

Deep Learning for Space (T708-6090S) ESA/ESOC - 16/06/2023

Agenda

- Welcome and Study Presentation
- Activities Summary
 - OPS/AIT Use Cases Selection & Technology Mapping
 - Use Cases Implementation & Results:
 - Fluctuation on Malargüe Ka-band signal amplitude
 - Mars Express Thermal Power Consumption
 - Device-Under-Test Events Investigation
 - Device-Under-Test Anomaly Detection
- Assessment, Lessons Learned & Recommendations

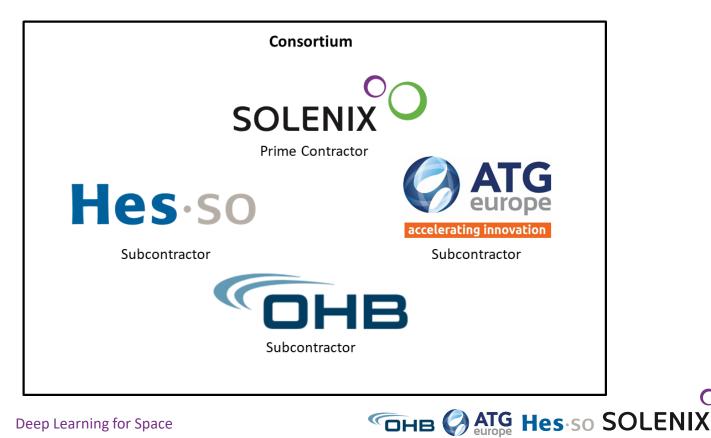
Study Overview

3 / 49 16/06/2023 Deep Learning for Space

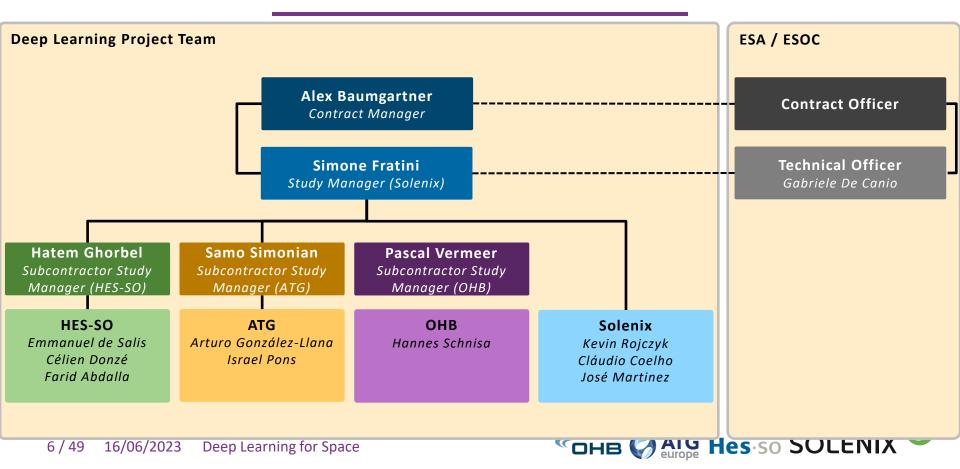
Study Overview

- The objective of the activity
 - to assess the applicability and impact of deep learning in space applications
 - to identify which space applications will benefit the most from deep learning
 - to map which deep learning methods (e.g. architectures) work best for each identified application
- Examples of deep learning applications to be considered includes: early anomaly detection, contextual anomaly detection, diagnosis, prediction, knowledge discovery and more
- Assess the impact of using deep learning in each application (e.g. cost reduction, risk mitigation, enabling functionality, increased science return)
 - For Space Operations (OPS)
 - For Assembly, Integration, and Test (AIT)

