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Agenda

▪ Welcome and Study Presentation

▪ Activities Summary
• OPS/AIT Use Cases Selection & Technology Mapping
• Use Cases Implementation & Results:

◆ Fluctuation on Malargüe Ka-band signal amplitude
◆ Mars Express Thermal Power Consumption
◆ Device-Under-Test Events Investigation
◆ Device-Under-Test Anomaly Detection

▪ Assessment, Lessons Learned & Recommendations
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Study Overview

▪ The objective of the activity
• to assess the applicability and impact of deep learning in space applications 
• to identify which space applications will benefit the most from deep learning 
• to map which deep learning methods (e.g. architectures) work best for each identified 

application

▪ Examples of deep learning applications to be considered includes:
early anomaly detection, contextual anomaly detection, diagnosis, 
prediction, knowledge discovery and more

▪ Assess the impact of using deep learning in each application
(e.g. cost reduction, risk mitigation, enabling functionality, 
increased science return)
• For Space Operations (OPS)
• For Assembly, Integration, and Test (AIT)

16/06/2023 Deep Learning for Space
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Consortium
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Study Team
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Study Logic
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AI, Machine Learning & Deep Learning Overview

▪ Artificial Intelligence is the general 
concept of intelligent programs

▪ Machine Learning (ML) is the usage
of algorithms to create programs
that can learn from data relationships

▪ Deep Learning is a subset of ML
relying on deep Artificial Neural
Networks and vast amounts of data
to learn more complex relationships

16/06/2023 Deep Learning for Space

Image from: https://www.argility.com/argility-ecosystem-solutions/industry-4-0/machine-learning-deep-learning/
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Latest Deep Learning 
technologies

▪ Usually studied conjointly with 
classical ML

▪ Advanced architectures are 
sometimes mix of ML and DL

▪ 711 publications were 
identified in the latest 5 years

▪ 20 use-cases were identified 
across those articles

16/06/2023 Deep Learning for Space

Literature Review
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OPS & AIT Application Identification

▪ 2 Workshops organized with ESA (ESOC/ESTEC)

▪ Viable Use Cases Identified :

• 9 for OPS
◆ Mars Express Thermal Power Consumption
◆ Integral Radiation Belt Entry & Exit Prediction
◆ Predicting the Impact of the Wind in Deep Space Antenna Pointing
◆ Surrogate Models for High Computation Demanding Tasks (e.g. SIMULUS Simulators)
◆ Find Optimal Policies with Reinforcement Learning 
◆ Anomaly Detection, Contextual Anomaly Detection, Anomaly Investigation
◆ Fluctuation of signal in Ka-bands links

• 7 for AIT
◆ Device-Under-Test Events Investigation
◆ Device-Under-Test Anomaly Detection
◆ Complex Systems Anomaly Detection
◆ EGSE Environment Event Investigator
◆ EGSE Environment Anomaly Early Detection
◆ Complex Systems Dynamics analyzer
◆ Facilities maintenance and health monitoring

16/06/2023 Deep Learning for Space
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Selection of OPS & AIT Use Cases

▪ Data Availability – Do we have access to the data?

▪ Data Richness – Volume big enough?

▪ Data Quality – How many data errors ?

▪ Feasibility – Is the problem solveable by DL?

▪ Automatic Solution Evaluation – Can we check a solution without 
human interactions?

▪ New Paradigm – Novel approach or just DL applied?

▪ Scalability – Can it be adapted to other use cases?

▪ Relevance – What would be the impact?

▪ Timeliness – How urgent is a solution required?

16/06/2023 Deep Learning for Space
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Fluctuation on Malargüe Ka-band signal amplitude

Summary of the use case

▪ Malargüe Ka-band signal link 
suffers from amplitude 
fluctuations

▪ Goal: understand what causes 
fluctuations (e.g., troposphere, 
wind, antenna position, etc.)

16/06/2023 Deep Learning for Space
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▪ Framed as a nowcast problem

16/06/2023 Deep Learning for Space

Fluctuation on Malargüe Ka-band signal amplitude
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▪ Scenarios:

• Uplink (KaT)

• Downlink

• Radio Science downlink

▪ Technologies

• Classical ML (Gradient Boosting Trees) + Deep Learning

• Deep Learning: Dense, 1D Convolutional, Recurrent

• Explainable AI

16/06/2023 Deep Learning for Space

Fluctuation on Malargüe Ka-band signal amplitude
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How to read SHAP summary plots

KaT Deep Learning Regression
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▪ Usually, DL and ML are used to predict the future

• In this use case we used Deep Learning to nowcast

• Explainability was the goal

▪ Explainability comes in terms of the provided features

• Features need to carry predictive power

• Features need to be easy to understand by domain experts

▪ Explanations from Deep Learning models found to be more useful than 
those provided by classical Machine Learning

