

Project AO-1-10549 - APPLICATION OF MACHINE LEARNING AND ARTIFICIAL INTELLIGENCE TECHNOLOGIES FOR PROCESS DATA ANALYSIS

»PANORAMA«

Process ANalysis and Optimization foR Advanced Manufacturing in Aerospace

Final Presentation

ESA-ESTEC, Noordwijk, 11/07/2023

Today's Agenda Final Presentation of project »PANORAMA«

Overall project presentation								
Use case overview		2.						
MLSys 1 – Au	MLSys 1 – Automated Live Process Monitoring							
MLSys 2 – Ro	obustness Assessment	b.						
Conclusion and Outlo	ok Final considerations and next steps	3.						

01 – Overall project presentation

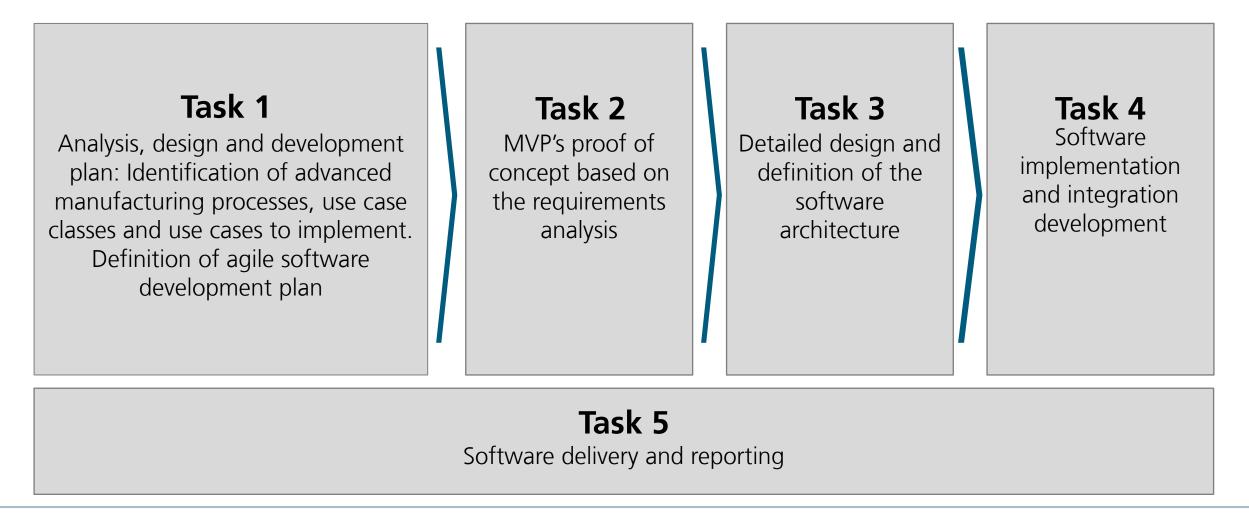
Use Case identification, evaluation, implementation and verification of Artificial Intelligence use cases

Motivation & Outset

Overall performance enhancement by optimizing process chains via Machine Learning applications

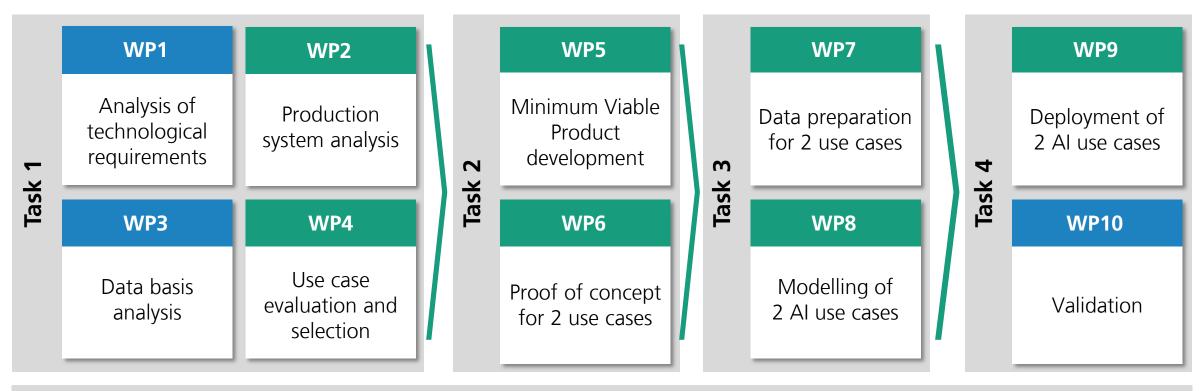
Independent access to space, which is one key to solving global and social challenges, is a central component of the European space strategy

International competition in aerospace industries has increased sharply in recent years. For future European launch systems, this means that their reliability and performance must be increased while total system costs need to be decreased


This can be achieved by optimizing overall process chains and using advanced manufacturing technologies that lead to improvements in the cost / benefit ratio

- The overall goal of the project »PANORAMA« is the **targeted expansion of knowledge** about Machine Learning in the production environment of launch vehicles, mainly for the optimization of advanced manufacturing processes
- This **ensures** immediate and future **participation** in European space transportation systems.
- For this purpose, **AI use cases** are selected and **developed AI models** are deployed in the production environment in the following partial phases:
 - -In-depth analysis of technical requirements and production system
 - -Identification and evaluation of use cases
 - -Development of a minimum viable product and proof of concept
 - –Design and Definition of the required software architecture
 - -Implementation and validation of two use cases

PANORAMA Structure of work packages



Project presentation

Structure of work packages

5	WP11	WP12
Tas	Reporting and software delivery	Project management

ArianeGroup

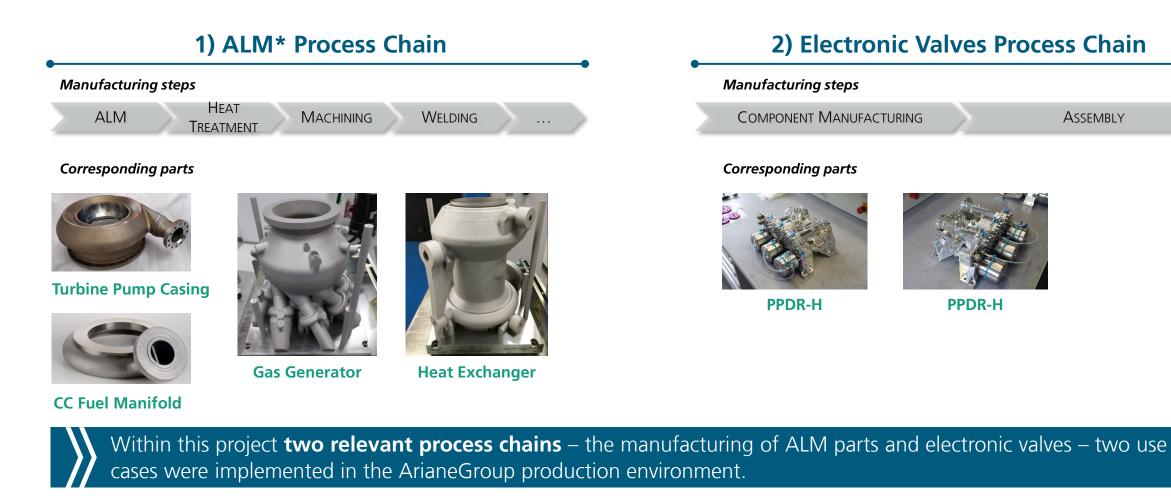
Fraunhofer IPT

🖉 Fraunhofer

IPT

PANORAMA

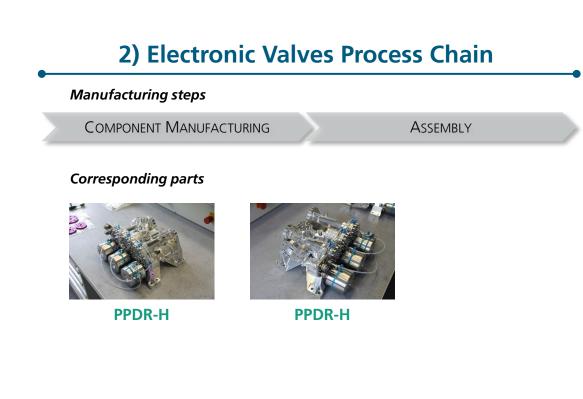
Work programme schedule

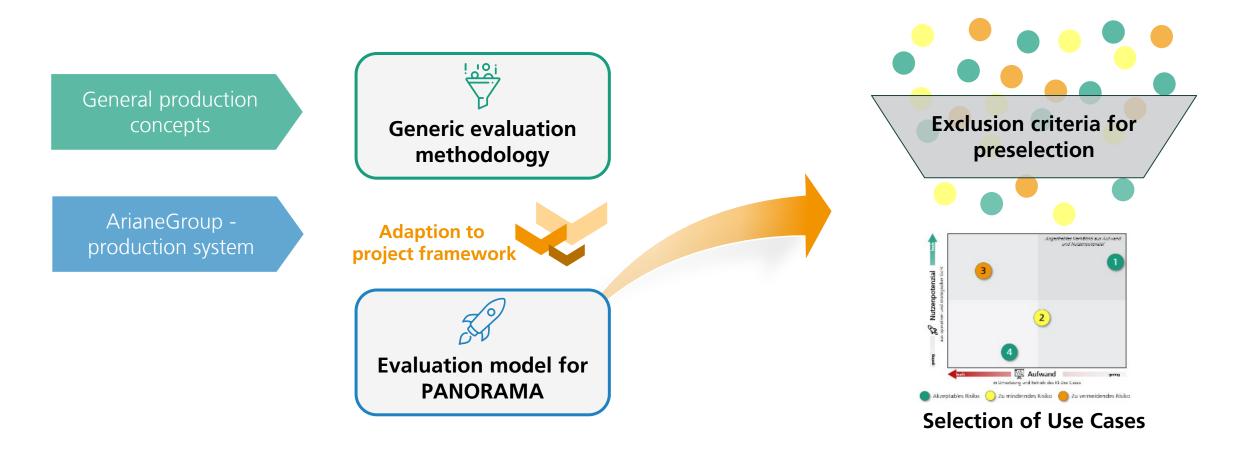

	-	20	21	2022					2023													
	Work Packages		Dec.	Jan.	Febr. N	1ar	Apr. N	lay	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Febr.	Mar	Apr.	May	June	July
	WP1 Analysis of technological Requirements	•																				
	WP2 Production System Analysis							i								į.						i I
Tack	WP3 Data Basis Analysis							!														
	WP4 Use Case Evaluation and Selection	l						M1								j						į –
c k 2	WP5 Minimum Viable Product Development																					
Tas	WP6 Proof of Concept (2 Use Cases)							İ				M2				j						j –
ck 3	WP7 Data Preparation (2 Use Cases)																					
Lac	WP8 Modelling (2 Use Cases)							ĺ														İ.
k 4	WP9 Deployment (2 Use Cases)																					
Tack	WP10 Validation																		I			
ц С	WP11 Reporting and Software Delivery																					i
Tack	WP12 Project Management	<u>-</u> -	 			L 									 	L 	. 		L] 	End	•
	Milestones Kie	ck Off			ements Part 1		Requir Reviev			Pro	of of Rev	Conce iew	ept			odelli leviev	0	Deploy Rev	ymen view	t		M3 nal view.



Overview of Technological Processes

Overview of analyzed process chains and corresponding parts

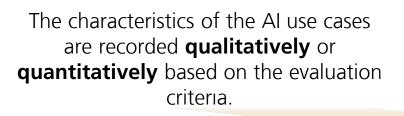




Evaluation Model

The AI use case evaluation model considers general and specific aspects for optimal decision-making

Evaluation Model


Iterative passage and adjustment of the evaluation methodology

Recording

Weighting

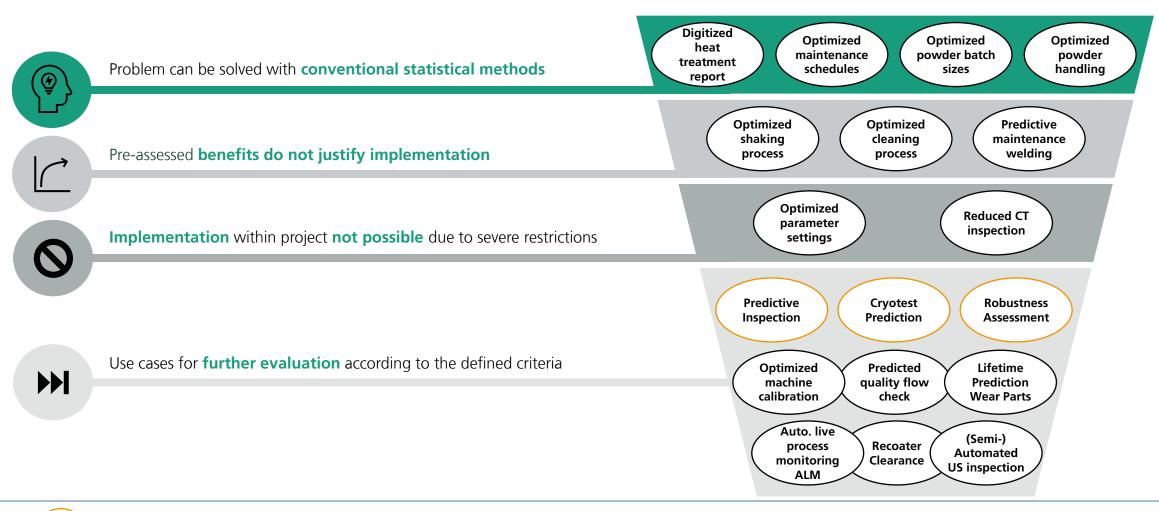
The **evaluation criteria** of the AI use cases **within a category** are **weighted** according to targets.

