

"Artificial Intelligence techniques for GNC design, implementation and verification"

Final Review 2022-12-19

AI4GNC - FR

Agenda

- 10:00 10:15 Welcome and status update
- 10:15 11:15 Technical Presentations (D7 Update)
 - 10:15 10:45 TUe Model Augmentation
 - 10:45 11:15 Aachen/UoS Robust Guidance
- 11:15 11:30 Buffer/Mini Break
- 11:30 12:30 SENER (D8) Study Synthesis Presentation & Discussion
- 12:30 13:30 Lunch Break
- 13:30 15:00 Project Closure Discussion & Way Forward

TUe Model Augmentation

Aachen/UoS Robust Guidance

sener Study Synthesis

Study Synthesis Introduction

- 1. Critical Analysis of Obtained Results
 - High-level technical summary
 - Recap of obtained results
- 2. Synthesis of New Capabilities
 - Results in larger context for GNC discipline
 - Trends and developments supported by AI4GNC project
- 3. Lessons Learned & Discussion
 - Ways to bring techniques into application/adoption
 - Conclusions / Discussion

SENER Critical Analysis of Obtained Results

Critical Analysis of Results Project Execution

- Project executed as planned
- High-level goals realized
- Some adjustments throughout the project
 - Scope clarified during execution
 - Focus on most promising ideas
- Explorative nature of project at times difficult

Critical Analysis of Results

Bayesian Optimization for Controller Tuning

Focus points

- Noisy simulations/function evaluations
 - \rightarrow seamless integration with MC
- Temporal logic constraints
 - \rightarrow direct optimization of requirements
- Interpretability & engineering insights
 - \rightarrow design tool with "human-in-the-loop"

Results

- \rightarrow highly competitive performance
- \rightarrow applicable & effective for "real" tasks
- \rightarrow Loses reliability in higher dimensions
- \rightarrow Problem needs to be formulated "well"

Stuttgar

Critical Analysis of Results

Robust Optimization-Based Guidance

- Extends robust control techniques to guidance level
- Can integrate model uncertainties
 - show-cased in ML-based scenarios
 - Generates distinct robust behaviour
 - \rightarrow Could generate insights for guidance strategies

Results

- → Significant performance improvements
 - Over baseline solution
 - Over non-robust variants
- \rightarrow High design flexibility
- \rightarrow Complex (both computationally & design)
 - Significant steps taken towards implementability
 - Essentially real-time capable on Laptop

algorithm	wind error	90% quantiles	mean accuracy	median accuracy
Baseline	$0 \mathrm{m/s}$	27.8517	27.5154	16.1469
Baseline	$\frac{2.5}{3}$ m/s	39.9353	34.9835	17.594
Baseline	$\frac{5}{3}$ m/s	97.5034	59.1223 (39.3975)	21.4595
Baseline	$\frac{7.5}{3}$ m/s	185.8093	108.3531	26.7415
DDP	$0 \mathrm{m/s}$	24.7212	20.2993	11.7073
DDP	$\frac{2.5}{3}$ m/s	38.3248	28.8612	14.4037
DDP	$\frac{5}{3}$ m/s	82.8809	52.1305	20.4581
DDP	$\frac{7.5}{3}$ m/s	145.9398	94.1244	27.9901
robust DDP	$0 \mathrm{m/s}$	21.4472	19.8503	11.6286
robust DDP	$\frac{2.5}{3}$ m/s	24.3172	21.7991	12.7784
robust DDP	$\frac{5}{3}$ m/s	49.698	38.3896	16.2578
robust DDP	$\frac{7.5}{3}$ m/s	127.2579	80.0665	22.0501

Critical Analysis of Results

Data-Driven Model Augmentation

- Valuable tool for complex (closed loop) dynamics,
 - Also with simulation data
 - LPV (or LTI) also provide good performance
 - Nonlinear/ML methods extend range of validity
- The performance depends on formulation
 - model structure
 - quality of the data
- Discussion point: How important/helpful is augmentation?
 - Black-box learning/ID easier?
 - Interpretability

