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Introduction

➢ Microcontrollers and FPGAs used in small satellites

require low-footprint non-volatile memories (NVM) for

configuration, code, and data storage purposes

• The Serial Peripheral Interface (SPI) is low-pin count:

simplified routing and small board area occupation

• The Flash NOR interface has a larger pin-count and footprint,

but provides faster random access
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Devices

MB85RS256TY CY15B102QN CY14V101PS MT28EW128ABA

Part Type SPI Ferroelectric

RAM

SPI Ferroelectric

RAM

SPI Non-volatile

SRAM (SONOS)

Parallel NOR Flash

Memory (Floating

Gate)

Manufacturer Fujitsu

Semiconductor

Cypress Cypress Micron Technology

Size 256 kbit 2 Mbit 1 Mbit 128 Mbit

Operating

Voltage

1.8 to 3.6 V 1.8 to 3.6 V Core 2.7 to 3.6 V;

I/O 1.71 to 2.0 V

Core 2.7 to 3.6 V;

I/O 1.65 to 3.6 V

Operating

Temperature

-40°C to 125°C -40°C to 125°C -40°C to 85°C -40°C to 85°C

Package SOP8 SOIC8 SOIC16 TSOP56
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Charge-based Cells

➢ Storage concept: Inject or remove charge between the control gate and the 
channel

➢ Charge storage element: floating polysilicon gate (FG), charge-trap layer 
(e.g. Semiconductor Oxide Nitride Oxide Semiconductor - SONOS) 

➢ Radiation can remove stored charge

Source/Drain

Charge-storage

element

Control Gate

Tunnel

Oxide

Blocking

Dielectric

- - - - -
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Ferroelectricity

➢When an electric field is 

applied across a dielectric 

materials, polarization of the 

dipoles occurs.

➢When the field is removed, the 

polarization disappears unless 

ferroelectric materials are 

used

➢Cells are not very sensitive to 

radiation, peripheral circuitry 

can be, but voltages are low 
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TID Irradiation and Annealing

Custom SoC-based 

system for parametric 

characterization and 

power analyser

• Functionality

• Power: operating, 

standby, etc.

• Timing: read, 

program, setup 

and hold time, etc.
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Facility and Experiments

➢ Co60 source at Seibersdorf Laboratories

➢ Dose rate: 2.4 krad(Si)/hour

➢ Steps: 2, 5, 10, 15, 50, 100 krad(Si)

➢ 24+ hours annealing at room temperature +
1 week at 100°C

➢ Devices

➢ 5 samples under static bias (memories
were idle, but selected, ready to operate)

➢ 5 unbiased samples (grounded pins)

➢ References for each experimental
conditions

➢ Parametric degradation measured and 
failure modes identified up to 100 krad(Si)
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MB85RS256TY

➢ Ferroelectric memory 

from Fujitsu

➢ No issues with cells 

(FRAM)

➢ Minor parametric 

(power consumption) 

between 15 and 50 

krad(Si) in all the 

biased samples

➢ Functional failures 

between 50 and 100 

krad(Si) in all the 

biased samples
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CY15B102QN

➢ Ferroelectric memory 
from Cypress

➢ No issues with cells 
(FRAM)

➢ Minor parametric 
(standby power 
consumption) 
between 15 and 50 
krad(Si) in 4 out 5 
biased samples

➢ Functional failures 
between 50 and 100 
krad(Si) in biased 
samples
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CY15B102QN (2)

➢ Limited sample-to-

sample variability 

within tested lot

▪ One device marginally 

better and below the 

set limit

➢ Current increases 

also in unbiased 

devices, but stays 

below max spec
0 2 5 10 15 50 100 RT HT
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CY14V101PS

➢ Non-volatile SRAM 

memory

➢ No issues with 

functionality of volatile 

(SRAM) or non-volatile 

(SONOS) storage

➢ Tolerable power 

consumption 

degradation in the 

peripheral circuitry 

above 50 krad(Si)

➢ No functional failures
0 2 5 10 15 50 100 >24 h

RT

168 h

100°C

0

5

10

15

20

F
a
ils

Dose [krad]

 ICC,SLEEP,B

 ICC,SLEEP,U

 ICC,STB,B

 ICC,STB,U

 ICC,R,B

 ICC,R,U

 ICC,W,B

 ICC,W,U



Simone Gerardin 13

CY14V101PS (2)

➢ Supply current during 

write

➢ Some sample-to-sample 

variability

➢ Current marginally 

increases also in unbiased 

devices, but stays well 

below max spec
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MT28EW128ABA

➢ NOR Flash memory

➢ No issues with 

functionality of cells 

(Floating Gate)

➢ Increase in standby 

current, both in biased 

and unbiased components

➢ No functional failures
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MT28EW128ABA (2)

➢ Some sample-to-

sample variability

➢ Current increases 

also in unbiased 

devices over Max 

limit, but much less 

than in biased 

devices
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CY15 – TID Lot-to-lot Results

➢TID variability study

▪ Same steps and 

measurements as during 

the first campaign

▪ CY15 FRAM ferroelectric 

memory
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CY15 – TID Lot-to-lot results, biased components

➢ Functional failures after 50 krad(Si) in all three lots

➢ Lot-to-lot Variability is visible in stand-by current evolution with TID

➢ Recovery of some samples after 100°C annealing. N.B. Lot A (black) irradiated to 100 

krad(Si), lot B and lot C (red and blue) to 50 krad(Si)

➢ All other parameters do not show significant variations across lots
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CY15 – TID Lot-to-lot results, grounded components

➢ No failure observed

➢ Increase in stand-by 

current (not so different 

from biased components)