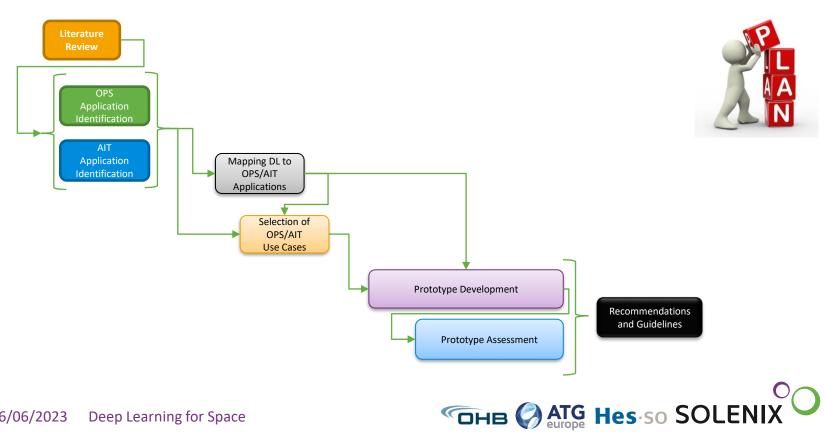
Consortium



Study Team



Study Logic

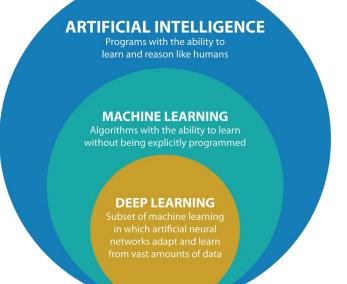


Project Activities

8 / 49 16/06/2023 Deep Learning for Space

Al, Machine Learning & Deep Learning Overview

- Artificial Intelligence is the general concept of intelligent programs
- Machine Learning (ML) is the usage of algorithms to create programs that can learn from data relationships
- Deep Learning is a subset of ML relying on deep Artificial Neural Networks and vast amounts of data to learn more complex relationships



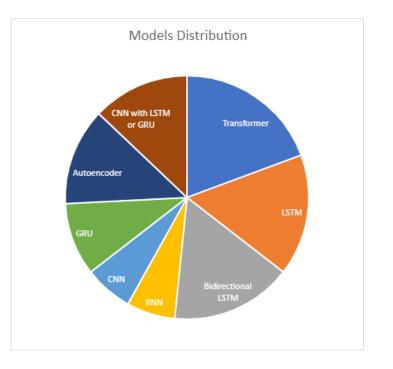
ATG Hes so SOLENI

Image from: https://www.argility.com/argility-ecosystem-solutions/industry-4-0/machine-learning-deep-learning/

Literature Review

Latest Deep Learning technologies

- Usually studied conjointly with classical ML
- Advanced architectures are sometimes mix of ML and DL
- 711 publications were identified in the latest 5 years
- 20 use-cases were identified across those articles



OPS & AIT Application Identification

- 2 Workshops organized with ESA (ESOC/ESTEC)
- Viable Use Cases Identified :
 - 9 for OPS
 - Mars Express Thermal Power Consumption
 - Integral Radiation Belt Entry & Exit Prediction
 - Predicting the Impact of the Wind in Deep Space Antenna Pointing
 - Surrogate Models for High Computation Demanding Tasks (e.g. SIMULUS Simulators)
 - Find Optimal Policies with Reinforcement Learning
 - Anomaly Detection, Contextual Anomaly Detection, Anomaly Investigation
 - Fluctuation of signal in Ka-bands links
 - 7 for AIT
 - Device-Under-Test Events Investigation
 - Device-Under-Test Anomaly Detection
 - Complex Systems Anomaly Detection
 - EGSE Environment Event Investigator
 - EGSE Environment Anomaly Early Detection
 - Complex Systems Dynamics analyzer
 - Facilities maintenance and health monitoring

Selection of OPS & AIT Use Cases

- Data Availability Do we have access to the data?
- Data Richness Volume big enough?
- Data Quality How many data errors ?
- Feasibility Is the problem solveable by DL?
- Automatic Solution Evaluation Can we check a solution without human interactions?
- New Paradigm Novel approach or just DL applied?
- Scalability Can it be adapted to other use cases?
- Relevance What would be the impact?
- Timeliness How urgent is a solution required?