16/06/2023 Deep Learning for Space

Malargüe Fluctuations use case - Conclusions
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▪ Mars Express orbiter

▪ Launched in 2003

• Data available from 2008 to 
2016

▪ Competition launched in 2016

• To predict the power used by 
the thermal subsystem

16/06/2023 Deep Learning for Space

Mars Express
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▪ 6 data types are available:

1. SAAF: Solar Aspect Angles.

2. LTDATA: Long term data such as the sun-mars distance.

3. DMOP: Detailed Mission Operations Plan.

4. FTL: Flight dynamics TimeLine

5. EVTF: Other events (including eclipses).

6. POWER: Electric current of 33 thermal power lines.

▪ Data is Downloaded from the competition website: 
https://kelvins.esa.int/mars-express-power-challenge/

16/06/2023 Deep Learning for Space

Mars Express - Data

Input

Output
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▪ Data splitting

▪ Operation changed in 2013

• Validation set match Competition test set

16/06/2023 Deep Learning for Space

Mars Express - Data
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▪ Metric used: RMSE

• Lower is better

▪ Baseline score

• Using mean values for each of the 33 power lines

• Achieve RMSE of 0.138 on test set

▪ Best score of the competition is a RMSE of 0.08

16/06/2023 Deep Learning for Space

Mars Express - Metric
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▪ Data of different sampling rates

▪ Deep learning Models

• Dense (Fully connected)

• CNN

• LSTM

• Transformers (TST)

▪ 10 different models tested

• With hyperparameter tuning

16/06/2023 Deep Learning for Space

Mars Express - Models
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▪ Adding CNN help the models

▪ Extracting Eclipses from EVTF file improve score

16/06/2023 Deep Learning for Space

Mars Express - Models
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▪ DL models are better than Baseline

• CNN is the best architecture

▪ Not able to beat best of competition

• Feature engineering helps a lot

▪ Scores are still in top 30 of competition

16/06/2023 Deep Learning for Space

Mars Express - Results
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▪ AIT consists in a systematic step by step verification via testing 
from component level to fully integrated system

• Focus of this project in electrical functional testing

• Large amounts of data are systematically archived

▪ The spacecraft correct integration is checked

▪ The spacecraft software is verified based on housekeeping

• Applications valid for AIT should be transferable to OPS

16/06/2023 Deep Learning for Space

AIT Overview
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▪ Complete E-AIT phases of the Meteosat Third Generation (MTG) 
project

• Electrical functional test in every step of the integration

• Full spacecraft tests

• From 5 satellites

▪ Focus on housekeeping telemetries from the spacecraft software

16/06/2023 Deep Learning for Space

AIT Data for the Use Cases
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AIT: Device-Under-Test Events Investigation

▪ Objective:

• Go back to the root causes of an anomaly when an event 
happens.

▪ Type of Data:

• Time Series:

◆ Satellite Telemetry

◆ Events of 4 different severities

• The events can be used as labels for classification.

16/06/2023 Deep Learning for Space
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AIT: Device-Under-Test Events Investigation

▪ Methodology:

• Supervised classification of events.

• TSAI has been used to try multiple timeseries models

• Use XAI (LIME) to find the importance of each input.

• The model use a window of time before an event.

• In simulated real time, when an event occurs the DL model 
prediction is compared with the real event. If identical, XAI can 
show the root cause.

16/06/2023 Deep Learning for Space
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Severity 3

16/06/2023 Deep Learning for Space

AIT: Device-Under-Test Events Investigation

DL (Minirocket)Classical ML (Random Forest)
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▪ Data for severity 3 events is quite small (~265 different events for 
the test set -> ~1060 for training, 7 classes of events).

▪ Performance for DL and ML methods is comparable

▪ DL however is able to find some classes that only have a few samples in 
the test set.

▪ For severity 4, DL seems promising, 
more data/ better filtering might improve the classifier.

16/06/2023 Deep Learning for Space

AIT: Device-Under-Test Events Investigation

Baseline ML (RF) DL (MiniRocket)

Severity 4 0.01 0.04 0.21

Severity 3 0.56 0.95 0.93
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▪ Example of explainability graphs

16/06/2023 Deep Learning for Space

AIT: Device-Under-Test Events Investigation

…
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▪ Multiple explainability graphs have been given to AIT experts

• Physically meaningful relationships between inputs and events 
identified 

• Indirect dependencies found, compensating the lack of directly 
related signals in the inputs given

• Only SCSW engineers with hands on experience on the mission could 
exploit fully the report → Need to involve the right personnel

▪ Explainability provides a good starting point to know which HK signals to 
focus on.

16/06/2023 Deep Learning for Space

AIT: Device-Under-Test Events Investigation
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AIT: Complex Systems Anomaly Detection

▪ Objective:

• Filter false alarms raised by the FDIR system by using a DL 
model to detect real anomalies.