SENER Synthesis of New Capabilities

Synthesis of New Capabilities

Model-based Design and Decision Making

- Main models used in current GNC software
 - Linear (control design & analysis)
 - DKE high-fidelity functional simulator (V&V)
- Trend towards additional models for **decision making**
 - Exemplified by optimization-based guidance, data-driven model learning for guidance
 - Applies to most potential techniques for advanced capabilities & autonomy
- Advantages envisioned & demonstrated in Al4GNC

Performance Design Flexibility Increase Autonomy

Synthesis of New Capabilities Data-Driven GNC Design

1. Data-Driven Modelling

- Current designs focused on first principle models
- Data-driven approaches may be underrepresented
 - Possibly improved model fit since complicated effects can be approximately captured
 - significantly reduced engineering effort
- \rightarrow actively explored in SR project (linear models)

2. Simulation for GNC design

- Currently the focus of simulations lies on V&V
- Bayesian optimization, RL and related techniques shift focus
 - Significant potential to streamline tuning process
 - Overhead in their application needs to be reduced

SENER Lessons Learned & Discussion

Lessons-Learned and Discussion

Part I: Technical

- 1. Potential for advanced techniques: Opportunities need to be clearly identified
 - Also in this project/benchmark -> what can advanced techniques improve? How?
 - What is the performance/complexity trade-off? Quantifiable? (E.g. linear augmentation vs ANN-based, Optimization problem classes)

2. Use of techniques has significant overhead

- Can be reduced by good software integration
- Techniques often inherently complex and challenging to design
 - Toolboxes and software packages can help to some extent
 - Still likely requires expert personnel

Lessons-Learned

Part II: Project Execution

- 3. Format of the project right for this type of study? (PRR \rightarrow CRR \rightarrow PDR \rightarrow DDR \rightarrow VR \rightarrow FR)
 - (out of necessity) we took large liberties with the format
 - May give structure to development efforts
- 4. Use of SENER benchmark simulator
 - Has caused significant challenges
 - Reduced flexibility/agility, large overhead for development
 - Using different environment, we could have produced more results
 - But: Provides significant value by enforcing realistic use cases
 - Avoids demonstration on academic toy problems
 - Difficult tradeoff to be carefully considered

Lessons-Learned

Further discussion points?

Robust trajectory generation Final Review

Dennis Gramlich, Carsten W. Scherer, Christian Ebenbauer

Chair of Intelligent Control Systems, RWTH Aachen Chair for Mathematical Systems Theory, University of Stuttgart

December 19, 2022

Why we are interested in robust trajectory generation

Robust control in aerospace engineering:

- Generate a nominal trajectory.
- Track the trajectory with a robust controller.

We propose:

• The integration of robust control into trajectory generation.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Why we are interested in robust trajectory generation

Robust control in aerospace engineering:

- Generate a nominal trajectory.
- Track the trajectory with a robust controller.

We propose:

• The integration of robust control into trajectory generation.

Why we are interested in robust trajectory generation

Robust control in aerospace engineering:

- Generate a nominal trajectory.
- Track the trajectory with a robust controller.

We propose:

• The integration of robust control into trajectory generation.

Parafoil payload landing scenario

Goal: Find a control policy that minimizes the functional

$$\int_0^{t_f} u^2(t) \, \mathrm{d}t + \left\| \begin{pmatrix} x(t_f) - x_f \\ y(t_f) - y_f \\ \psi(t_f) - \psi_f \end{pmatrix} \right\|_F^2$$

while controlling the system below and compensating wind disturbances.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Outline

1 Robust Differential Dynamic Programming

2 Robust DDP: Robust performance benchmark

8 Robust DDP: Sener simulator benchmark

A Robust DDP & Learning (Joint work with Lukas Hewing)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

The developped robust Differential Dynamic Programming (robust DDP) algorithm

・ロト ・ 同ト ・ ヨト ・ ヨト

- is applicable to nonlinear generalized plants as above and
- provides guarantees for affine linear time-varying systems.

For a nonlinear genearlized plant, we solve the robust Dynamic Program

$$\begin{array}{ll} \underset{(\pi_k)}{\text{minimize maximize}} & \left(\sum_{k=0}^{T-1} f_0(x_k, u_k, w_k) + V_T(x_T)\right) \\ \text{s.t.} & x_{k+1} = f(x_k, u_k, w_k) & k = 0, \dots, T-1 \\ & x_0 = x_s \\ & u_k = \pi_k(x_k) & k = 0, \dots, T-1 \\ & w_k = \Delta_k(g(x_k, u_k, w_k)) & k = 0, \dots, T-1, \end{array}\right)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

in a sequential convex programming fashion.