➢ N.B. Lot A (black) 

irradiated to 100 krad(Si), 

lot B and lot C (red and 

blue) to 50 krad(Si)
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Setup for SEE Tests

SEE test setup

➢ SoC-based motherboard and 

Power Analyzer (similar to 

TID setup) + adapter boards

➢ Start/stop beam commands 

with dedicated interface

➢ Delidded components 

soldered on one side of the 

adapter board, with  heater 

on the other side

➢ A sensor is used to monitor 

the temperature of the board

➢ Calibration in vacuum to 

measure die temperature

FPGA
motherboard

Daughter
board

with DUT

Control PC Power Analyzer

Vacuum chamber

Ethernet

USB

Power (coaxial or 4-mm connectors)

FM
C

Accelerator 
Facility (beam

start/stop)
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Heavy-ion Measurements

➢Experimental setup in HIF vacuum chamber
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Detection of SEU and SEFI

SEU test sequence: 
➢ The memory is written

➢ Powered off for non-volatile 

cells, standby for volatile

➢ Exposure to a given fluence 

of particles, 

➢ Power on

➢ Read

➢ The number of SEU is logged 

and used to calculate the 

cross section

SEFI test sequence: 
➢ The memory is continuously 

exercised through a loop of 

(erase)/program/read (SEFI 

full) or read (SEFI read) 

operations

➢ When a large number of 

events is detected or some 

other exceptional 

conditions occur, the control 

PC stops the beam and 

power-cycle the memory 

➢ When and if the device 

becomes operational again, 

the test is resumed

➢ The number of SEFI is 

logged and used to calculate 

the cross section

SEL test sequence: 
➢ The memory is biased and 

heated to the target 

temperature (RT for the most 

sensitive devices) 

➢ Exposure in idle ready-to-

operate conditions (to 

maximize the visibility of SEL) 

➢ The supply current is 

monitored and when a 

sudden increase is detected, 

the power and beam are cut 

➢ Brief test to see if memory is 

operational and if so, then 

exposure is resumed. 

➢ The number of SEL is logged 

and used to calculate the 

cross section
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MB85

➢ FRAM technology

➢ Cells are immune up to > 60 
MeV∙mg-1∙cm2

➢ SEFI s considerably lower than in 
the Cypress devices

➢ No SEL @ 85°C
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CY15

➢ FRAM technology

➢ Cells are immune up to > 60 MeV∙mg-1∙cm2

➢ Cross sections for SEFIs and SEL (at room 
temperature) are very close

➢ Hard to tell if there is a spike in the current, 
when the device is operating and dynamic 
current dominates, but it is likely 
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CY14

➢ nvSRAM (SRAM+SONOS)

➢ NV cells are immune up to 62.5 
MeV∙mg-1∙cm2 (higher LET will be 
tested)

➢ SRAM cells are sensitive

➢ SEL (RT), SEFI s are similar (again, 
hard to tell if there is a spike in SEFI 
events, but it is likely)
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MT28

➢ NOR Flash

➢ Cells sensitive at 62.50 MeV∙mg-

1∙cm2, s < 10-10 cm2 

➢ Destructive events with Xe (inability 

to program and erase). Likely charge 

pump failure, not related to TID
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UPD Proton Tests

➢ The two most sensitive devices 
have been tested with protons
• CY14 nvSRAM

• CY15 FeRAM

➢TIFPA Trento Facility in Italy
• Flux ~ 3e8

DUT energy 

[MeV]

Range [mm Si] LET [MeV/(mg/cm²)]

70 22 8.016∙10-3

119 56 5.370∙10-3

169 104 4.220∙10-3

202 141 3.617∙10-3
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CY14: Proton Results

➢ Events (SEU, SEFI and SEL) 

with protons consistent with 

heavy-ion sensitivity

➢ Large error bars and significant 

dose for SEFIs
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CY14: SIMPA & PROFIT

Overestimation of  

proton effects by 

PROFIT and SIMPA for 

SEFIs, underestimation 

for SEU

Models developed many 

years ago for SEU:

➢ Fewer materials in 

the semiconductor 

industry

➢ Larger feature size

➢ Peculiar RAM with 

associated NV 

element
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CY15: Proton Results

➢ Events (SEFI and SEL, no 

SEU) with protons consistent 

with heavy-ion sensitivity
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CY15: SIMPA & PROFIT

Overestimation of  proton 

effects by PROFIT and 

SIMPA for SEFI and SEL

Models developed many 

years ago for SEU:

➢ Fewer materials in the 

semiconductor 

industry

➢ Larger feature size
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Conclusions: TID

➢ Different SPI memories and a NOR Flash were tested 

➢ Total Ionizing Dose

▪ All memory cells, regardless of the storage technology, behave 

well

▪ Increase in the supply current in various conditions and to various 

extents is the most common issue at doses below 50 krad(Si)

▪ Functional failures can appear above 15 krad(Si)

▪ In general, the samples show a consistent behavior even between 
lots in the case of the CY15

▪ Small differences are visible in stand-by current for the biased 
components
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Conclusions: SEE

➢ Single Event Effects
▪ All tested NV cells are pretty hard with respect to SEU

• data loss only with Micron NOR Flash with Heavy Ions (HI) at 
an LET of 62.5 (small s)

▪ CY14 nvSRAM has expected SEU sensitivity in the SRAM cells 
(both HI and p)

▪ Significant and consistent SEL/SEFI s in Cypress devices (both HI 
and p)

▪ Destructive events in the Micron NOR Flash with HI at an LET of 
62.5 MeV ∙ mg-1 ∙ cm2

➢ PROFIT & SIMPA
▪ Large discrepancies (both overestimation and underestimation) 

between predicted and measured proton sensitivity