Rating

The AI use cases are **evaluated** against the target criteria for **comparative analysis**.

Selection

The two most promising AI use cases will be selected based on the evaluation results and implemented in the ArianeGroup production system after Task 1.

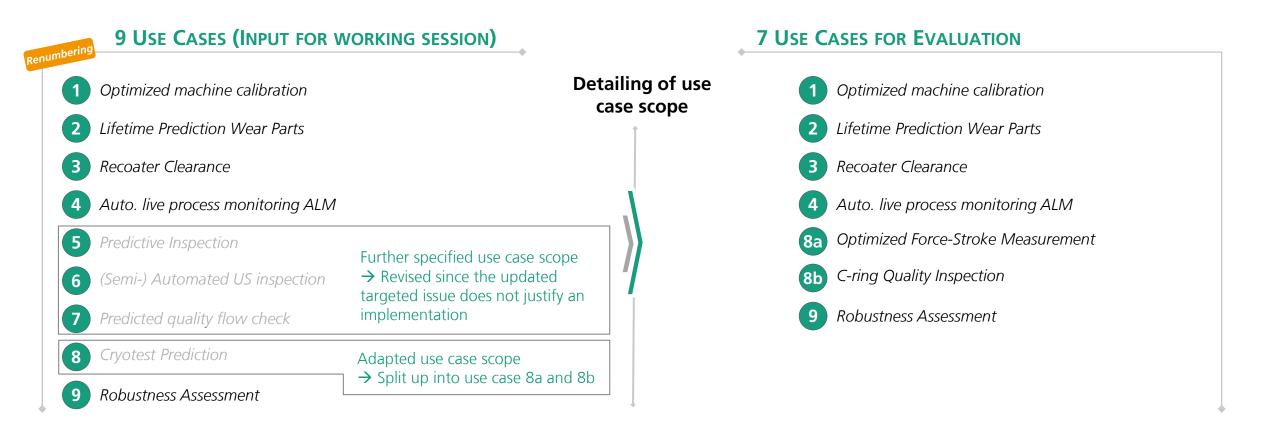


Preselection I

Pre-assessment based on three qualitative criteria previously discussed in the project team

 Aggregation of several use cases

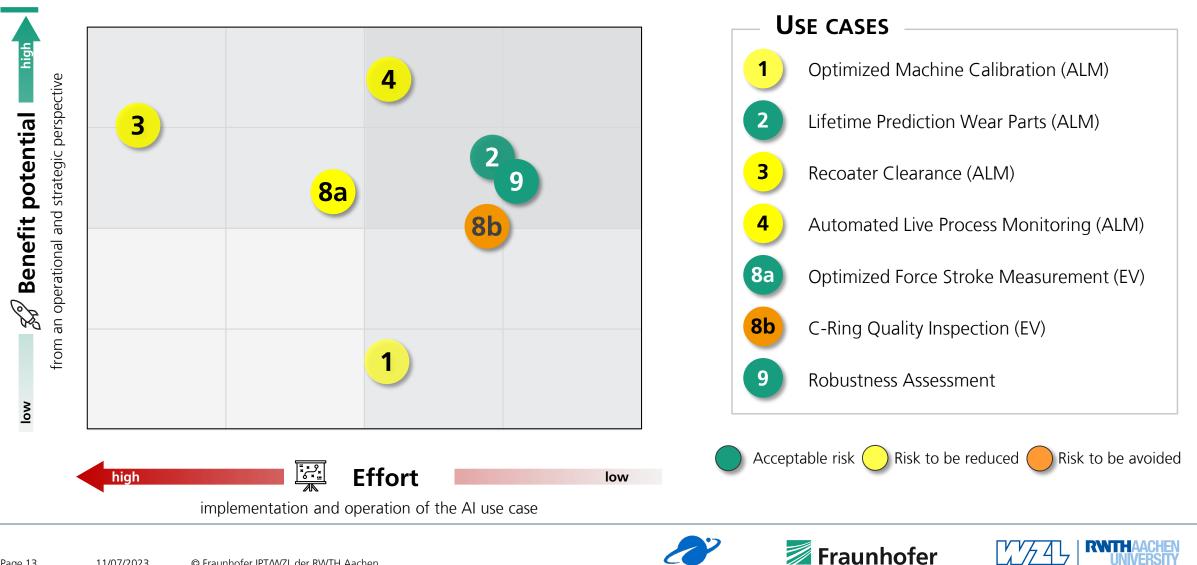
 Page 11
 11/07/2023
 © Fraunhofer IPT/WZL der RWTH Aachen



Preselection II

Refining the use case scope in a joint working group session

Seven use cases serve as an input for the following sophisticated use case evaluation

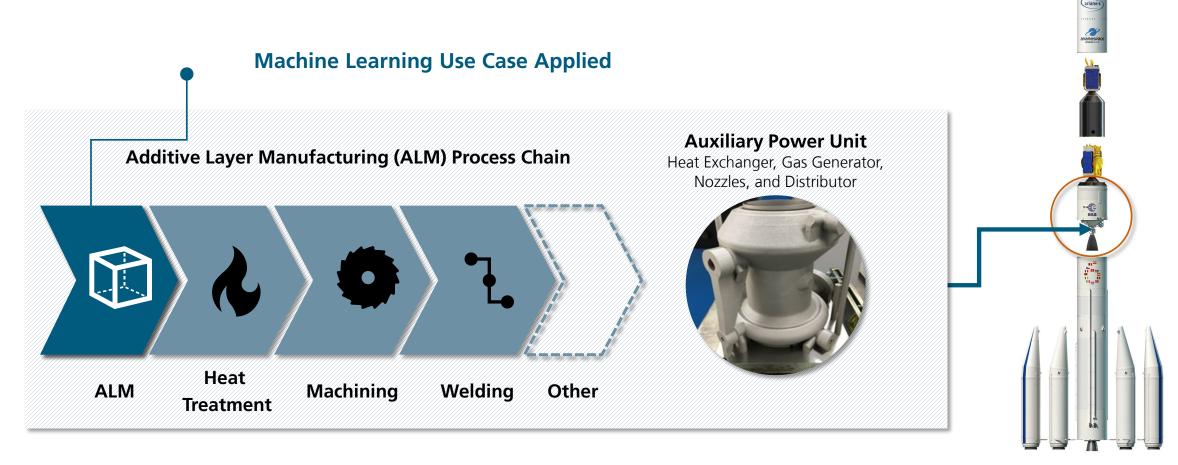


Preselection I

Pre-assessment based on three qualitative criteria previously discussed in the project team

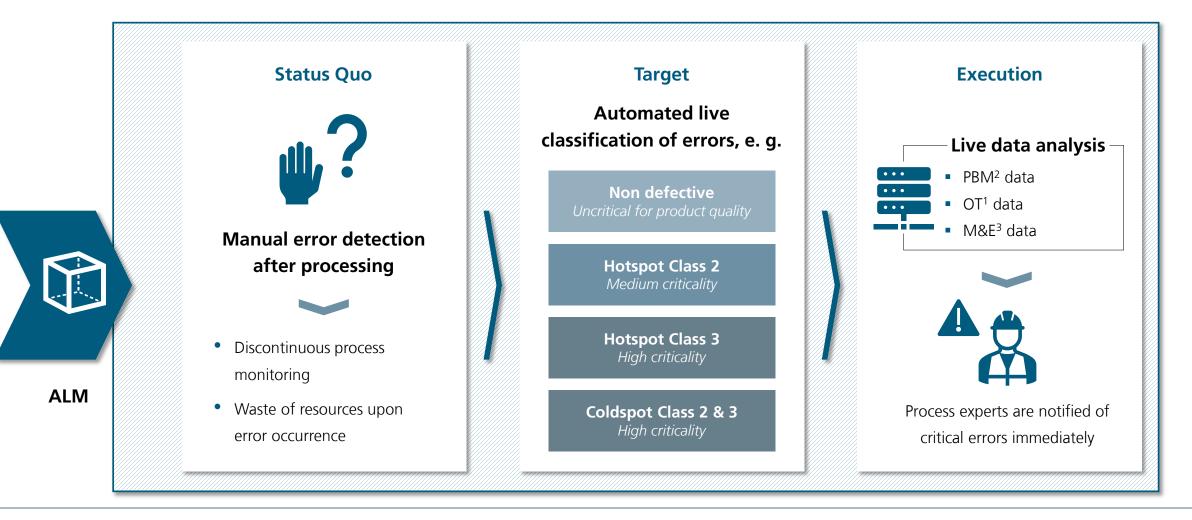
arianegroup

IPT


02 – Use Case Overview

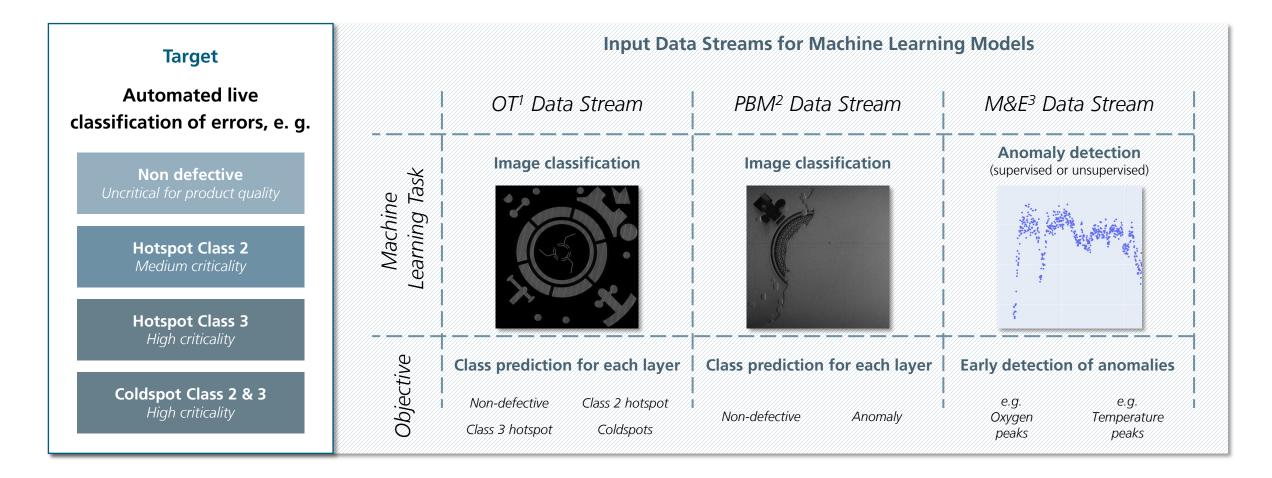
MLSys 1 – Automated Live Process Monitoring

Focus on the additive layer manufacturing (ALM) process of APU components Initial situation