Classical DDP strategy:

- Approximate the cost around the reference trajectory $(x_k, u_k)_{k=0}^T$.
- Compute local update $(\delta_k^{\times}, \delta_k^u)$ that reduces the cost of the trajectory.

Robust DDP strategy:

- Utilize uncertainty multipliers to bound the cost around the reference trajectory $(x_k, u_k)_{k=0}^T$.
- Compute local update (δ_k^x, δ_k^u) that reduces the cost upper bound of the trajectory.

Robust DDP strategy:

- Utilize uncertainty multipliers to bound the cost around the reference trajectory $(x_k, u_k)_{k=0}^T$.
- Compute local update (δ_k^x, δ_k^u) that reduces the cost upper bound of the trajectory.

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ─ 臣 ─ のへぐ

Example	uncertainties			
Ex. 1	wind field 1 with multiplicative uncertainty			
Ex. 2	uncertain input delay			
Ex. 3	uncertain velocity			
Ex. 4	uncertain velocity and input delay			
Ex. 5	uncertain velocity, input delay and wind			
Ex. 6	wind field 2 with multiplicatie uncertainty			
Ex. 7	wind field 2 with constant uncertainty			
Ex. 8	wind field 2 with LIDAR uncertainty			
Ex. 9	wind field 3 with multiplicative uncertainty			

Table: List of example configurations for the Monte Carlo simulation. Note that in Example 2, there is an exception. In this case, we study the 4 DOF model with the prescribed uncertainties, but the six DOF model with no uncertainties.

Figure: Illustration of nominal (transparent) and robust (dark) trajectories and the intensity of the uncertainty (red background).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

Experiment	Algorithm	Terminal Cost	Missed Distance	Missed Heading
Example 1	nominal DDP	1.8862	43.255 m	2.2311°
Example 1	robust DDP	0.21558	14.2683 m	1.9848°
Example 2	nominal DDP	0.22312	13.6583 m	3.4648°
Example 2	robust DDP	0.42834	13.0901 m	9.1851°
Example 3	nominal DDP	0.029267	3.5746 m	2.3266°
Example 3	robust DDP	0.025571	4.7954 m	0.9195°
Example 4	nominal DDP	0.39618	19.8599 m	0.7608°
Example 4	robust DDP	0.071304	8.2416 m	1.0535°
Example 5	nominal DDP	-	-	-
Example 5	robust DDP	-	-	-
Example 6	nominal DDP	0.16619	12.8245 m	0.75264°
Example 6	robust DDP	0.11103	10.4436 m	0.80161°
Example 7	nominal DDP	4.2123	64.7013 m	2.9226°
Example 7	robust DDP	0.51526	22.4701 m	1.8431°
Example 8	nominal DDP	0.44822	21.0997 m	0.99691°
Example 8	robust DDP	0.28449	16.6594 m	1.5105°
Example 9	nominal DDP	2.2398	47.2049 m	1.9455°
Example 9	robust DDP	2.3306	47.8559 m	3.643°

Color code: best, worst.

Robust DDP: Sener simulator benchmark

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ─ 臣 ─ のへぐ

Simulator Monte Carlo benchmark

1D wind scenario without constraints:

- Parafoil payload landing scenario.
- Disturbances by a height dependent wind field.

3D wind scenario with constraints:

- Parafoil payload landing scenario.
- Disturbances by a wind field depending on all space coordinates.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