ATG Hes so SOLE

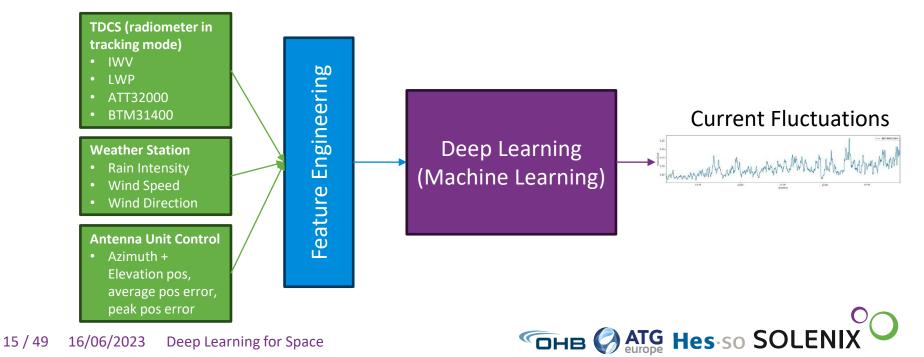
OPS Prototypes

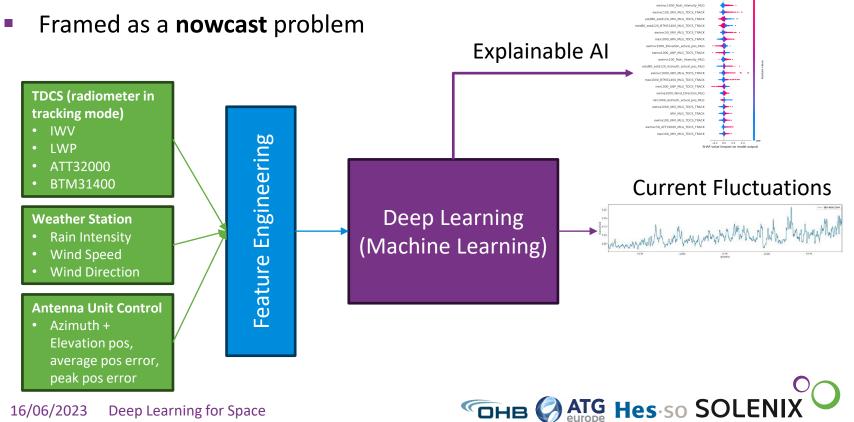
13 / 49 16/06/2023 Deep Learning for Space

Summary of the use case

- Malargüe Ka-band signal link suffers from amplitude fluctuations
- Goal: understand what causes fluctuations (e.g., troposphere, wind, antenna position, etc.)

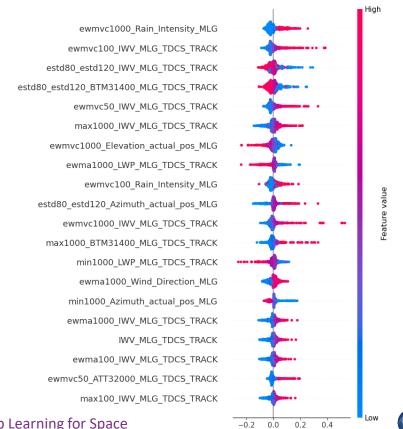
Framed as a nowcast problem





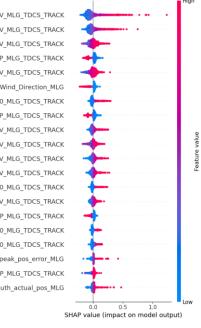
- Scenarios:
 - Uplink (KaT)
 - Downlink
 - Radio Science downlink
- Technologies
 - Classical ML (Gradient Boosting Trees) + Deep Learning
 - Deep Learning: Dense, 1D Convolutional, Recurrent
 - Explainable AI