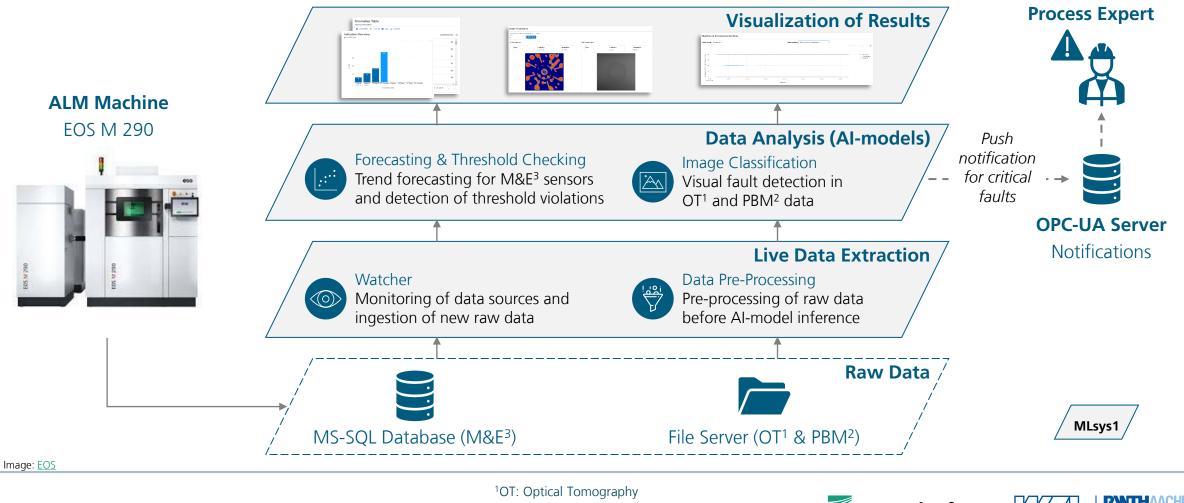
Machine learning application project motivation

Live error detection for ALM processing


¹OT: Optical Tomography ²PBM: Powder Bed Monitoring ³M&E: Machine & Environmental

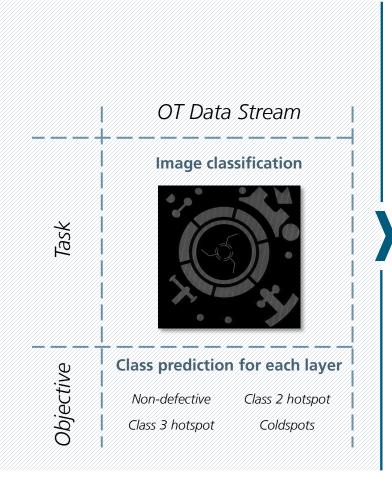
Deep dive: application of machine learning for error detection

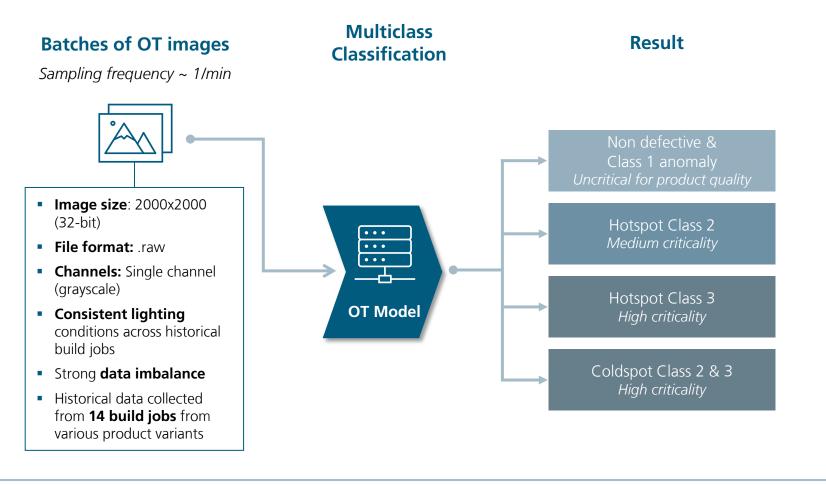
Live error detection for ALM processing


¹OT: Optical Tomography ²PBM: Powder Bed Monitoring ³M&E: Machine & Environmental

Deep dive: application of machine learning for error detection

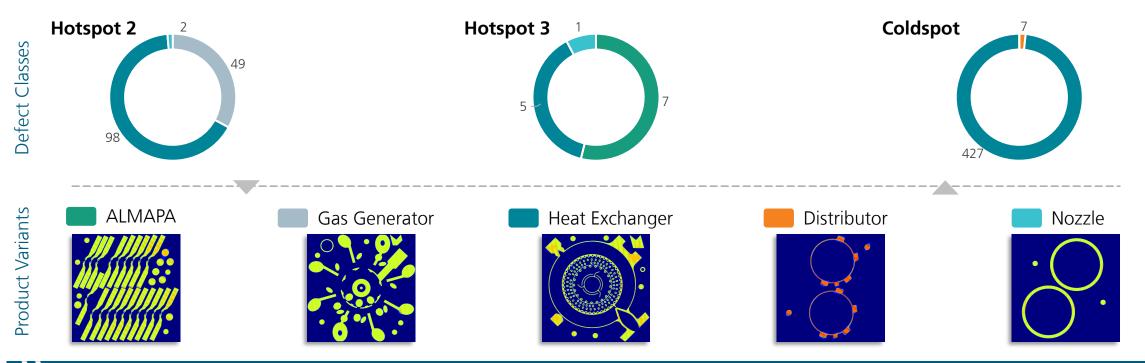
Operational environment at the Ottobrunn site




²PBM: Powder Bed Monitoring ³M&E: Machine & Environmental

Machine learning use case along the optical tomography (OT) data stream

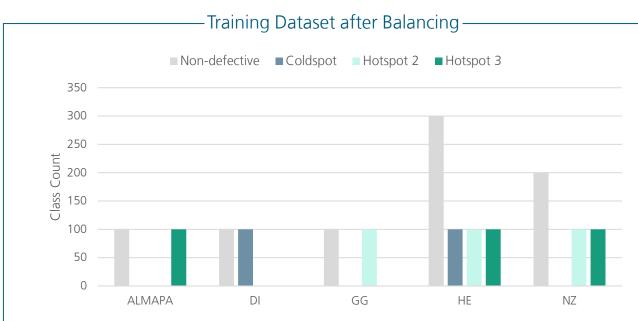
Use of classification for OT data stream



Optical tomography (OT) data stream

Data exploration

Distribution of product-class combinations


The analysis of OT data distribution revealed an **imbalance between different product-defect combinations**. This issue was **addressed during the train-test-split to avoid any bias** in the ML model for OT image classification.

Optical tomography (OT) data stream

Train-test-split, balancing, and image preprocessing

Training dataset distribution after balancing

Data split and balancing

- 80/20 train-test-split per product-class combination
- Combined class over- and undersampling to obtain balance between nondefective and defective classes per product variant

Image Preprocessing Raw OT image

(via machine interface)

Processed OT image (for analysis)

Preprocessing steps

- Format: .raw (32-bit) to .png (8-bit) transformation
- Size: 2000x2000 to 512x512
- Denoising
- RGB-transformation and Jet colormap
- Normalization and random augmentation (flip and jitter)

IPT

Optical tomography (OT) data stream

ML-Modeling results

Testing results for best model (pretrained ResNet50)

Class	Precision	Recall	F1-Score	Support
Non-defective & class 1 anomaly	0.93	0.89	0.91	121
Coldspot	0.93	0.92	0.93	88
Hotspot Class 2	0.82	0.93	0.87	30
Hotspot Class 3	0.60	1.00	0.75	3
Macro average	0.82	0.94	0.87	242
Weighted average	0.91	0.91	0.91	242

Classification report (test scores)

On unseen test data, the best-found **OT model detects 95% of anomalies** (95% recall / sensitivity for defect classes). Due to insufficient data of class *Hotspot Class 3*, more data is necessary to confirm the model behavior for this class.

Modeling Results **Model Selection:** Pretrained InceptionV3 out of 8 candidates Preselection 91% Detection of 91 out of 100 PBM anomalies Model and hyperparameter selection Sensitivity | on unseen data SCORES after HP Pre-selected mode architectures Model selection & testing Inception V3 100% Robust detection of non-defective instances, MobileNet V3 Specificity characterized by a homogeneous powder bed 3 models Note: Based on model tests on unseen data (100 defective, 100 non-defective instances) 8 models 💹 Fraunhofer IPT

Pipeline Objectives

Considered model architectures

* Pretrained on ImageNet

Variational utoencode poort Vector

Machine (SVM)

One class SVM

Use AI / ML models to classify PBM* images of running build jobs (EOS M290) into non-defective images and images with guality-critical anomalies (soft real-time). The following classes can be distinguished:

- Non-defective (i. e., no indication)
- Anomaly (i. e., powder accumulation, insufficient recoating, visible line, or critical elevated edge)

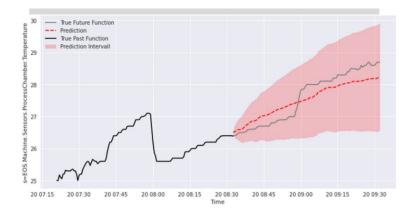
Powder bed monitoring (PBM) data stream

ML-Modeling results

PBM DATA STREAM

Machine & environmental (M&E) data stream

ML-Modeling results


Testing Results

Mean test scores for the critical parameters with 30 second time bins, prediction frequency of ten minutes and prediction period of one hour.

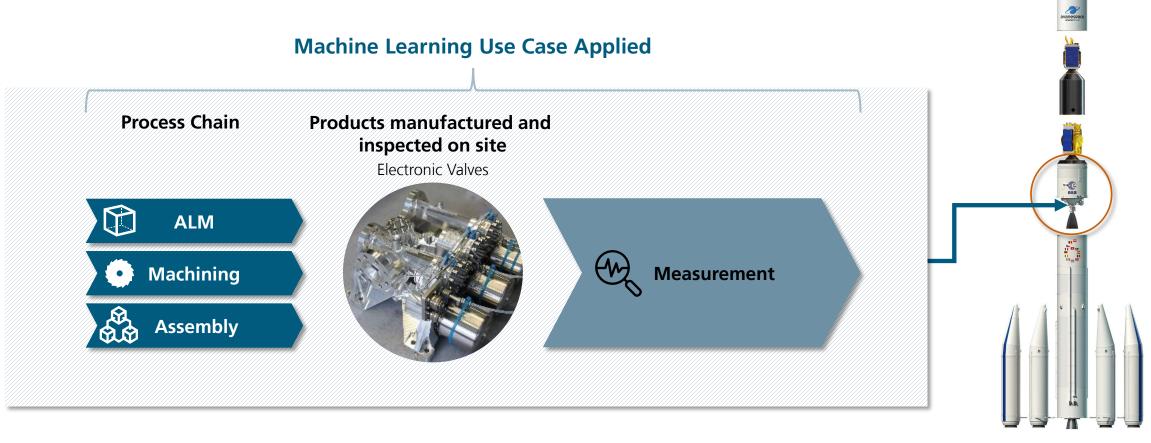
Model-ID	Model Description	OC* RMSE	OC* MAE	BPT* RMSE	BPT* MAE	PCT* RMSE	PCT* MAE
MA	Moving Average	0.0623	0.0556	0.1265	0.0940	0.2208	0.2049
LR	Linear Regression	0.3274	0.3025	0.1234	0.0884	0.1408	0.1213
RR	Ridge Regression	0.3267	0.3018	0.1234	0.0884	0.1420	0.1228
RF	Random Forest	0.1893	0.1555	0.1263	0.0934	0.1410	0.1249

*Abbreviations: OC: Oxygen Concentration, BPT: Building Platform Temperature, PCT: Process Chamber Temperature

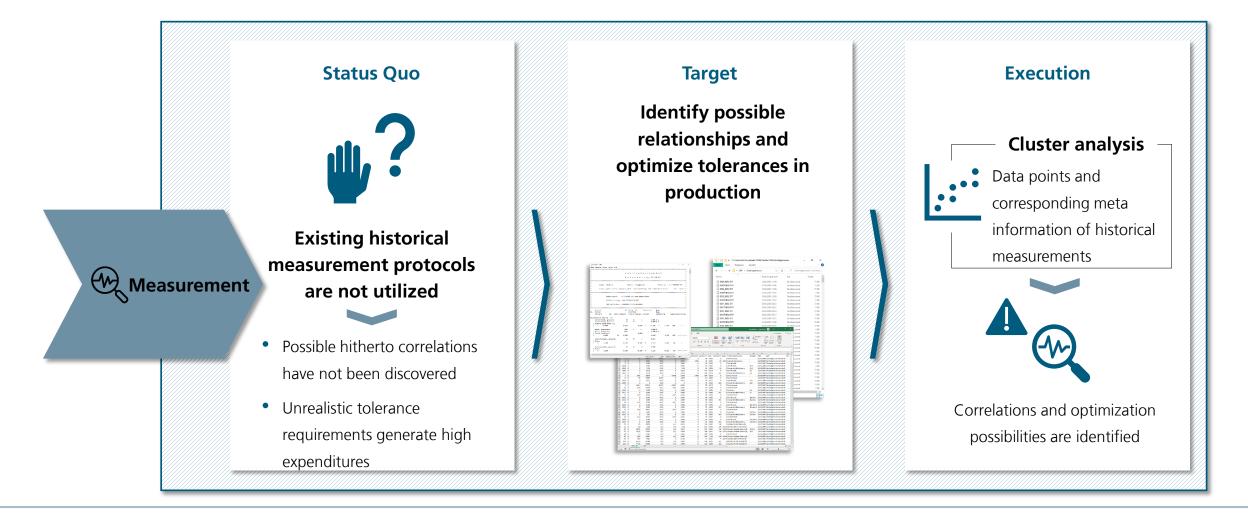
Example one hour prediction for the process chamber temperature during the SN9 build job using random forest

The pretrained architecture **RF** achieved best results and indicates a sound prediction.

