OPTIMISED CCSDS PROTOCOL STACK FOR HIGH DATA RATE (ESA HRLTP)

Final Presentation

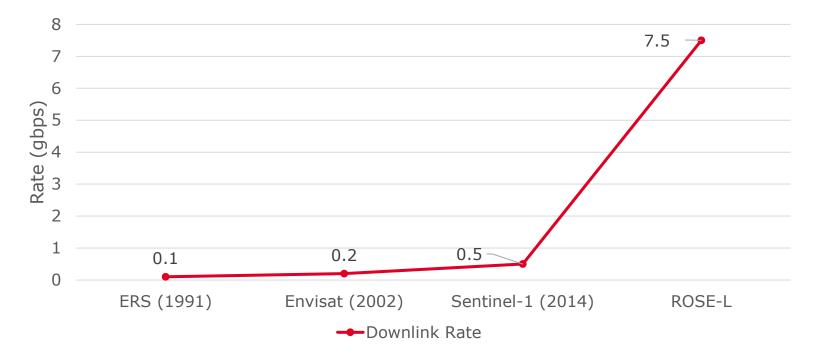
© GMV Property - 06/14/2023 - All rights reserved

Project Overview

© GMV Property – 06/14/2023 - All rights reserved

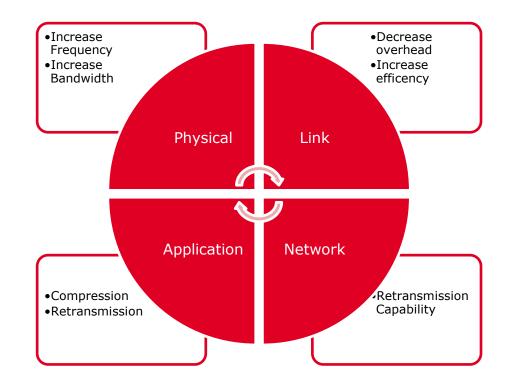
Project Team

The HR-LTP Activity must push the state of the art in space-to-ground communication:


- Define communication protocol stacks for high-rate payload data downlink including configuration of the individual protocol layers.
- Identify shortcomings in existing protocols, and outline a open (CCSDS) standard for optical and RF communication links.
- Develop on-board (FPGA) and on-ground implementations proposed protocols.
- Implement the qualification model integrating the prototypes above.
- Validate the open ARQ scheme with the on-board and the ground prototypes with simulated link characteristics.
- Provide input for further standardization

Project duration: 14 months Consortium: GMV GmbH, TESAT, DLR

Background

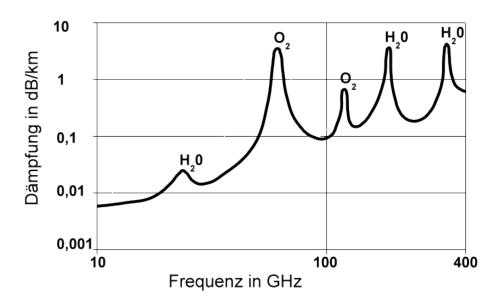

Background

• Increased demand for scientific data is pushing downlink data rates.

Increasing capacity?

How do you increase link performance?

Physical Layer


Higher bandwidths can be used (e.g. Ka-)

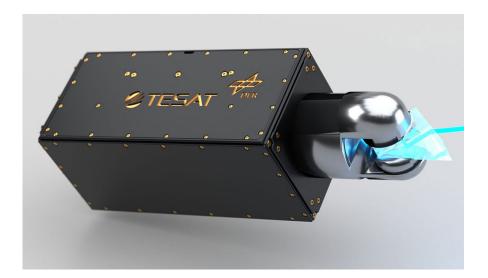
Pros:

- Increased channel bandwidth higher capacity
- Increased gain with smaller antennas

Cons:

• Subseptable to fading by rain and atmospheric conditions

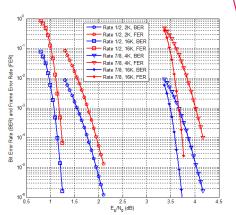
Physical Layer -Continued

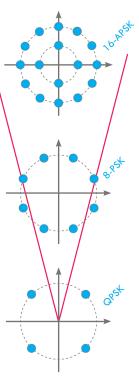

Alternately, optical may be used:

Pros:

- High throughput
- Precise pointing capability
- Commonality between Inter-Satellite Links and S/G

Cons:

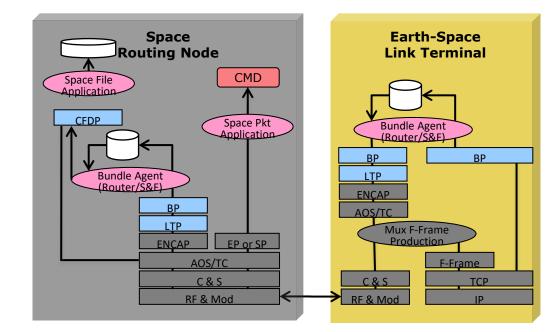

Risk of rain/cloud occlusion



Link Layer

For a given channel, capacity may be increased within the "link" layer:

- **Modulation:** increases the number of symbols (bits) which may be sent in parallel.
- Coding: Overhead induced by error coding mechanisms: allows higher performance but reduces reliability
 - Increased error correction provides higher short-term reliability, but does not solve issues relating to longer-duration outages.



Upper Layers

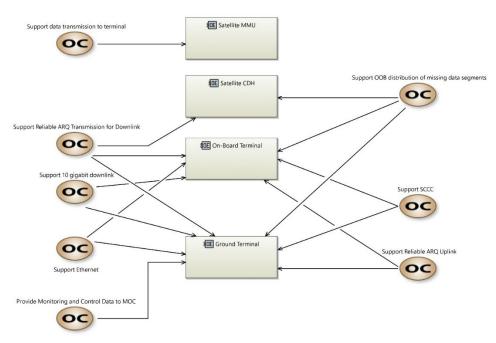
We can always increase performance at higher levels...

- **Network:** Enable automated retransmission; *just retransmit whatever data was lost by lower levels*
 - Generically-applicable...
 - But requires bidirectional communication
- **Application:** Compress payload data, allowing more of it to be sent?
 - Application-specific
 - Higher CPU/resource utilization

Study Hypothesis

We can increase physical link capacity at the cost of reliability, or we can increase link "goodput" with the application of error correction, etc.

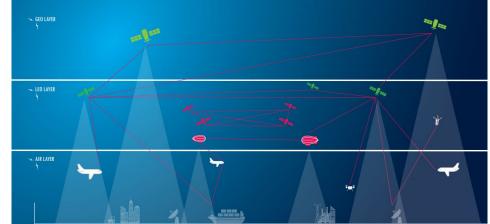
But: can we get the best of both worlds by using "smarter" link-lever protocols: allow the network to manage it's own retransmission


Let's prove it...

System Engineering

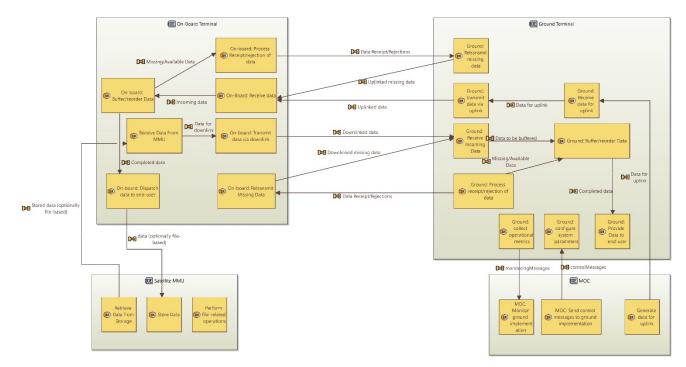
System Engineering – Use-cases

- System engineering was managed via the Arcadia method
- Use-cases were developed, encorpating requirements, consortium experience, etc.