How to read SHAP summary plots



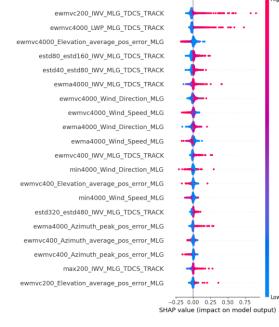
18 / 49 16/06/2023 Deep Learning for Space

SHAP value (impact on model output)

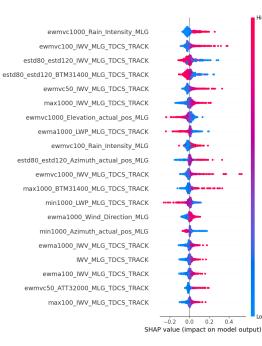


Radio Science Deep Learning Regression

ewmvc200 IWV MLG TDCS TRACK ewmvc400_IWV_MLG_TDCS_TRACK estd80 estd160 IWV MLG TDCS TRACK min200 LWP MLG TDCS TRACK estd320_estd480_IWV_MLG_TDCS_TRACK min4000 Wind Direction MLG ewmvc4000_ATT32000_MLG_TDCS_TRACK min400_LWP_MLG_TDCS_TRACK ewmvc4000_IWV_MLG_TDCS_TRACK estd40_estd80_IWV_MLG_TDCS_TRACK max400_IWV_MLG_TDCS_TRACK max200 IWV MLG TDCS TRACK ewmvc4000_BTM31400_MLG_TDCS_TRACK ewma4000_IWV_MLG_TDCS_TRACK ewma4000 LWP MLG TDCS TRACK ewmvc400_ATT32000_MLG_TDCS_TRACK ewma400_BTM31400_MLG_TDCS_TRACK Azimuth peak pos error MLG estd80_estd160_LWP_MLG_TDCS_TRACK estd40_estd80_Azimuth_actual_pos_MLG



Downlink Deep Learning Regression



KaT Deep Learning Regression

Сонв CATG Hes so SOLENIX

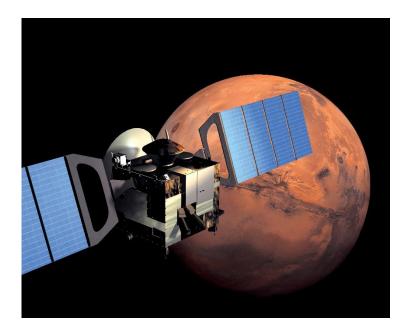
19 / 49 16/06/2023 Deep Learning for Space

Malargüe Fluctuations use case - Conclusions

- Usually, DL and ML are used to predict the future
 - In this use case we used Deep Learning to nowcast
 - Explainability was the goal
- Explainability comes in terms of the provided features
 - Features need to carry predictive power
 - Features need to be easy to understand by domain experts
- Explanations from Deep Learning models found to be more useful than those provided by classical Machine Learning

Mars Express

- Mars Express orbiter
- Launched in 2003
 - Data available from 2008 to 2016
- Competition launched in 2016
 - To predict the power used by the thermal subsystem

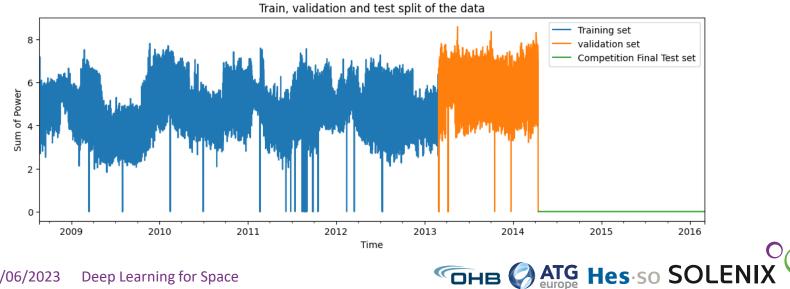


Mars Express - Data

- 6 data types are available:
 - 1. SAAF: Solar Aspect Angles.
 - 2. LTDATA: Long term data such as the sun-mars distance.
- Input **3. DMOP**: Detailed Mission Operations Plan.
 - 4. FTL: Flight dynamics TimeLine
 - 5. EVTF: Other events (including eclipses).
- Output 6. **POWER**: Electric current of 33 thermal power lines.
 - Data is Downloaded from the competition website: <u>https://kelvins.esa.int/mars-express-power-challenge/</u>