02 – Use Case Overview

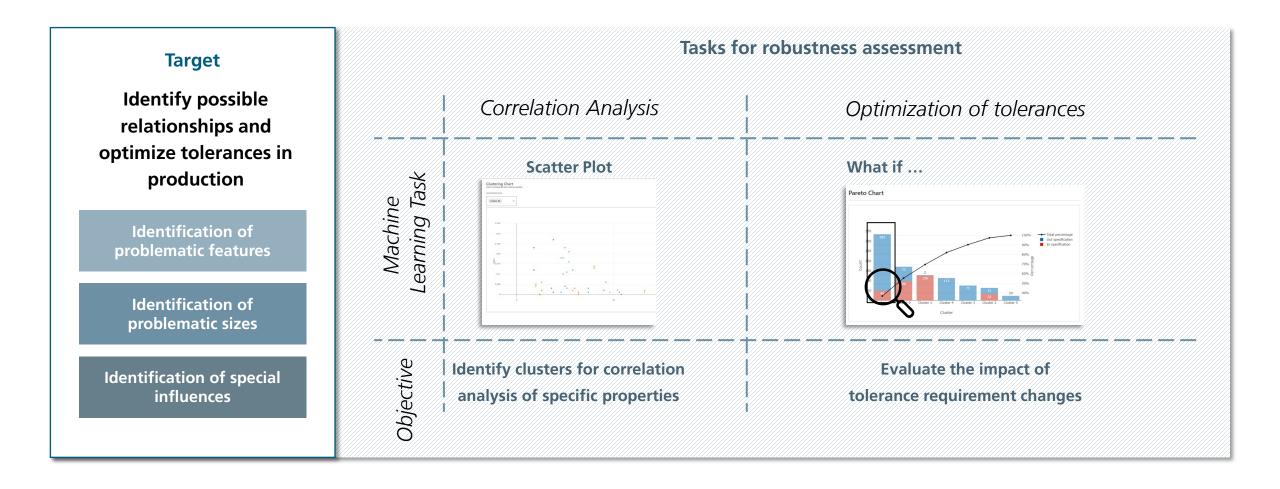

MLSys 2 – Robustness Assessment

Focus on machining capabilities through robustness assessment Initial situation


Ariane 6

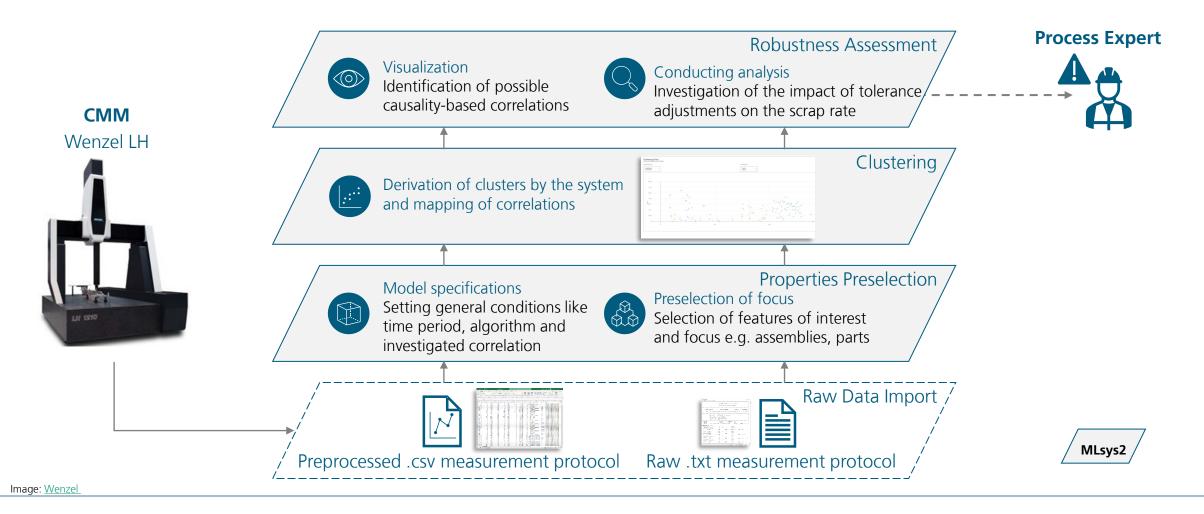
Machine learning application project motivation

Robustness assessment of the production process



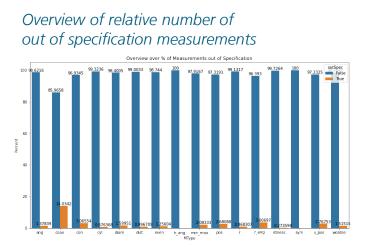
Deep dive: application of machine learning for robustness assessment

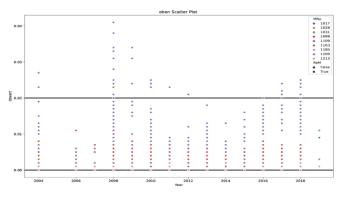
Clustering of measurement data points from historical measurement protocols



Deep dive: application of machine learning for error classification

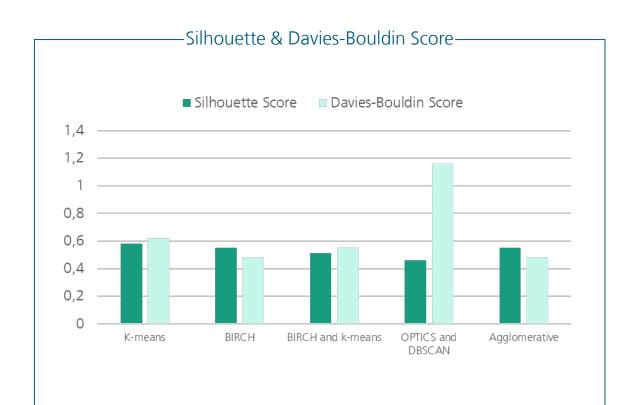
Operation at the Ottobrunn site

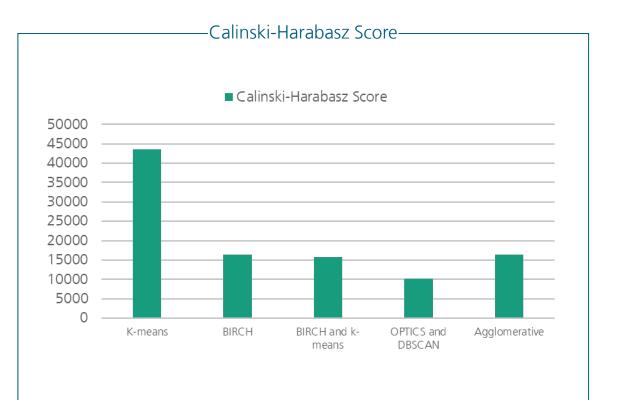



CMM measurement data

Data exploration

- File format: .txt and .csv
- Strong data imbalance
 - Low overall number for out of specification, ~2.0%
 - Numerous remeasurements, usually without recording of remeasured value
 - Varying out of specification ratio over years, components and features





CMM measurement data

ML-Modeling results

The most suitable models are K-means and DBSCAN, where K-means gives the option to predefine the number of clusters and DBSCAN selects the number of clusters itself.

03 – Conclusion and Outlook

Utilization of Artificial Intelligence in Advanced Manufacturing Processes in Aerospace

Project conclusion

Use of artificial intelligence in aerospace production

Key takeaways in the use of artificial intelligence in aerospace manufacturing in project »PANORAMA«

In the future, space production will continue to be low-volume production from a relative perspective. Low data volumes will continue to be a hurdle.

Due to the relatively low amount of manufacturing volume, technologies with large amounts of process data in each manufacturing step should mostly be considered.

The main effort of implementing Machine Learning in aerospace production is due to adapting the models to highly individual infrastructure environments.

Possible next steps

Path ahead after the project

Use case 1 is individually implemented at the first ALM machine at ArianeGroup's site. An extension to further ALM machines is possible with modifications to the software.

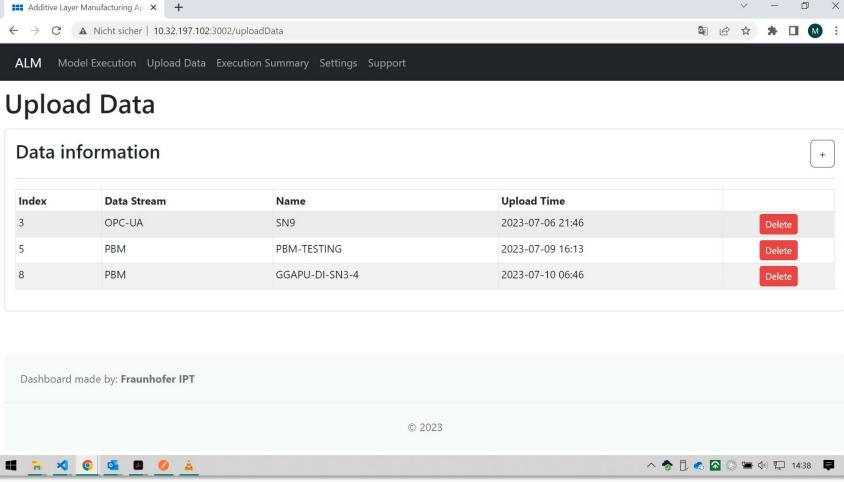
Use case 2 is suitable to be extended to other databases and technologies to gain further insights into process chains, possibly other production sites.

The initial recording of Machine Learning use cases should be reviewed and updated periodically with the goal to implement more use cases and scale up the technology.

Finally, in the fast-paced developments within the field of AI, new use cases in production are emerging, especially through the application of Large Language Models.

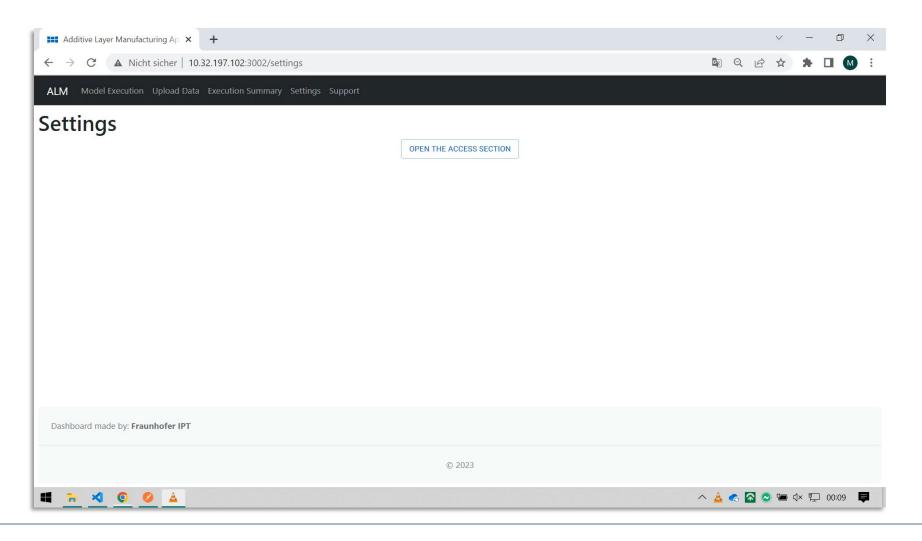
Backup

Use Case Demonstration


MLSys 1 – Automated Live Process Monitoring

MLSys 1 – Automated Live Process Monitoring Data & Model Management

👪 Additive Layer Manufacturing Ap 🗙 🕂 ← → C ▲ Nicht sicher | 10.32.197.102:3002/uploadData ALM Model Execution Upload Data Execution Summary Settings Support **Upload Data** Data information Index **Data Stream** Name **Upload Time** 3 OPC-UA SN9 2023-07-06 21:46 5 PBM **PBM-TESTING** 2023-07-09 16:13