Scenario Definition

Multiple scenario types were considered:

- Optical ISL/DTE
- Ka- downlink


Scenarios were defined:

- DTE with simultaneous uplink availability
- DTE with deferred uplink
- GEO (regenerative) relayed DTE
- LEO (regenerative) relayed DTE
- DTE with simultaneous uplink availability Erasure vectors were created for all, to be used in testing

System Engineering – Operational Activities

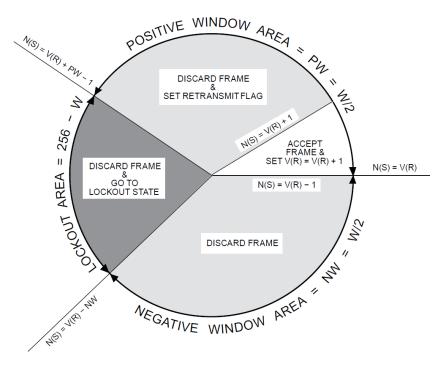
• Behaviour & Interaction between the on-board and ground prototypes were modelled as operational activities

Protocol Analysis

Protocol Requirements

Provide automated retransmission

Simplify Protocol Design


Enable implementation on FPGA & ASIC

Support > 10gbps data rates

What is ARQ?

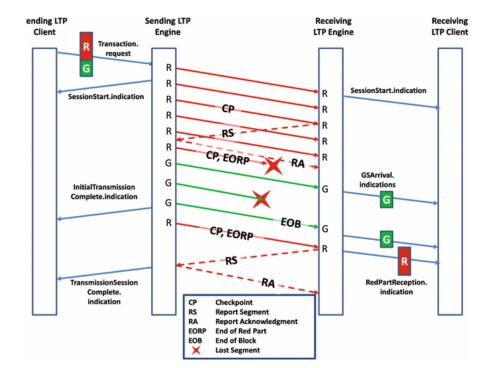
Automatic Repeat ReQuest (ARQ) is a family of protocols/methods to enable reliability

- Stop and Wait Send 1 PDU, wait until acknowledgement, send next
- Go back N Send N PDUs before requiring acknowledgement, acknowledgement sent as current PDU – N
- Selective Acknowledgment (SACK) Send N PDU's, allowing acknowledgement of any PDU's within that range

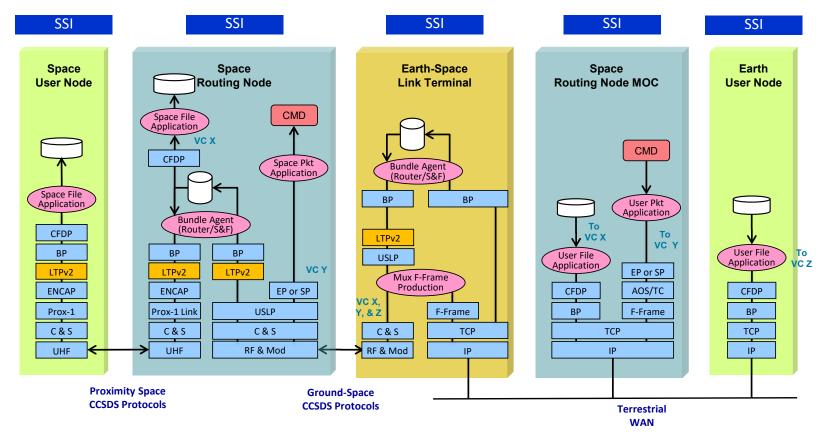
Protocol Evaluation

 Protocol design started with the analysis of multiple ARQ protocols, considering suitability for space-links

Protocol	Suitable for long delays	Suitable for high data-rate	Message- based	ACK/NAK based	Congestion Control independent	ARQ flavour	Stream-based	Synchronous connection setup
ТСР		Х		(S)ACK		GBN, SR	Х	Х
QUIC				(S)ACK		GBN, SR	Х	Х
SCPS-TP				SACK, SNACK		GBN, SR	Х	Х
SRT		Х	Х	ACK, NACK	Х	SR	Х	Х
NORM		Х	Х	NACK	Х	SR		
LTP	Х		Х	SACK	Х	SR		
CFDP	Х	Х	Х	NACK	Х	SR		
COP-1/-P			Х	ACK	Х	GBN		
802.11 BA			Х	ACK	Х	SR		/
DLR Patent	Х	Х	Х	Х	Х	SR		
AX.25	/		Х	ACK	Х	GBN	Х	Х