Mars Express - Data

- Data splitting
- Operation changed in 2013
 - Validation set match Competition test set

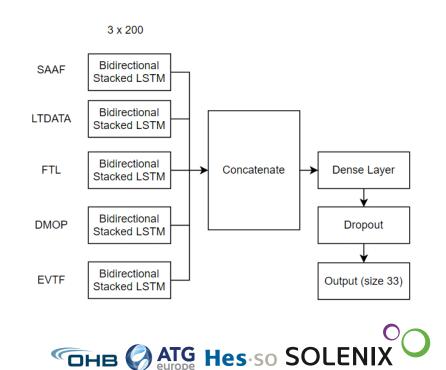


Mars Express - Metric

- Metric used: RMSE
 Lower is better
 $\epsilon = \sqrt{\frac{1}{NM}\sum{(c_{ij} r_{ij})^2}}$
- Baseline score
 - Using mean values for each of the 33 power lines
 - Achieve RMSE of **0.138** on test set
- Best score of the competition is a RMSE of 0.08

Mars Express - Models

- Data of different sampling rates
- **Deep learning Models**
 - Dense (Fully connected)
 - CNN
 - LSTM
 - Transformers (TST)
- 10 different models tested
 - With hyperparameter tuning



ОНВ (

Mars Express - Models

- Adding CNN help the models
- Extracting Eclipses from EVTF file improve score

Mars Express - Results

- DL models are better than Baseline
 - CNN is the best architecture
- Not able to beat best of competition
 - Feature engineering helps a lot
- Scores are still in top 30 of competition

Model Version		V7 (CNN- LSTM)	V8 (DENSE only)	V9 (CNN onlv)	V10 (TST)
RMSE (best 0.08)	0.138	0.113	0.118	0.111	0.124
Training time	-	82 minutes	81 minutes	84 minutes	87 minutes

AIT Prototypes

28 / 70 16/06/2023 Deep Learning for Space

AIT Overview

- AIT consists in a systematic step by step verification via testing from component level to fully integrated system
 - Focus of this project in electrical functional testing
 - Large amounts of data are systematically archived
- The spacecraft correct integration is checked
- The spacecraft software is verified based on housekeeping
 - Applications valid for AIT should be transferable to OPS

AIT Data for the Use Cases

- Complete E-AIT phases of the Meteosat Third Generation (MTG) project
 - Electrical functional test in every step of the integration
 - Full spacecraft tests
 - From 5 satellites
- Focus on housekeeping telemetries from the spacecraft software

- Objective:
 - Go back to the root causes of an anomaly when an event happens.
- Type of Data:
 - Time Series:
 - Satellite Telemetry
 - Events of 4 different severities
 - The events can be used as labels for classification.

- Methodology:
 - Supervised classification of events.
 - TSAI has been used to try multiple timeseries models
 - Use XAI (LIME) to find the importance of each input.
 - The model use a window of time before an event.
 - In simulated real time, when an event occurs the DL model prediction is compared with the real event. If identical, XAI can show the root cause.