MLSys 1 – Automated Live Process Monitoring

Model Execution (Live Monitoring)

MLSys 1 – Automated Live Process Monitoring

Model Execution (Live Monitoring) – M&E Forecasting

ettings		ata Execution Summary Settings						
	nagement					T	RAIN A MODEL	LOAD MODEL
Data Stream	Variable	Model	Results	Upload Time	Data Used	Active		
OPC-UA	PCT	PCT-Model v0	RMSE: 0.24	2023-07-10 20:35	SN9	Active	Delete	Activate
OPC-UA	PCAH	PCA-Temp v0	RMSE: 0.078	2023-07-10 20:34	SN9	Active	Delete	Activate
OPC-UA	OC	O2-Model v0	RMSE: 0.111	2023-07-10 20:33	SN9	Active	Delete	Activate
OPC-UA	BPT	BPT-Model v0	RMSE: 0.163	2023-07-10 20:32	SN9	Active	Delete	Activate
т	Default	ResNet50-42Epochs v1	F1-Score: 0.932 Precision: 0.939 Recall: 0.93	2023-07-10 12:42	HE-SN8	Not active	Delete	Activate
ОТ	Default	ResNet50-42Epochs v0	F1-Score: 0.91 Precision: 0.91 Recall: 0.91	2023-07-10 12:40		Active	Delete	Activate
PBM	Default	InceptionV3 v0	F1-Score: 0.95 Precision: 0.95 Recall: 0.95	2023-07-06 21:44		Active	Delete	Activate

MLSys 1 – Automated Live Process Monitoring

Post-Process Analysis of Results

Page 43

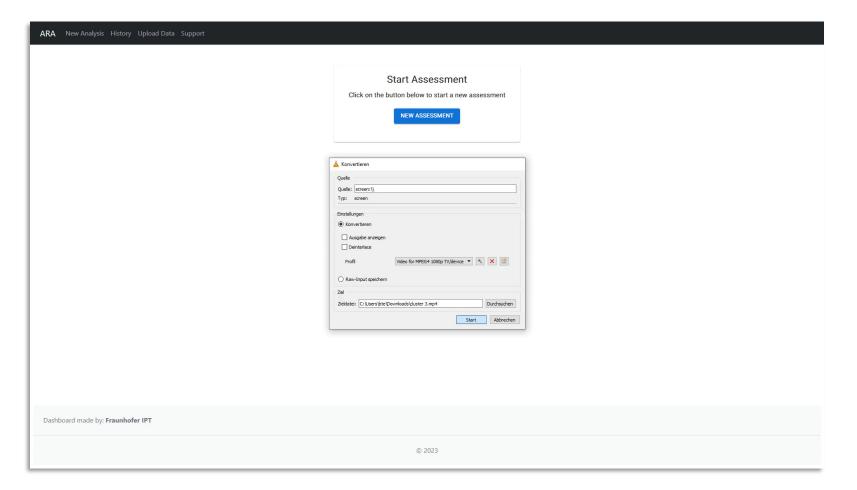
	+				`	~ -	đ
\rightarrow C A Nicht sicher 10.3	32.197.102:3002/execution	Summary		G		☆ 🗯	
LM Model Execution Upload Data Ex	xecution Summary Settings	Support					
1odel Execution S	Summary						
Process History lease, click on the desired row to visualize the hist	torical record of the previous proces	s					
🖩 Columns ᆕ Filters 🕁 export 🧃 d	DELETE						
ID Serial Number	Job-ID		Machine Type	Date			
4 SI3065	SI3065	20201109154437	Metal	2023-07-10			
1 row selected						1-1 of 1	< >
¹ row selected Results Visualization - SI	306520201109154	437				1-1 of 1	< >
Results Visualization - SI	306520201109154 3M Anomaly	437 PC Temp.	BP Temp.	O2-Peak	PC Hum		< >

Use Case Demonstration

MLSys 2 – Robustness Assessment

MLSys 2 – Robustness Assessment Upload Data

ARA I	New Analysis His	tory Upload Data Support					
Uplo	ad Data	а					+
Data	informatio	on					
Index	Assembly	Number of Samples	In Specification	Out Specification	Upload Time	Status	
7	CMI	33012	31908	1104	Mon, 10 Jul 2023 11:47:06	Uploading and processing successful	Delete
9	CMS	25538	24014	1524	Mon, 10 Jul 2023 11:47:48	Uploading and processing successful	Delete Delete Delete Delete Delete Delete Delete
10	VAX	1426	1415	11	Mon, 10 Jul 2023 11:48:03	Uploading and processing successful	Delete
15	СМІ	908	306	602	Mon, 10 Jul 2023 20:54:47	Uploading and processing successful	Delete
17	CMS	131	3	128	Mon, 10 Jul 2023 21:06:20	Uploading and processing successful	Delete
Dashboa	rd made by: Frau	nhofer IPT					
					© 2023		



ACHEN

RWTH/

MLSys 2 – Robustness Assessment

Cluster Analysis

MLSys 2 – Robustness Assessment

Customization of Thresholds

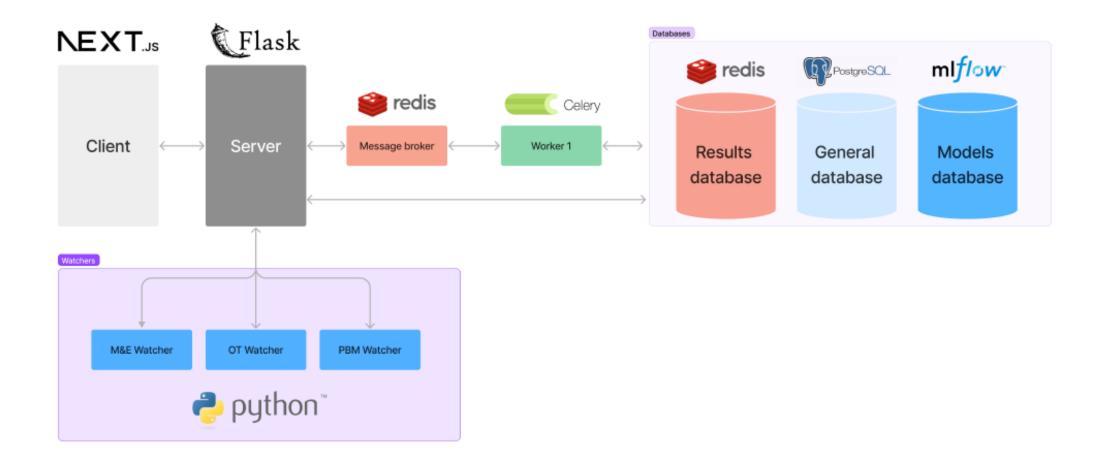
Customization of Thresholds

Lower Threshold Factor Upper Threshold Factor
.95
Upper Here

Year	Number of Measurements	Out of Sepc	In Spec	Lower Threshold Factor	Upper Threshold Factor	New Out of Sepc	New In Spec
2004	2178	462	1716	.95		468	1710
2005	108	108	0	.95		108	0
2006	1210	130	1080	.95		132	1078
2007	3469	444	3025	.95		454	3015
2008	50	36	14	.95		36	14
2009	1360	126	1234	.95		128	1232
2010	1688	18	1670	.95		18	1670
2011	1564	28	1536	.95		32	1532
2012	1426	70	1356	.95		72	1354
2013	2378	34	2344	.95		38	2340
2014	938	18	920	.95		18	920
2015	2700	66	2634	.95		70	2630
2016	1858	12	1846	.95		28	1830
2017	1880	22	1858	.95		22	1858
2018	1128	40	1088	.95		40	1088
2019	776	14	762	.95		18	758
2020	958	24	934	.95		24	934

MLSys 2 – Robustness Assessment Recall History

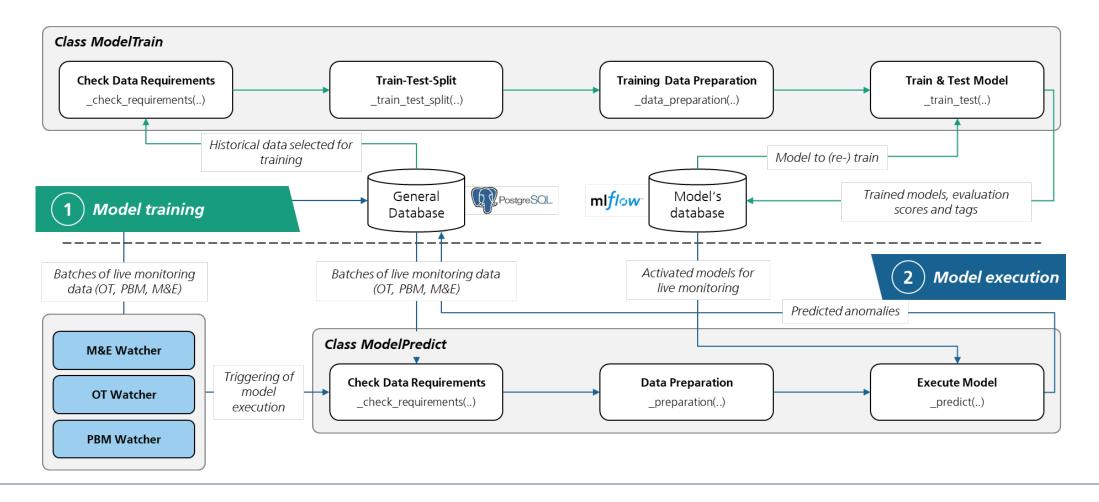
ARA	New Analys	is History Upload Dat	a Support					
Ana	ysis	History D	ata					
Data	inforn	nation						
Index	Name	Timestamp	Time horizont	Model name	Assemblies	Parts		
8	VAX	2023-07-10 21:41	None - None	DBSCAN	VAX	Zentralgehaeuse, Zentralgehäuse komplett, FV_Zentralhehäuse, Zentralgehauese	View	Delete
9	VAX	2023-07-10 21:46	None - None	DBSCAN	VAX	Zentralgehaeuse, Zentralgehäuse komplett, FV_Zentralhehäuse, Zentralgehauese	View	Delete
Dashbo	ard made b	y: Fraunhofer IPT						
						© 2023		