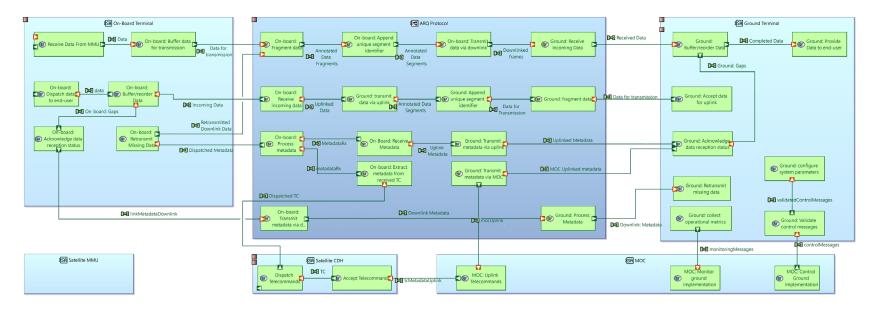

Protocol Selection

The Licklider Transmission Protocol (LTP) was selected as a baseline for the proposed protocol


- Existing CCSDS standard...
- With consortium familiarity.
- Provides reliable and unreliable channels.

LTP is not without problems:

- Relatively complex internals required to support mixed (unreliable/reliable) sessions
- Extensive utilization of variable length fields
- Many different on-the-wire data representations



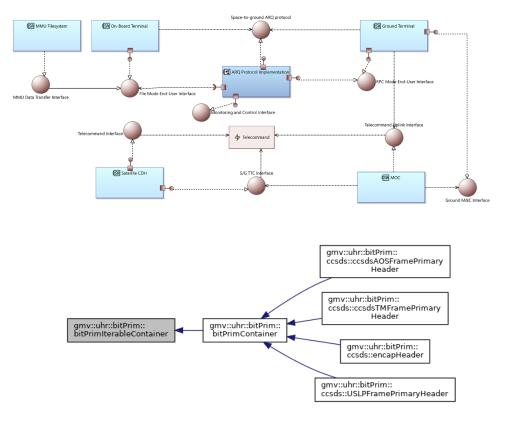
LTPv2 in SSI

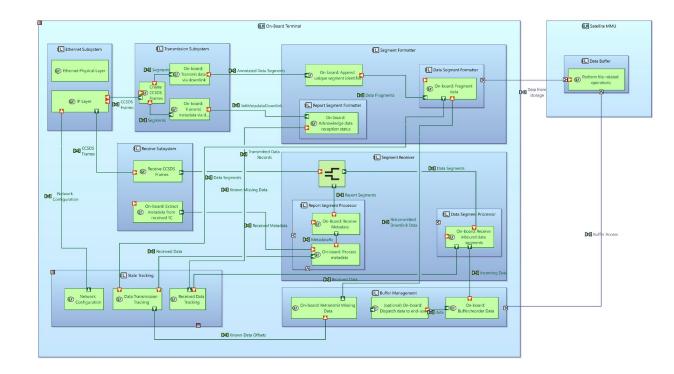
Prototype Design

Overall System Design

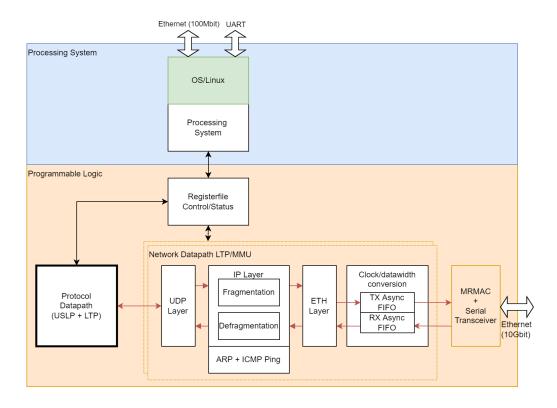
Two prototypes were built:

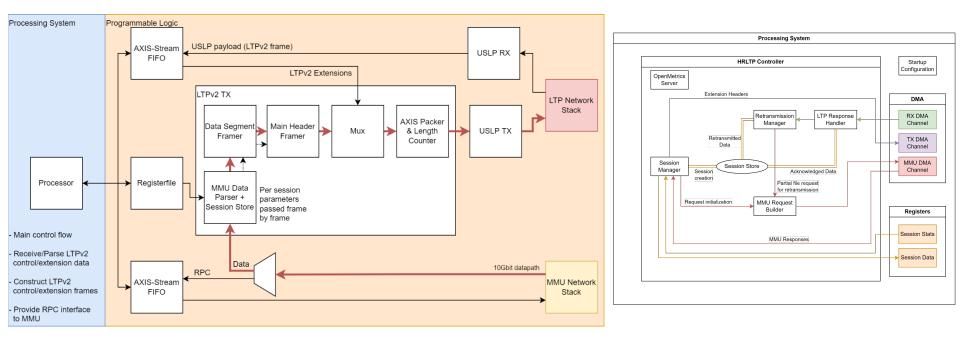
- Xilinx Versal FPGA Emulating next-generation On-Board Computers
- A PC Replicating a ground station


LTPv2 – Physical Implementations



External Interfaces


- Space link provided via USLP, encapsulated in UDP packets
- Telemetry provided via OpenMetrics (via HTTP)
- Commanding provided via RPC system(s)
- External file management provided by an emulation of the SAVOIR file management service:
- Used by the FPGA prototype to manage data transfer.

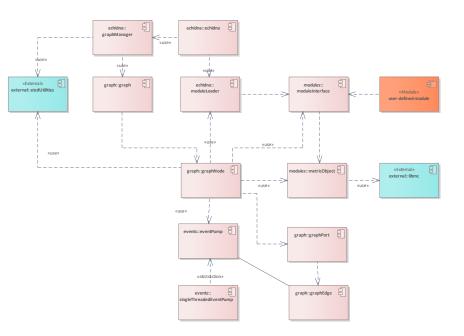

On-Board Prototype – Design


On-Board Prototype – Data Plane

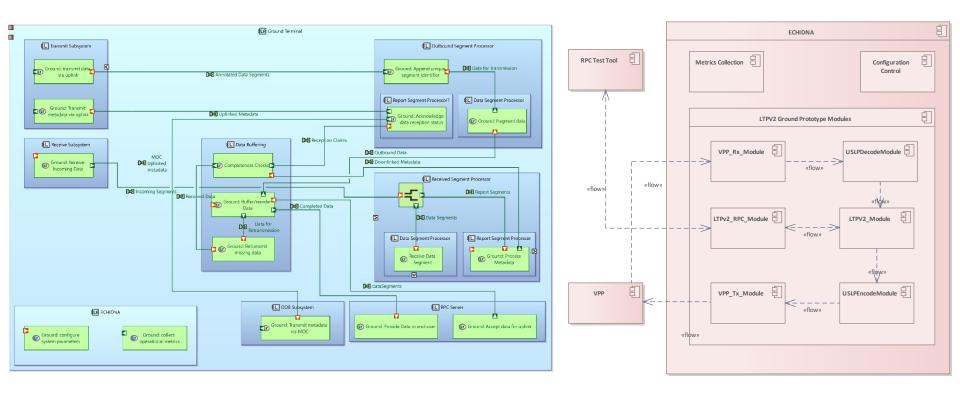
On-Board Prototype – LTPv2

Ground Prototype - Design

Ground Prototype -ECHIDNA

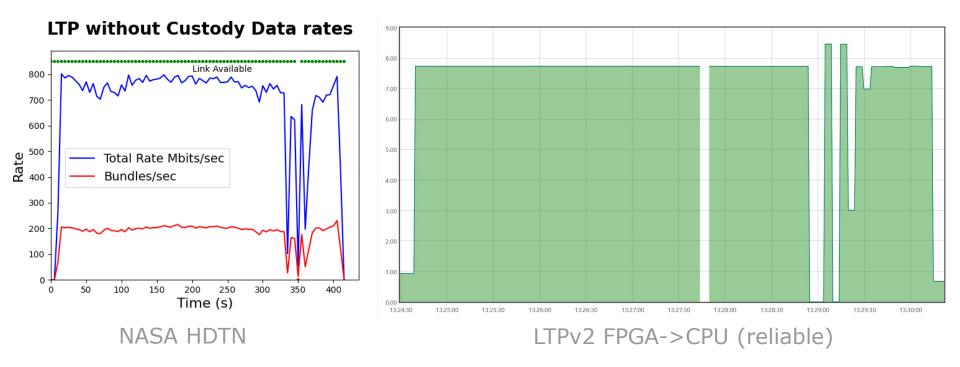

Ground Prototype was developed within the ECHIDNA framework:

• A modular framework for high-rate applications.


