dropped out from its designed operating range

 Main reason for the dominant LTI behavior: linearizing effect of the LPV controller
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Training results

We want to learn the residual nonlinearities in the mapping 

• See the identified LTI model as baseline

• Augment with a static neural network

Goal: Accurately learn the residual nonlinearities in the mapping

 Use noise and wind-free data

 Avoid learning wind / noise
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Training results

Train in SUBNET framework

• Number of inputs of the network: 2

• Number of outputs of the network: 2

• Number of hidden layers: 2

• Nodes per layer: 64

• Activation functions: tanh()
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Training results

Augmented model:
worst-case BFR on 
the validation set: 85%

Simulation on 4 test sets: 
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Training results

Full black-box model: 
worst-case BFR on 
the validation set 93%

Simulation on 4 test sets: 
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Training results

Velocity simulation (augmented model)
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Training results

Velocity simulation (black-box model)



Nov. 4, 2022 – C. Verhoek et al. – D7: Model Augmentation for Guidance
25

Training results

• For data-sets where LTI behavior is dominant, augmentation structure contributes: <1%

• Black-box approach reaches better validation results (effect of SGO + regularization)

• Long-term predictions (simulations) have less error with the augmented LTI model

• Performance of the augmented structure dependent on the initialization of ANN 
(use the encoder)

• Overall performance is excellent
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Conclusions

• For training on velocity, identification problem resembles to learning 

• We have shown that we can learn the residual nonlinear dynamics

• For small deviations from nominal trajectory, LTI augmentation is sufficient

• Outside of this region  ANNs are needed

• Due to LFR-ANN structure, augmentation can be used to define uncertainty

• Working this properly out requires more time...
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