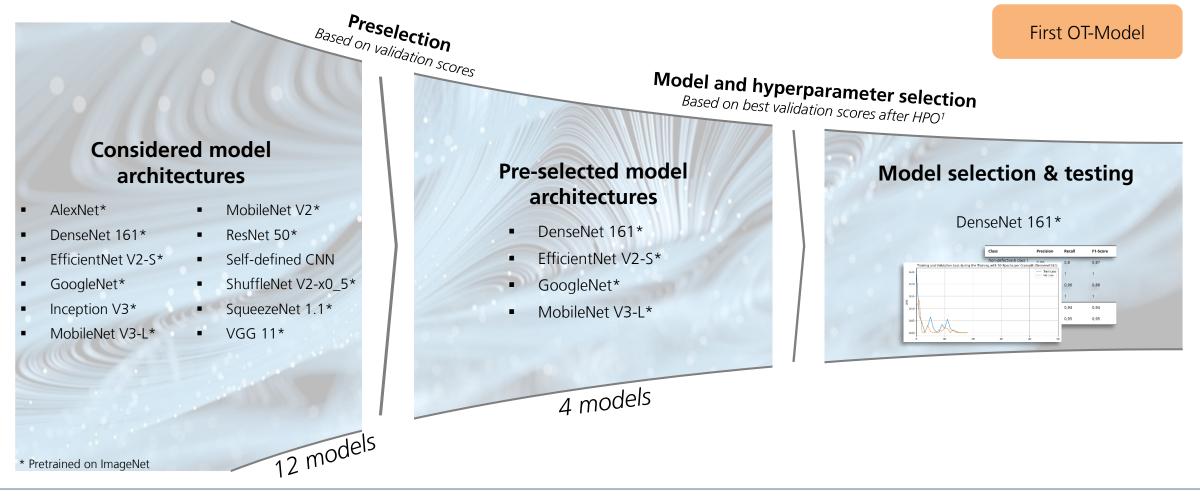
RWIH/

ACHEN

MLsys1 Software architecture overview

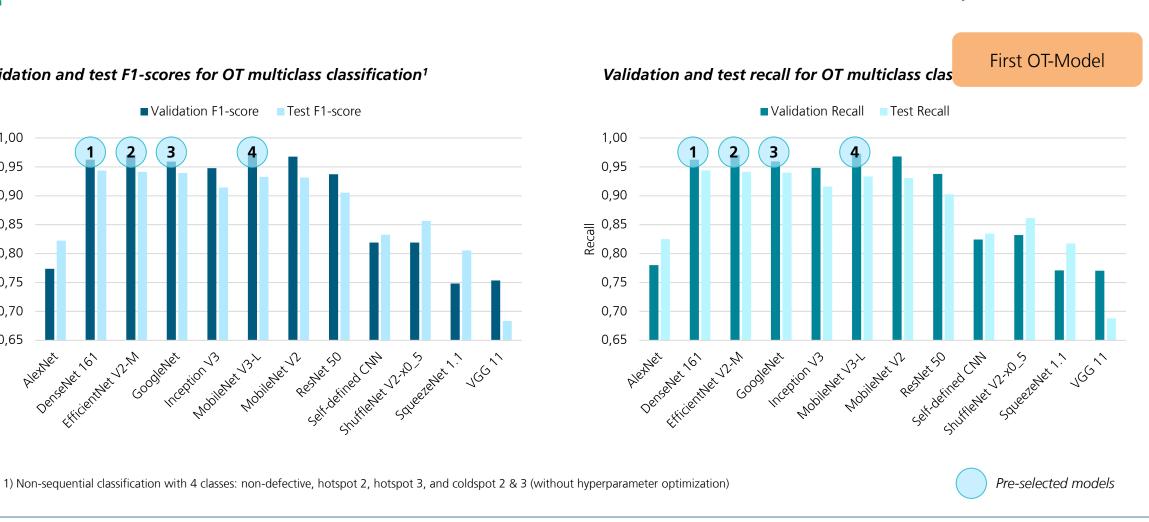


MLsys1 ML-model lifecycle management



Selection of ML-model architectures

Three step approach prior to final selection

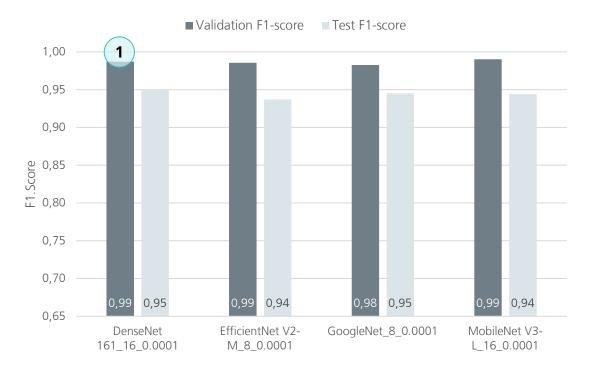


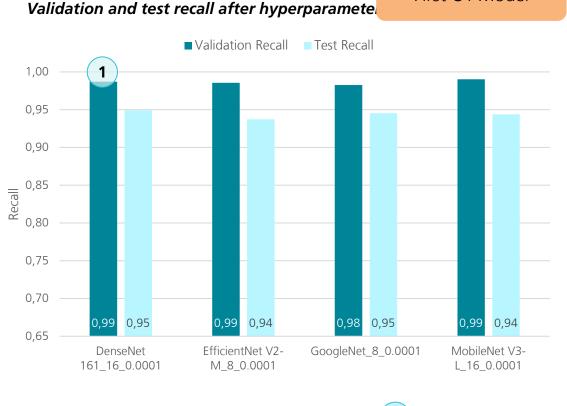
Considered model architectures

12 models in total

■ Validation F1-score ■ Test F1-score 1,00 0,95 0,90 F1.Score 0,85 0,80 0,75 0,70 Settdefined CMN Sourcement. 0,65 Efficientiet V.M Noilenet Respection meetion Mobilenet 31 Googlewet Derselvet 161 Alether JGGTT

Validation and test F1-scores for OT multiclass classification¹




IPT

Pre-selected model architectures

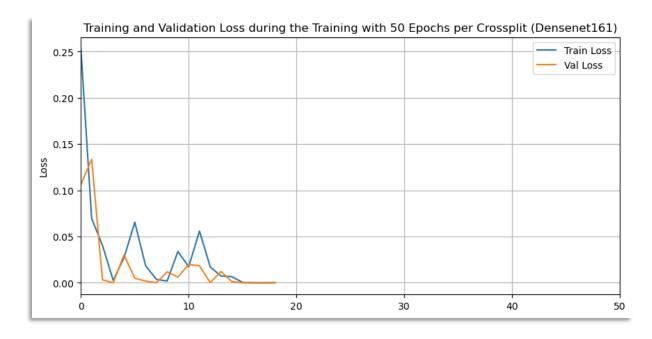
4 models after preselection

Validation and test F1-scores after hyperparameter optimization

Based on the validation scores after hyperparameter optimization, a pretrained version of DenseNet has been selected.

Pre-selected models

First OT-Model


IPT

Model selection & testing

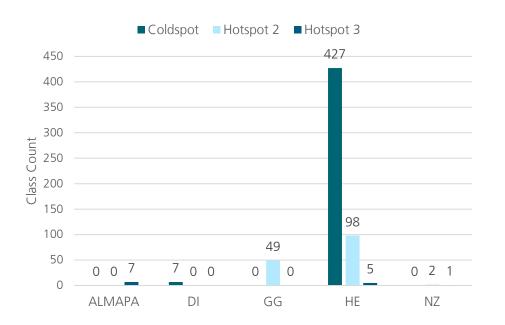
Final selection

Testing & error analysis for best model

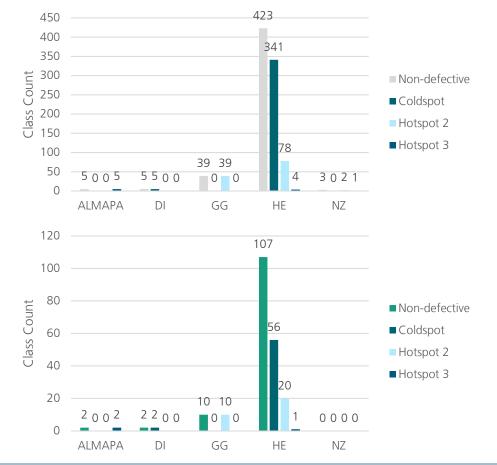
- DenseNet 161 (Batch size:16, Learning rate: 0.0001)
- Training for 50 epochs with early stopping (1:59 h of training on GPU-based machine)

First OT-Model

Class	Critical to Quality	Precision	Recall	F1- Score
Non-defective & Class 1 anomaly	Low	0,96	0,8	0,87
Hotspot Class 2	Medium	0,81	0,96	0,88
Hotspot Class 3	High	1	1	1
Coldspot Class 2 & Class 3	High	1	1	1
Macro average		0,94	0,94	0,94
Weighted average		0,96	0,95	0,95
		Classificat	ion report (test scores)



Version 2.0


Monitoring of OT data stream Updated Train-Test-Split (Version 2.0)

Exploration of product-class distribution in training data

Strong imbalance of product-class combinations, e. g. coldspots were mainly observed for the HE variant

Update of the train-test split to obtain a product-class balance

💹 Fraunhofer

IPT

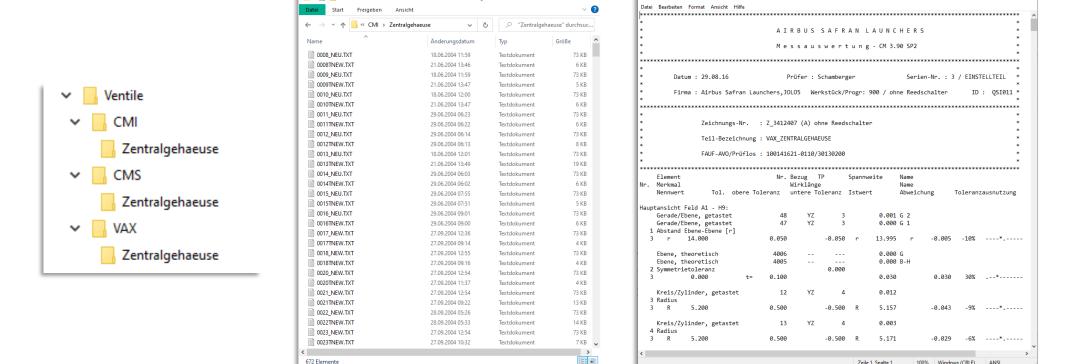
Monitoring of OT data stream Updated OT pipeline I – Image preprocessing

Input images (provide by EOS machine)

Image Transformations

- .raw (32-bit) to .png (8-bit) transformation
- Denoising
- RGB transformation
- Jet colormap

Pre-processed images (processed by model)



Demonstration of Robustness Assessment in the Target Environment Release v1.0

□ C:\Users\bte\Downloads\CMM\Ventile\CMI\Zentralgehaeuse

 \times 0003.txt - Editor

The upload of the measurement protocols follows the structure assembly – type – part.

Zeile 1 Spalte 1

100% Windows (CRLE) ANSI

Demonstration of Robustness Assessment in the Target Environment Release v1.0

																	. P.	
File		Hom	e insert	Page Layout	Formulas Dat	a Review	View D	Developer Help								Comr		් Sha
ſ	<u>n</u> X		Calibri	~ 11 ~	A^ A = = =	ab	Wrap Text	General		~			🛲 🎫 🛱	∑ Aut		7 O		
Pas	te LE	*	BTU×	H.		-				m C	onditional Fo		Insert Delete Form	at Fill	-		Analyze	
~	4		B I <u>∪</u> -	🖽 - 🛛 💁 -		€= →= 	Merge & Cen	ter ~ 🖾 ~ %	9 500 4			Table ~ Styles ~	· · ·	Clei			Data	
Clip	board	F2	1	ont	5	Alignment		Fa Num	ber	5	Stj	rles	Cells		Editing		Analysis	
				fx														
S1			· · · × · ·	J _X														
4	Α	В	с	D	E	F	G	н	1.1	J	к	L	м	N	0	P		Q
1	JID	SN r	nominal value	ctual value u	pper tolerance low	er tolerance D	ifference o	out_of_tolerance_e	lement 1	span 1	element 2	span 2 measurer	nent value	remarks	date	part		DV
2	1	8	28	28011	0,021	0	0,011	0	30	0,003	0	0 Durchmes	iser		18.06.2004	Zentralgehäuse	e komplett	t
8	2	8	0	0,033	0,02	0	0,033	0,013	30	0,003	18	0,003 Koaxialitä	tstoleranz		18.06.2004	Zentralgehäuse	e komplett	t
1	3	8	0	0,003	0,05	0	0,003	0	30	0,003	0	0 Zylindrizi			18.06.2004	Zentralgehäuse	e komplett	t
5	1004	8	0	0,005	0,02	0	0,005	0		0,005	0	0 Zylindrizi		H13		Zentralgehäuse		
5	2004	8	0	0,01	0,02	0	0,01	0		0,005	12		zitätstoleranz	H13		Zentralgehäuse		
1	1005	8	0	0,018	0,02	0	0,018	0		0,018	0	0 Zylindrizi		F9		Zentralgehäuse		
	2005	8	0	0,019	0,02	0	0,019	0	104	0,018	201		zitätstoleranz	F9		Zentralgehäuse		
•	7		16,6	16636	0	-0,018	0,036	0,036	104		0	0 Durchmes				Zentralgehäuse		
0	8	8	46	46007	0,025	0	0,007	0		0,005	0	0 Durchmes				Zentralgehäuse		
1	1006	8	0	0,015	0,02	0	0,015	0		0,015	0	0 Zylindrizi		L10		Zentralgehäuse		
2	2006 9	8	0	0	0,02	-0,083	0	0		0,015	201		zitätstoleranz	L10		Zentralgehäuse		
3 4		8	120,1	120019	-0,043		-0,081	0		0,015	0	0 Durchmes				Zentralgehäuse		
4 5	10 1011	8	62,8	62836 0.009	0,05	-0,05	0,036	0		0,009	0	0 Durchmes 0 Rundheit	iser	A1		Zentralgehäuse Zentralgehäuse		
5 6	2011	8	0	0,009	0,02	0	0,009	0		0,009	201		zitätstoleranz	AI		Zentralgehäuse		
7	12	8	53,8	53833	0,02	-0,05	0,003	0	96	0,003	201	0 Durchmes		AI		Zentralgehäuse		
8	1013	8	33,8	0.003	0,03	-0,05	0,033	0			0	0 Zylindrizi		B1.links		Zentralgehäuse		
9	2013	8	0	0,003	0,02	0	0,009	0			201		zitätstoleranz	B1,links		Zentralgehäuse		
0	14	8	51,8	51839	0,02	-0,05	0,039	0		0,003	201	0 Durchmes		D1,IIIK3		Zentralgehäuse		
1	1015	8	01,0	0.002	0,02	0,00	0,002	0			0	0 Zvlindrizi		B1 rechts		Zentralgehäuse		
2	2015	8	0	0,009	0,02	0	0,009	0	95	0,002	201		zitätstoleranz			Zentralgehäuse		
3	16	8	34,8	34821	0,05	-0,05	0,021	0		0,003	0	0 Durchmes		Dayreents		Zentralgehäuse		
4	1017	8	0	0.003	0.02	0	0.003	0		0.003	0	0 Rundheit		C1.links		Zentralgehäuse		
5	2017		0	0,01	0,02	0	0,01	0		0,003	201		zitätstoleranz			Zentralgehäuse		
6	18	8	32,6	32642	0,05	-0,05	0,042	0	93	0,002	0	0 Durchmes				Zentralgehäuse		
7	1019	8	0	0,002	0,02	0	0,002	0		0,002	0	0 Zylindrizi		C1, rechts		Zentralgehäuse		
8	2019	8	0	0,009	0,02	0	0,009	0	93	0,002	201	0 Konzentri	zitätstoleranz	C1,rechts	18.06.2004	Zentralgehäuse	e komplett	t
9	20	8	85	84976	0,1	-0,1	-0,024	0	196	0,002	140	0 Abstand F	unkt-Ebene (R)			Zentralgehäuse		
0	21	8	1,3	1,29	0,1	-0,1	-0,01	0	197	0,001	196	0,002 Abstand E	bene-Ebene [R]		18.06.2004	Zentralgehäuse	e komplett	t
1	22	8	26,75	26767	0,2	-0,2	0,017	0	199	0,003	138	0,006 Abstand 0	Gerade-Ebene [R]	M12x1	18.06.2004	Zentralgehäuse	e komplett	t
2	23	8	26,75	26757	0,2	-0,2	0,007	0	200	0,001	138	0,006 Abstand 0	ierade-Ebene [R]	ø17	18.06.2004	Zentralgehäuse	e komplett	t
3	24	8	17	17047	0,1	0	0,047	0	200	0,001	0	0 Durchmes	ser		18.06.2004	Zentralgehäuse	e komplett	t
4	25	8	41,5	41507	0,3	-0,3	0,007	0	198	0,01	138	0,006 Abstand 0				Zentralgehäuse		
5	26	8	17,5	17663	0,3	0	0,163	0	43	0,001	9	0,023 Abstand E				Zentralgehäuse		
6	191	8	47,25	47248	0,1	-0,1	-0,002	0			311		unkt-Gerade [X]			Zentralgehäuse		
7	192	8	47.25	47252	0.1	-0.1	0.002	0	139	0.005	312		unkt-Gerade [X]		18.06.2004	Zentralgehäuse	e komplett	
			0008 NEU	(+)								•						