• Valley constraints.
1D wind scenario without constraints

algorithm	wind error	90% quantiles	mean accuracy	median accuracy
Baseline	$0 \mathrm{m/s}$	27.8517 (27.6395)	27.5154 (19.5091)	16.1469 (19.3674)
Baseline	$\frac{2.5}{3}$ m/s	39.9353 (35.45)	34.9835 (22.5425)	17.594 (20.651)
Baseline	$\frac{5}{3}$ m/s	97.5034 (100.233)	59.1223 (39.3975)	21.4595 (22.7324)
Baseline	$\frac{7.5}{3}$ m/s	185.8093 (252.9832)	108.3531 (104.7632)	26.7415 (30.2102)
DDP	$\tilde{0}$ m/s	24.7212 (27.2009)	20.2993 (15.7265)	11.7073 (17.0487)
DDP	$\frac{2.5}{3}$ m/s	38.3248 (47.2506)	28.8612 (22.0739)	14.4037 (16.3496)
DDP	$\frac{5}{3}$ m/s	82.8809 (97.7824)	52.1305 (36.6703)	20.4581 (18.8947)
DDP	$\frac{7.5}{3}$ m/s	145.9398 (182.7431)	94.1244 (64.4572)	27.9901 (32.1246)
robust DDP	$\tilde{0}$ m/s	21.4472 (28.3516)	19.8503 (17.7563)	11.6286 (14.1737)
robust DDP	$\frac{2.5}{3}$ m/s	24.3172 (36.6898)	21.7991 (23.5991)	12.7784 (15.4815)
robust DDP	$\frac{5}{3}$ m/s	49.698 (88.8988)	38.3896 (44.01)	16.2578 (20.0285)
robust DDP	$\frac{7.5}{3}$ m/s	127.2579 (147.6379)	80.0665 (69.2864)	22.0501 (31.0435)

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Color code: best, middle, worst.

3D wind scenario with constraints

algorithm	wind error	90% quantiles	mean accuracy	median accuracy
Baseline	$0 \mathrm{m/s}$	95.7631 (71.0752)	51.9363	25.2396
Baseline	$\frac{2.5}{3}$ m/s	130.8552 (91.2114)	67.8491	27.0211
Baseline	$\frac{5}{3}$ m/s	215.6164 (190.0191)	93.7852	31.8473
Baseline	$\frac{7.5}{3}$ m/s	328.166 (314.3696)	131.7685	43.6718
DDP	0 m/s	39.5696 (60.384)	50.5451	19.3913
DDP	$\frac{2.5}{3}$ m/s	73.7915 (147.7287)	67.9683	21.9754
DDP	$\frac{5}{3}$ m/s	146.9501 (160.418)	92.1789	26.9091
DDP	$\frac{7.5}{3}$ m/s	259.5951 (221.2534)	116.3121	38.8167
robust DDP	0 m/s	40.3008 (139.2251)	56.2837	16.8733
robust DDP	$\frac{2.5}{3}$ m/s	73.7171 (152.2869)	59.6432	19.7793
robust DDP	$\frac{5}{3}$ m/s	152.6772 (-)	83.5045	24.6162
robust DDP	$\frac{7.5}{3}$ m/s	271.3544 (229.1841)	131.6672	34.4236

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Color code: best, middle, worst.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Learned system models can be inaccurate!

- Model errors exist even in the proximity of the training set.
- Model errors can increase significantly, outside of the *support* of the training set.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Idea: Use robust planning for learned models.

- Improves performance in the data domain.
- Avoids leaving the data domain.

Studied setup: Nominal model

$$\begin{split} \dot{x}(t) &= v(t)\cos(\gamma(t))\cos(\psi(t))\\ \dot{y}(t) &= v(t)\cos(\gamma(t))\sin(\psi(t))\\ \dot{\psi}(t) &= \frac{L(v(t))\sin(u(t))}{mv(t)\cos(\gamma(t))}\\ \dot{v}(t) &= -D(v(t))/m - g\sin(\gamma(t))\\ \dot{v}(t) &= -D(v(t))/m - g\sin(\gamma(t))\\ \dot{\gamma}(t) &= \frac{L(v(t))\cos(u(t)) - mg\cos(\gamma(t))}{mv(t)}\\ \dot{z}(t) &= v(t)\sin(\gamma(t))\\ \dot{u}(t) &= \frac{u_{\rm com} - u(t)}{\tau_u}. \end{split}$$

Learned model

$$\begin{split} \dot{x}(t) &= \bar{v}\cos(\psi(t))\\ \dot{y}(t) &= \bar{v}\sin(\psi(t))\\ \dot{\psi}(t) &= \bar{c}u(t) + w(t)\\ \dot{u}(t) &= \mu(u(t), u_{\rm com})\\ \|w(t)\| &\leq 2\sigma(u(t), u_{\rm com}). \end{split}$$

Here, $\mu(u, u_{\text{com}})$ and $\sigma(u, u_{\text{com}})$ are the mean and standard deviation of a gaussian process.