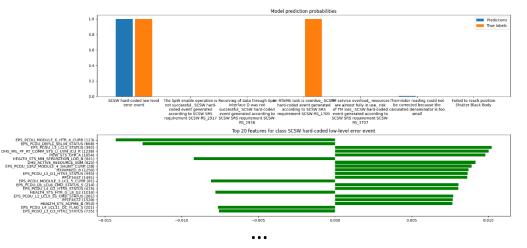
Severity 3

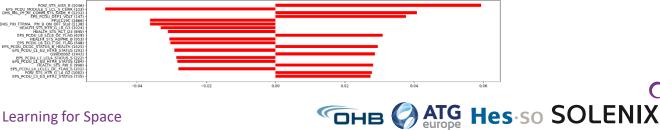
	Classical ML (Random Forest)					DL (Minirocket)				
		precision	recall	f1-score	support		precision	recall	f1-score	support
	0	0.98	0.99	0.99	139	Θ	0.98	0.94	0.96	139
	1	0.00	0.00	0.00	2	1	0.00	0.00	0.00	2
	2	0.00	0.00	0.00	1	2	0.00	0.00	0.00	1
	3	0.94	0.85	0.89	40	3	0.86	0.93	0.89	40
	4	0.00	0.00	0.00	1	4	0.33	1.00	0.50	1
	5	0.98	1.00	0.99	81	5	0.91	1.00	0.95	81
	6	0.00	0.00	0.00	1	6	0.00	0.00	0.00	1
micro	avg	0.97	0.95	0.96	265	micro avg	0.88	0.94	0.91	265
macro	avg	0.41	0.41	0.41	265	macro avg	0.44	0.55	0.47	265
weighted	avg	0.95	0.95	0.95	265	weighted av	/g 0.92	0.94	0.93	265
samples	avg	0.97	0.96	0.96	265	samples avg	0.91	0.94	0.92	265

- Data for severity 3 events is quite small (~265 different events for the test set -> ~1060 for training, 7 classes of events).
- Performance for DL and ML methods is comparable
- DL however is able to find some classes that only have a few samples in the test set.
- For severity 4, DL seems promising, more data/ better filtering might improve the classifier.

	Baseline	ML (RF)	DL (MiniRocket)
Severity 4	0.01	0.04	0.21
Severity 3	0.56	0.95	0.93

Example of explainability graphs





- Multiple explainability graphs have been given to AIT experts
 - Physically meaningful relationships between inputs and events identified
 - Indirect dependencies found, compensating the lack of directly related signals in the inputs given
 - Only SCSW engineers with hands on experience on the mission could exploit fully the report → Need to involve the right personnel
- Explainability provides a good starting point to know which HK signals to focus on.

AIT: Complex Systems Anomaly Detection

- Objective:
 - Filter false alarms raised by the FDIR system by using a DL model to detect real anomalies.
- Type of Data:
 - Satellite Parameter Telemetry (Time Series)
 - High severity events
- Methodology:
 - Unsupervised Anomaly Detection
 - Events are used for fuzzy evaluation based on Precision@N, ...
 - Evaluation of flagged events is done manually by AIT experts

Сонв (

ATG Hes so SOLENIX

AIT: Complex Systems Anomaly Detection

Data Preparation (without final TM parameter selection)

[AIT SQL files] 260GB

[TM Data Sheet] Sample Rate: 10s Rows: 322k Parameters 2.6k Sessions: 279

38 / 70 16/06/2023 Deep Learning for Space

AIT: CSAD – Benchmark Options

- Benchmark options:
 - 1. Algorithm: Isolation Forest *(baseline, classic ML),* AutoEncoder, DeepSVDD, Variational Autoencoder, AnoGAN
 - 2. Contamination rate: (0.0, 1.0)
 - 3. Aggregated windows or sliding windows (with *n*-windows)
 - 4. Train on last session or on all previous sessions

AIT: CSAD - Key insights of the fuzzy evaluation

- Note: Test set was too small to provide secure results only 111 high-severity events in total due filtering of specific subsystems
- Isolation Forest seems to perform better if high precision is required but only by sacrificing the recall (Prec. 0.18%, Recall 0.98%)
- The deep learning models seem to have an advantage in a ranking scenario, they lead the table ordered by Precision@N (DeepSVDD 0.55% vs 0.45% IForest)
- DeepSVDD was our fastest algorithm (DeepSVDD 40sec vs 140sec IForest)

AIT: CSAD – Manual Evaluation by AIT Experts

Anomaly data:

TM Parameter, value and importance (based on LIME) which lead to the classification

AIT event data: TM Parameter and value which triggered the event

1.1.1 Finding #0 for timestamp 2021-07-27 10:49:30 Table with top most influencing parameters for the finding.

	importance	value
PP1E010K0	0.025677	33.384617
PP1F742Z_OFF0	0.024498	1.000000
PP1E129C3	0.022606	-0.000161
PP1E208V2	0.021499	0.019531
PP1E065C0	0.017381	0.017425
PP1E080C1	0.016648	0.002070
PP1E124C3	0.016302	0.018332
PP1E022C0	0.016034	0.015436

Table with information about the event

		rawValue	engValue
spid	name		
188880736	P88F50ZX	269942483	FCISTC_RP2L
	P88F554X	153	*NO VAL*
	P88F555X	656408980	PP1E252X
	P88F556X	1	EXPECTVALUE
	P88F557X	128	*NO VAL*
	P88F668X	0	*NO VAL*
	P88F669X	128	*NO VAL*
	P88F560X	0	EV_WL
	P88F561X	4	UV_BL
	P88F562X	9853035634518	1970-01-01T02:44:13.035
	P88F606X	9853	*NO VAL*
	P88F614X	597848	*NO VAL*

Results:

OHB

- Algorithm identified a valid high severity event in the dataset
- Related signals provided to the tester had physical relationship with event.

ATG Hes-so SOLENIX

Assessment, Lessons Learned & Recommendations

42 / 49 16/06/2023 Deep Learning for Space

Lessons Learned - OPS

- Malargüe Use Case:
 - DL explanations better compared to explanations coming from classical ML
 - The XAI explanations come in terms of features. Craft features that are:
 - Predictive
 - Easy to understand by domain experts
- Mars Express Use Case:
 - Deep Learning algorithms could not catch some dependencies already known by experts, but still ranking good compared to other approaches
 - The absence of features engineering work to be considered in the balance

Lessons Learned - AIT

- The biggest challenge was related with data selection, preparing and processing
- Data structure, standard and practices of AIT are not defined with the purpose of being integrated in a ML/DL loop
- Once the data is available and processed, DL and classical ML algorithms don't show major differences
- AIT data availability for OPS shows great potential for DL/ML application

Lessons Learned – DL vs Classical ML

- It is not conclusive if Deep Learning is always the right choice for any problem
- Classical ML methods and newer DL should be considered as complementary tools of a toolbox
- Deep Learning vs Classical Machine Learning
 - Deep Learning gives much more possibilities than Classical ML
 - Need a lot of independent data for Deep Learning
 - Classical ML works better with smaller datasets
 - The community is working more on Deep Learning now
- Anomaly Detection
 - Deep Learning is not always superior to Classical ML
 - Deep Learning require more resources
- Conclusion: Do not put all your eggs in one basket

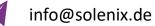
Recommendations

- Data Quality & Labeling
 - Investment should focus on data preparation and labeling to improve the data quality and usability
 - the cleaner and better documented the data is, the easier and more efficient it becomes for datadriven projects
- Explanation
 - Create good features if the explainability is the main focus
 - Features engineered need not only to carry predictive power but also to be intuitive to domain experts
- A New Mindset
 - Instore a DL/ML mindset earlier in the process
 - Foster cross-functional synergy between experts and industry during all the phases of the mission

Conclusions

- A review of Deep Learning literature oriented to Space Applications
- An analysis of possible applications in OPS and AIT that could benefit from DL
- An analysis of most promising DL technologies for space applications
- Evaluation of the impact of Explainable AI (XAI) to understand how DL technologies are taking decisions
- 4 prototypes to show and study applicability of Deep Learning in Operations and in Assembly, Integration & Tests
- Assessment, Lessons Learned and Recommendations for the applicability and benefits of DL for space applications

Solenix Engineering GmbH Spreestrasse 3 64295 Darmstadt Germany



www.solenix.de

Discussion

49 / 49 16/06/2023 Deep Learning for Space