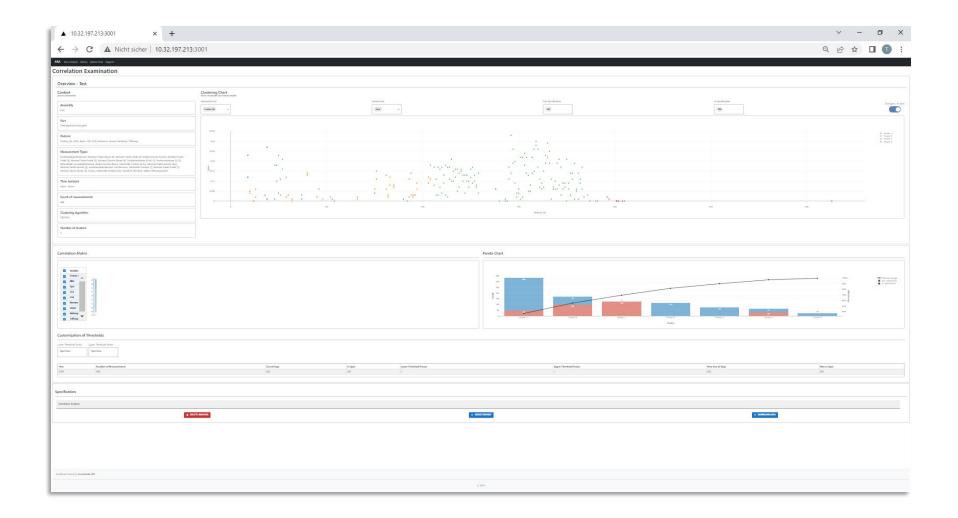
The existing file parser for measurement protocols of AGG is compatible with the System

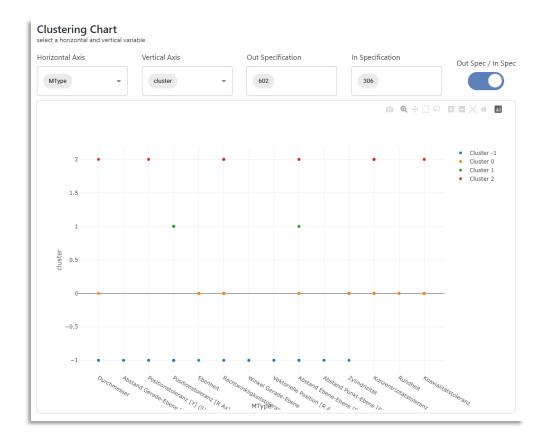
Demonstration of Robustness Assessment in the Target Environment Release v1.0

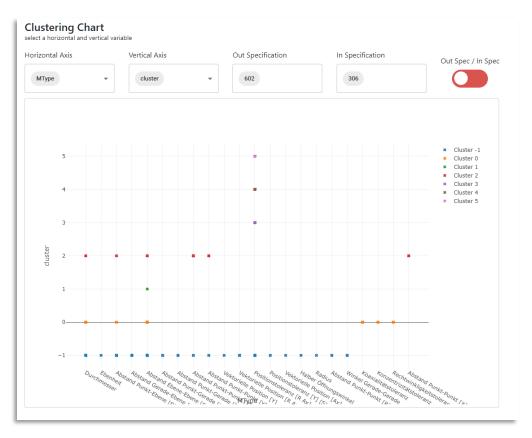
AutoSave 🚥 🖫 🍤 - 🤜 - 📼	VAX - Zentralgehaeuse.csv 🗸					Brandstätter, Tobias	Claus 😣 🗉 —	o ×										
File Home Insert Page Layout Formulas	Data Review View Developer Help						🖓 Comments	🖻 Share										
A1 • I × ✓ f* Date, "Feature_I	_No","Istwert","MNo","MType","Nennwert","NwRange","	"Span", "TolRange", "Year", "cluster", "oTol", "outSpec", "uTol"	Aut	Save 💽 Off)	न १७×०×∓		VAX - Zentralgehaeuse.xlsx 🗸			D Search (Alt+Q)					Bran	istätter, Tobias C	laus 💼 🖽	- 0
		А	File	Home	Insert Page Layout	Formulas Data F	Review View Develop	er Help									P0	Comments 🛛 🖻 Shar
1 Date,"Feature No","Istw	vert","MNo","MType","Nenny	wert","NwRange","Span","TolRange",'	'Year' S11	•	× ✓ fr													
		","dist","17","0.003000000000000113	-		А		вс	D	E	F	G	н	1	J	к	L	м	N
		, ang", "30", "0.0049999999999999900		Date		🗸 Feature	e_No 🧧 Istwert	MNo	🗖 МТуре	🗖 Nennwert	NwRange	Span	. TolRange	Vear	cluster	🗸 oTol	- outSpec	🗖 uTol 🗖
		'."dist"."14"."0.016999999999999946".	2		Aug 2016 00:00:		16.997	71	dist	17	0.00300000000000113	70.019	0.4	2016		0.2	false	-0.2
, ,	, , , ,	, , , , ,	, ,		Apr 2019 00:00:0		30.005	100	ang	30	0.0049999999999999005		2	2019		1	false	-1
		',"dist","14","0.016999999999999946",			Apr 2019 00:00:0		14.017	102	dist	14	0.016999999999999946		0.4	2019		0.2	false	-0.2
6 Wed, 17 Apr 2019 00:00:	:00 GMT,"4008","0.006","105	5","con","0","0.006","0","0.02","2019"	, 0,		Apr 2019 00:00:0		14.017	102	dist	14	0.016999999999999946		0.4	2019		0.2	false false	-0.2
7 Wed, 17 Apr 2019 00:00:	:00 GMT,"4018","0.006","105	5","con","0","0.006","0.006","0.02","2	019"		Apr 2019 00:00:(Apr 2019 00:00:(0.006	105 105	con	0	0.006	0 0.006	0.02	2019 2019		0.02	false	0
8 Wed. 17 Apr 2019 00:00	:00 GMT."4008"."0.005"."107	7","con","0","0.005","0","0.02","2019"	HOLL I		Apr 2019 00:00:0 Apr 2019 00:00:0		0.008	103	con	0	0.005	0.000	0.02	2019		0.02	false	0
, ,	, , ,	7","con","0","0.005","0.004","0.02","2	, , .		Apr 2019 00:00:		0.005	107	con	0	0.005	•	0.02	2019		0.02	false	0
)","con","0","0.004","0","0.02","2019"	<u>, , , , , , , , , , , , , , , , , , , </u>				0.004	109	con	0	0.004	0	0.02	2019		0.02	false	0
				Wed, 17	Apr 2019 00:00:(00 GMT 4021	0.004	109	con	0	0.004	0.004	0.02	2019	0	0.02	false	0
1 Wed, 17 Apr 2019 00:00:	:00 GMT,"4021","0.004","109)","con","0","0.004","0.004","0.02","2	019", ₁₂	Wed, 17	Apr 2019 00:00:0	00 GMT 4008	0.004	111	con	0	0.004	0	0.04	2019	0	0.04	false	0
12 Wed, 17 Apr 2019 00:00:	:00 GMT,"4008","0.004","111	l","con","0","0.004","0","0.04","2019"	,"0",' 13	Wed, 17	Apr 2019 00:00:0	00 GMT 4023	0.004	111	con	0	0.004	0.004	0.04	2019	0	0.04	false	0
13 Wed, 17 Apr 2019 00:00:	:00 GMT,"4023","0.004","111	L","con","0","0.004","0.004","0.04","2	019", 14	Wed, 17	Apr 2019 00:00:0	00 GMT 39	3.971	112	dist	3.975	0.0040000000000000	€0.029	0.05	2019	0			-0.025
4 Wed. 17 Apr 2019 00:00	:00 GMT."39"."3.971"."112"."	"dist","3.975","0.0040000000000000	36" "		Apr 2019 00:00:0		3.971	112	dist	3.975	0.0040000000000000		0.05	2019				-0.025
		2","dist","3.975","0.00400000000000	. 16	Wed, 17	Apr 2019 00:00:0	00 GMT 39	2.604	114	dist	2.6	0.00400000000000000			2019		0.05	false	-0.05
							2.604	114	dist	2.6	0.0040000000000000			2019		0.05	false false	-0.05
, ,	, , , , ,	"dist","2.6","0.004000000000000036	10		Apr 2019 00:00:0 Apr 2019 00:00:0		0.961	115 115	dist dist	1.01	0.04900000000000044		0.2	2019 2019	0	0.1	false	-0.1
7 Wed, 17 Apr 2019 00:00:	:00 GMT,"4017","2.604","114	1","dist","2.6","0.00400000000000000	30,		Apr 2019 00:00:0 Apr 2019 00:00:0		30.051	115	ang	30	0.0509999999999999838	0	2	2019		1	false	-1
18 Wed, 17 Apr 2019 00:00:	:00 GMT,"4020","0.961","115	5","dist","1.01","0.049000000000000	11""		Apr 2019 00:00:		30.051	116	ang	30	0.0509999999999999838	-	2		0	1	false	-1
19 Wed, 17 Apr 2019 00:00	:00 GMT,"4034","0.961"."115	5","dist","1.01","0.0490000000000000			Apr 2019 00:00:0		2.994	117	dist	3	0.00599999999999999783		-	2019		0.1	false	-0.1
20 Wed 17 Apr 2019 00:00	00 GMT "111" "30 051" "116	5"."ang"."30"."0.05099999999999838'	. "0" 23	Wed, 17	Apr 2019 00:00:(00 GMT 4036	2.994	117	dist	3	0.0059999999999999783	0	0.2	2019	0	0.1	false	-0.1
	···· , ···· , ···· , ···· , ····		24	Wed, 17	Apr 2019 00:00:0	00 GMT 151	29.937	118	ang	30	0.06299999999999883	0.001	2	2019	0	1	false	-1
VAX - Zentralgehaeuse				Wed, 17	Apr 2019 00:00:0	00 GMT 4008	29.937	118	ang	30	0.06299999999999883	0	2	2019		1	false	-1
ady 🔞 🛱 Accessibility: Unavailable					Apr 2019 00:00:0		7.135	119	dist	7.13	0.0049999999999999893			2019		0.05	false	-0.05
			77		K - Zentralgehaeuse	⊕ CMT 4022	7 1 2 5	110	dict	7 1 2	0.0040000000000000		0.1	2010	0	0.05	falco	0.05
			Ready	The The Acce	sibility: Investigate											Ħ	四 巴	+ + 10

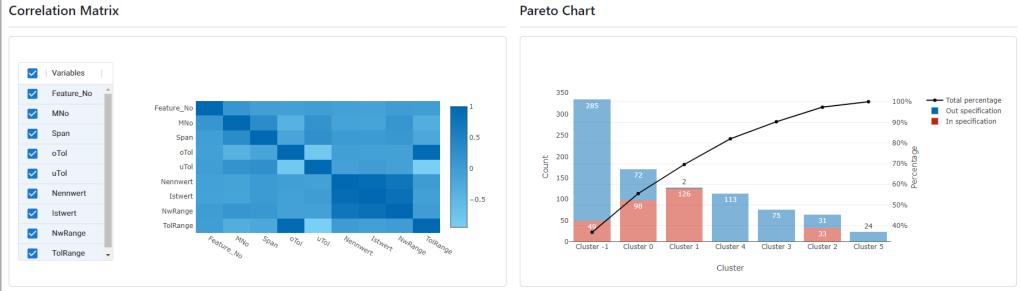
All parsed measurements can be exported as a .csv file.