▪ Type of Data:

• Satellite Parameter Telemetry (Time Series)

• High severity events

▪ Methodology:

• Unsupervised Anomaly Detection

• Events are used for fuzzy evaluation based on Precision@N, …

• Evaluation of flagged events is done manually by AIT experts

16/06/2023 Deep Learning for Space
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AIT: Complex Systems Anomaly Detection

▪ Data Preparation (without final TM parameter selection)

16/06/2023 Deep Learning for Space

[AIT SQL files] 
260GB [TM Data Sheet]

Sample Rate: 10s
Rows: 322k
Parameters 2.6k
Sessions: 279
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AIT: CSAD – Benchmark Options

▪ Benchmark options:

1. Algorithm: Isolation Forest (baseline, classic ML), 
AutoEncoder, DeepSVDD, Variational Autoencoder, AnoGAN

2. Contamination rate: (0.0, 1.0)

3. Aggregated windows or sliding windows (with n-windows)

4. Train on last session or on all previous sessions

16/06/2023 Deep Learning for Space
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▪ Note: Test set was too small to provide secure results –

only 111 high-severity events in total due filtering of specific subsystems

▪ Isolation Forest seems to perform better if high precision is required but 

only by sacrificing the recall

(Prec. 0.18%, Recall 0.98%)

▪ The deep learning models seem to have an advantage in a ranking 

scenario, they lead the table ordered by Precision@N

(DeepSVDD 0.55% vs 0.45% IForest)

▪ DeepSVDD was our fastest algorithm

(DeepSVDD 40sec vs 140sec IForest)

16/06/2023 Deep Learning for Space

AIT: CSAD - Key insights of the fuzzy evaluation
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AIT: CSAD – Manual Evaluation by AIT Experts

Deep Learning for Space16/06/2023

AIT event data:
TM Parameter 
and value which 
triggered the 
event

Anomaly data:
TM Parameter, 
value
and importance 
(based on LIME)
which lead to the 
classification

▪ Results:

• Algorithm identified a valid 

high severity event in the 

dataset

• Related signals provided to 

the tester had physical 

relationship 

with event.
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▪ Malargüe Use Case:

• DL explanations better compared to explanations coming from classical ML
• The XAI explanations come in terms of features. Craft features that are:

◆ Predictive
◆ Easy to understand by domain experts

▪ Mars Express Use Case:

• Deep Learning algorithms could not catch some dependencies already known 
by experts, but still ranking good compared to other approaches

• The absence of features engineering work to be considered in the balance

16/06/2023 Deep Learning for Space

Lessons Learned - OPS
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▪ The biggest challenge was related with data selection, preparing and 
processing

▪ Data structure, standard and practices of AIT are not defined with the 
purpose of being integrated in a ML/DL loop

▪ Once the data is available and processed, DL and classical ML algorithms 
don't show major differences

▪ AIT data availability for OPS shows great potential for DL/ML application

16/06/2023 Deep Learning for Space

Lessons Learned - AIT
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▪ It is not conclusive if Deep Learning is always the right choice for any problem

▪ Classical ML methods and newer DL should be considered as complementary tools of a toolbox

▪ Deep Learning vs Classical Machine Learning
• Deep Learning gives much more possibilities than Classical ML
• Need a lot of independent data for Deep Learning
• Classical ML works better with smaller datasets
• The community is working more on Deep Learning now

▪ Anomaly Detection
• Deep Learning is not always superior to Classical ML
• Deep Learning require more resources

▪ Conclusion: Do not put all your eggs in one basket

16/06/2023 Deep Learning for Space

Lessons Learned – DL vs Classical ML
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▪ Data Quality & Labeling
• Investment should focus on data preparation and labeling to improve the data quality and usability
• the cleaner and better documented the data is, the easier and more efficient it becomes for data-

driven projects

▪ Explanation
• Create good features if the explainability is the main focus
• Features engineered need not only to carry predictive power but also to be intuitive to domain 

experts

▪ A New Mindset
• Instore a DL/ML mindset earlier in the process
• Foster cross-functional synergy between 

experts and industry during all the phases of the mission

16/06/2023 Deep Learning for Space

Recommendations
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▪ A review of Deep Learning literature oriented to Space Applications

▪ An analysis of possible applications in OPS and AIT that could benefit from DL

▪ An analysis of most promising DL technologies for space applications

▪ Evaluation of the impact of Explainable AI (XAI) to understand how DL 
technologies are taking decisions

▪ 4 prototypes to show and study applicability of Deep Learning in Operations 
and in Assembly, Integration & Tests

▪ Assessment, Lessons Learned and Recommendations for the applicability and 
benefits of DL for space applications

16/06/2023 Deep Learning for Space

Conclusions
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Solenix Engineering GmbH
Spreestrasse 3
64295 Darmstadt
Germany

info@solenix.de
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