Figure: Generalized plant from the GP augemented model.

The uncertainties of the above generalized plant are characterized by $\|\Delta_k\| \leq 1$, i.e., the family of multipliers

$$\begin{pmatrix} \Delta_k \\ I \end{pmatrix}^{\top} \begin{pmatrix} -\lambda I & 0 \\ 0 & \lambda I \end{pmatrix} \begin{pmatrix} \Delta_k \\ I \end{pmatrix} \succeq 0 \qquad \forall \lambda \in \mathbb{R}_{\geq 0}.$$

イロト 不得 トイヨト イヨト

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● の < @

Statistics	GP augmented DDP	nominal DDP
90% Terminal Cost Quantile	0.31043	1.4633
Terminal Cost Median	0.060813	0.24776
Terminal Cost Mean	0.1607	0.69561
90% Position Error Quantile	15.2541	21.5877
Position Error Median	7.2427	8.8074
Position Error Mean	8.2827	11.0035
90% Heading Error Quantile	4.6454	19.4048
Heading Error Median	0.77642	6.4613
Heading Error Mean	2.0768	9.0401

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Color code: best, worst.

-

Conclusion

- Robust planning can improve robustness over a robust controller.
- Robust DDP has demonstrated the advantages of robust planning in extensive benchmarks.
- Robust planning can be a useful addition to learning based control methods.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

Conclusion

Thank you: Valentin Preda, Samir Bennani, Lukas Hewing and Sener.

For all the support during our work for AI4GNC.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

AI4GNC – VR – D7 revision: Model Augmentation for Optimization-based Guidance

ir. Chris Verhoek, dr. ir. Roland Tóth, dr. ir. Sofie Haesaert, dr. ir. Maarten Schoukens

Control Systems research group – Chris Verhoek – Eindhoven University of Technology – D7 revision presentation

Overview

- Overviewed the state-of-the-art LPV identification and control (D3)
- Developed an LFR-ANN based model-augmentation concept (D4)
- Developed 6/12 DOF models of the parafoil return vehicle (de Lange, 2021) (D4)
- Applied model-augmentation concept on the developed models (D4)
 - LTI baseline augmentation \rightarrow excellent results (BFRs of ~95%)
- Investigated augmentation of the unicycle baseline (D6)

Next step?

Problem setting

Goal: Integrate the augmented model in guidance

Capture closed-loop flight dynamics as an LFR-ANN augmented unicycle

Contents

- Augmentation scenario
- Data-generation
- Preliminary analysis
- Training results
- Conclusions

Simulation environment: based on TU/e simulator (developed in D4)

- 6 DOF vehicle model
- LPV controller designed for reference tracking of ψ
- Generated noise to match state observer error (based on recorded specturm)

Velocity-based training on the unicycle model

$$\dot{x}(t) = v \cos(\psi(t)) + w_x(t)$$
$$\dot{y}(t) = v \sin(\psi(t)) + w_y(t)$$
$$\dot{\psi}(t) = u(t)$$

State derivatives \rightarrow Outputs

$$\dot{\psi} = \dot{\psi}_{\mathrm{ref}}$$
 $z = \begin{pmatrix} \dot{x} \\ \dot{y} \\ \dot{\psi} \end{pmatrix} = \begin{pmatrix} v_{\mathrm{forward}} \sin \psi + d_{\mathrm{wind},x} \\ v_{\mathrm{forward}} \cos \psi + d_{\mathrm{wind},y} \\ \dot{\psi}_{\mathrm{ref}} \end{pmatrix}$

Nov. 4, 2022 – C. Verhoek et al. – D7: Model Augmentation for Guidance

6

Velocity-based training – new baseline model

$$\begin{split} \dot{\psi} &= \dot{\psi}_{\rm ref} \\ z &= \begin{pmatrix} \dot{x} \\ \dot{y} \\ \dot{\psi} \end{pmatrix} = \begin{pmatrix} v_{\rm forward} \sin \psi + d_{{\rm wind},x} \\ v_{\rm forward} \cos \psi + d_{{\rm wind},y} \\ \dot{\psi}_{\rm ref} \end{pmatrix} \end{split}$$

Approximation of \dot{x}, \dot{y} by the model:

- Dependent on $v_{\text{forward}} \rightarrow \text{norm of } \dot{x}, \dot{y}$
- Dependent on $d_{\text{wind},\bullet} \rightarrow$ noise
- \blacktriangleright Only dependent on the approximation error of ψ , i.e., $\dot{\psi}$

Quality of baseline model only dependent on the mapping

 $\dot{\psi} = \dot{\psi}_{
m ref}$

- Identity mapping
- > Identification problem: Estimate $\hat{\dot{\psi}} = \mathcal{M}\dot{\psi}_{ref}$ such that $\hat{\dot{\psi}} \dot{\psi}$ is close to zero.