During parsing, all relevant metadata and information is automatically extracted from the protocols.



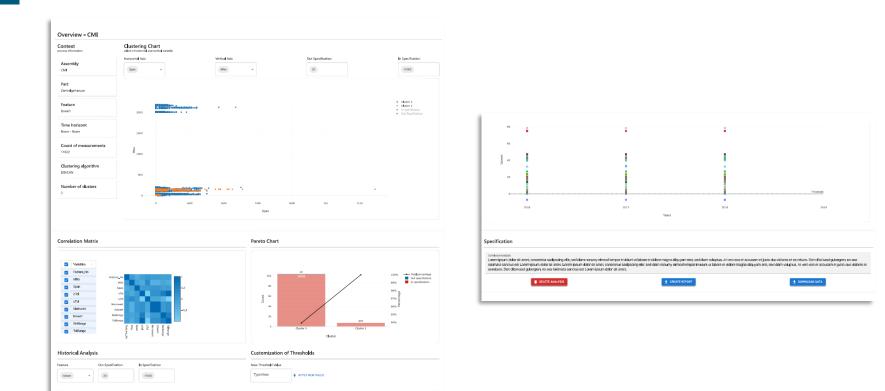

plo	ad Data						(
	informatic						
Index 5	Assembly CMI	Number of Samples	In Specification	Out Specification 602	Upload Time Mon, 10 Jul 2023 11:29:08	Status Uploading and processing successful	Delete
5	CMS	131	3	128	Mon, 10 Jul 2023 11:42:54	Uploading and processing successful	Delete
7	CMI	33012	31908	1104	Mon, 10 Jul 2023 11:47:06	Uploading and processing successful	Delete
	CMS	25538	24014	1524	Mon, 10 Jul 2023 11:47:48	Uploading and processing successful	Delete
0	VAX	1426	1415	11	Mon, 10 Jul 2023 11:48:03	Uploading and processing successful	Delete
	rd made by: F rau r						





Customization of Thresholds Lower Threshold Factor Upper Threshold Factor - Type Here - Type Here 1 1.05 Upper Threshold Factor In Spec Lower Threshold Factor New In Spec Year Number of Measurements Out of Sepc New Out of Sepc 2004 602 306 1 1.05 598 310 908

10.52.19	7.213:3001/ana	lysisHisto × +					v - 0
· > C	Nich	nt sicher 10.32.197.213:3001	1/analysisHistory				@ ☆ 🛛
ARA I	New Analys	is History Upload Data	a Support				
nal	ysis	History Da	ata				
Data	inform	nation					
Data	mom	lation					
Index	Name	Timestamp	Time horizont	Model name	Assemblies	Parts	
4	Test	2023-07-10 11:29	None - None	DBSCAN	CMI	Zentralgehäuse komplett	View
6	Test	2023-07-10 11:54	None - None	DBSCAN	CMS	Zentralgehaeuse, Zentralgehäuse komplett, FV_Zentralhehäuse, Zentralgehauese	View Delet
Dashboa	ard made b	y: Fraunhofer IPT					
Dashboa	ard made b	y: Fraunhofer IPT				© 2023	



Demonstration of Robustness Assessment in the Target Environment

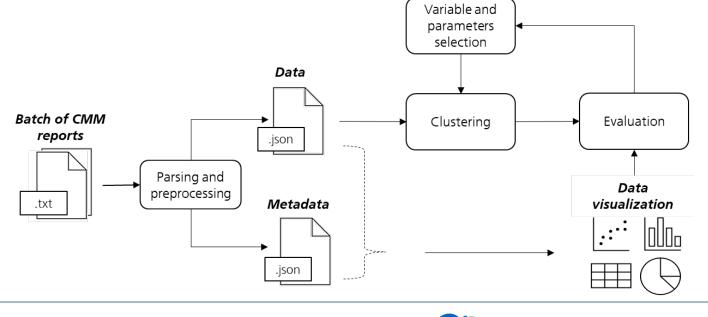
Release v1.0

A conducted robustness assessment can be supplemented with comments and exported as a report in form of a .pdf-file.

Clustering analysis

Pipeline objectives

Pipeline Objectives

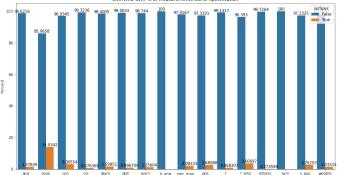

Provide an insight into underlying patterns in historic CMM to make deductions regarding the feasibility of manufacturing specifications for various components. The task of this pipeline is to:

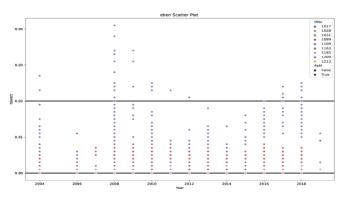
- Execute clustering using preconfigured clustering algorithms to test hypotheses
- Provide interpretation aids (visualizations and descriptive statistics)

Enable in-depth analysis of production capabilities using cluster analysis.

CMM DATA STREAM

arianegroup



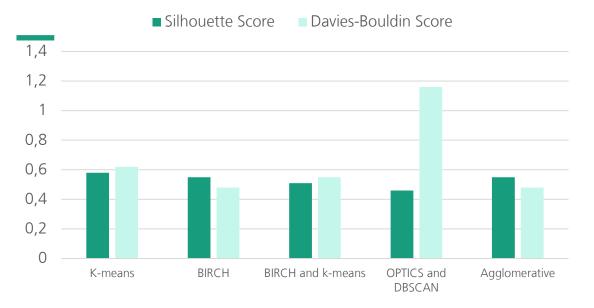

Clustering analysis Data preparation Data Characteristics

- File format: .txt
- Strong data imbalance
 - Low overall number for out of specification, ~2.0%
 - Numerous remeasurements, usually without recording of remeasured value
 - Varying out of specification ratio over years, components and features

Trends within groups in the example of "even" measurement

Data Preparation Steps

- Remove duplicate and incomplete measurements
- Divide data into groups (e.g. measurement types -> compare angle of vectorial position with other angle measurements)
- Engineer additional features: range between upper and lower tolerance, difference between actual value and nominal value, tolerance range relative to tolerance range of other measurements a feature is involved in, tolerance range relative to other tolerance ranges within measurement group, nominal value in ratio to other nominal values within measurement group, group membership
- Scale data using sklearn.StandardScaler to prevent bias due to different scales of the features



IPT

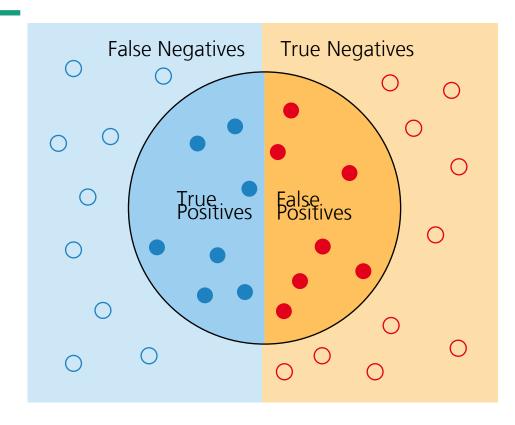
💹 Fraunhofer


MLsys2 – robustness assessment | PoC modeling results

Silhouette Score

- Silhouette coefficient summarizes the intra/inter cluster distance comparison to a score between -1 to 1.
- A value close to 1 indicates a very promising clustering result, where the inter-cluster distances are much larger that the intra-cluster distances.
- Davies-Bouldin Score
 - The Davies-Bouldin index is similar to the Calinski-Harabasz Score, but the inter/intra cluster distance ratio calculation is reverse.
 - The smaller the score is, the better the cluster separation is.

- Calinski-Harabasz Score
 - The Calinski-Harabasz index is defined as a ratio of the squared intercluster distance sum and the squared intra-cluster distance sum for all clusters.
 - The higher the score, the better the clusters are separated from each other, and there is no upper bound for the score.


💹 Fraunhofer

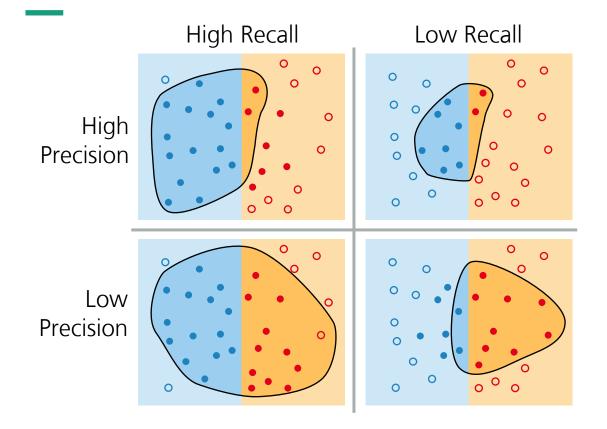
IPT

Calinski-Harabasz Score

Modeling Status

Performance metrics for classification problems 1/3

True Positives (**TP**)


- Actually positive cases that were correctly assigned positive class
- True Negatives (**TN**)
 - Actually negative cases that were correctly assigned negative class
- False Positives (**FP**)
 - Actually negative cases that were wrongly assigned positive class (Type 1 error)
- False Negatives (**FN**)
 - Actually positive cases that were wrongly assigned negative class (Type 2 Error)

Modeling Status *Performance metrics for classification problems 2/3*

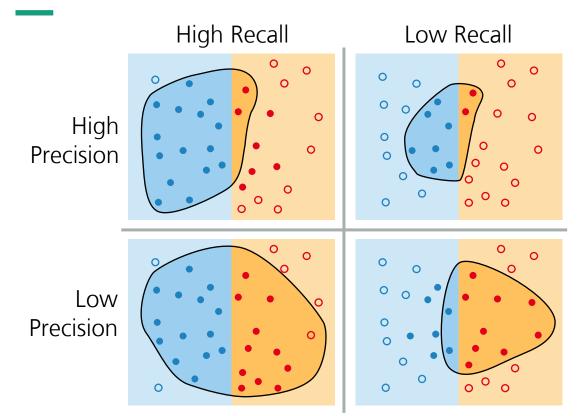
Precision

- Precision = $\frac{TP}{TP+FP}$
 - "Confidence"

How many predicted "positives" are actually positive?

Recall

Recall
$$= \frac{TP}{TP+FN}$$


- "Sensitivity"
- How well does the model recognize positive cases?

💹 Fraunhofer

IPT

Modeling Status Performance metrics for classification problems 3/3

F1-score

$$F_1 \ score = \frac{2 \cdot TP}{2 \cdot TP + FN + FP} = 2 \cdot \frac{Precision \cdot Recall}{Precision + Recall}$$

- Harmonic mean of precision and recall
- Favors classifiers with similar precision and recall

Focus on F1-score and recall as the key metrics for the performance assessment of OT and PBM model.

Seite 71

Automated Live Monitoring