Open-source tooling used for other components:

- Prometheus for monitoring
- VPP/DPDK for networking
- Etcd for configuration control

Developed on Ubuntu, deployed on baremetal, VM's, and containers.


Software Prototype

Project Results

LTPv2 – **Performance**

Demonstration

LTPv2 –Validation Process

Validation performed via ESOC Jira – Zephyr Plugin All tests performed by GMV staff, and recorded

Test execution matrix by test cycle

Test Case	Latest	HRLTP-C1 - filePlayer RPC Testing	HRLTP-C10 - VPP Test Cycle	HRLTP-C11 - Populate etcd with configuration data	HRLTP-C12 - docker- compose - deployment	HRLTP-C13 - LTP-RPC - Sending and receiving file read data	HRLTP-C2 - Startup	HRLTP-C4 - Verify HRLTP-controller	HRLTP-C5 - Kubernetes Deployment	HRLTP-C6 - LTPv2 - build and run	HRLTP-C7 - USLP - build and run	HRLTP-C8 - LTP-RPC - Sending and receiving counting data.	HRLTP-C9 - Install and Run Echidna on SLES15
HRLTP-T1 Open existing file with filePlayer No environment	Result: Pass By: Jeremy Pierce Mayer Actual End Date: 19/04/2023	Result: Pass By: Jeremy Pierce Mayer Actual End Date: 19/04/2023											
HRLTP-T11 docker-compose - etcd configuration ubuntu20.04	Result: Pass By: Pablo Hinojsa Lopez Actual End Date: 24/04/2023				Result: Pass By: Pablo Hinojsa Lopez Actual End Date: 24/04/2023								
HRLTP-T12 kubernetes - echidna deployment ubuntu20.04	Result: Pass By: Pablo Hinojsa Lopez Actual End Date: 24/04/2023								Result: Pass By: Pablo Hinojsa Lopez Actual End Date: 24/04/2023				
HRLTP-T13 Install Echidna on Suse Linux Enterprise Server SLES 15 No environment	Result: Pass												Result: Pass By: Matthias Urban Actual End Date: 21/04/2023
HRLTP-T16 FPGA Hard Reset No environment	Result: Pass By: Jeremy Pierce Mayer Actual End Date: 20/04/2023							Result: Pass By: Jeremy Pierce Mayer Actual End Date: 20/04/2023					
HRLTP-T17 kubernetes - etcd configuration ubuntu20.04	Result: Pass By: Pablo Hinojsa Lopez Actual End Date: 24/04/2023								Result: Pass By: Pablo Hinojsa Lopez Actual End Date: 24/04/2023				
HRLTP-T18 kubernetes - cluster and host setup ubuntu20.04	Result: Pass By: Pablo Hinojsa Lopez Actual End Date: 24/04/2023								Result: Pass By: Pablo Hinojsa Lopez Actual End Date: 24/04/2023				

High Level Project Results

- Implementing the LTPv2 protocol on a PC server as well as a modern FPGA
 - Data rates of 10gbps could be achieved between prototypes, using MMU emulation and reliable/unreliable transmission
- The project was managed via agile Model-Based System Engineering (MBSE)
- Both prototypes were developed in geographically separated locations, using the development processes of GMV and TESAT
 - Interoperability was ensured via a series of tests, conducted with representative data exchanged via file and packet captures
 - Tests showed interoperability between the two projects, as well as ensuring that the performance requirements outlined the ITT could be met
- Representative space-to-ground scenarios were analyzed and updated

© GMV Property - 06/14/2023 - All rights reserved