Solve this identification problem in the model-augmentation framework

Contents

- Augmentation scenario
- Data-generation
- Preliminary analysis
- Training results
- Conclusions

Data-generation

Use our own model:

- 6 DoF GPRV
- Controlled with LPV controller (Matthis' MSc work)
 - Reference tracking scenario
 - Tracks ψ
- Use heading-rate reference from SENER simulator

Divide reference in sub-windows

Data-generation

Divide reference in sub-windows

- Simulate sub-windows with ball of random initial conditions
- 12 sub-windows, 25 initial conditions
 - 300 trajectories, T_s = 0.1 [s], 250 [s]
 - 750k datapoints
 - Generate with/without wind

TU/e

Data-generation

Divide reference in sub-windows

- Simulate sub-windows with ball of random initial conditions
- 12 sub-windows, 25 initial conditions
 - 300 trajectories
 - 750k datapoints
 - Generate with/without wind (seen as the noise source)

Size of ball initial conditions: 15% deviation from nominal

Contents

- Augmentation scenario
- Data-generation
- Preliminary analysis
- Training results
- Conclusions

Q: How nonlinear the behavior is?

Identify the mapping $\hat{\dot{\psi}}=\mathcal{M}\dot{\psi}_{\mathrm{ref}}$ with LTI system identification techniques

- Use wind/noise-free data → OE-estimation
- Process part estimated well with order 2 → mainly linear behavior with minor nonlinearities
- Best-Fit-Rate (BFR) of 99.43% on validation data
- With wind disturbance: BFR of 89.66%

Identify the mapping $\dot{\psi} = A \dot{\psi}_{
m ref}$ with LTI system identification techniques

OE simulation results

BJ simulation results

However, there were a few data-sets where the fit drasticaly dropped.

- Worst-case BFR: 65%
- The controller dropped out from its designed operating range
- Main reason for the dominant LTI behavior: linearizing effect of the LPV controller

Contents

- Augmentation scenario
- Data-generation
- Preliminary analysis
- Training results
- Conclusions

We want to learn the residual nonlinearities in the mapping $\dot{\psi}_{
m ref} o \dot{\psi}$

- See the identified LTI model as baseline
- Augment with a static neural network

Goal: Accurately learn the residual nonlinearities in the mapping

- Use noise and wind-free data
 - Avoid *learning* wind / noise

Train in SUBNET framework

- Number of inputs of the network: 2
- Number of outputs of the network: 2
- Number of hidden layers: 2
- Nodes per layer: 64
- Activation functions: tanh()

Augmented model: worst-case BFR on the validation set: **85%**

Simulation on 4 test sets:

Full black-box model: worst-case BFR on the validation set 93%

Simulation on 4 test sets:

Velocity simulation (augmented model)

Velocity simulation (black-box model)

TU/e

- For data-sets where LTI behavior is dominant, augmentation structure contributes: <1%
- Black-box approach reaches better validation results (effect of SGO + regularization)
- Long-term predictions (simulations) have less error with the augmented LTI model
- Performance of the augmented structure dependent on the initialization of ANN (use the encoder)
- Overall performance is excellent

Contents

- Augmentation scenario
- Data-generation
- Preliminary analysis
- Training results
- Conclusions
Conclusions

- For training on velocity, identification problem resembles to learning $\dot{\psi}_{
 m ref}
 ightarrow \dot{\psi}$
- We have shown that we can learn the residual nonlinear dynamics
- For small deviations from nominal trajectory, LTI augmentation is sufficient
- Outside of this region \rightarrow ANNs are needed
- Due to LFR-ANN structure, augmentation can be used to define uncertainty
 - Working this properly out requires more time...

