

FINAL REVIEW MEETING

Document ID	0_BC-EP_WP0_PPT_FR_170523
Project Phase	0
Project ID	De-risking a Novel Electrodeless Propulsion System
Prepared by	W.Kempe & Shreepali
Point of contact	jerre.sweers@stellarspaceindustries.com wolraad.kempe@stellarspaceindustries.com
Date	17-05-2023
Copyright	© 2023 Stellar Space Industries

PRESENTATION CONTENTS

Final Presentation Meeting

- INTRODUCTION
- DE-RISKING PROJECT OBJECTIVES
- ACHIEVEMENTS
- CONCLUSION
- OUTLOOK
- LESSONS LEARNT

commercial in confidence not for public disclosure

INTRODUCTION

Our Goal: "Making VLEO Accesible"

INTRODUCTION

BC-EP Advanced Helicon Thruster

- De-risking phase led by SSI in collaboration with IRS
- Comprises out of **three** key subsystems:
 - TH based on MRI antenna technology
 - FCU employing novel throttleable piezo actuation
 - **PPU** linear and/or fixed output with high robustness

300 km

200 km

INTRODUCTION

BC-EP Advanced Helicon Thruster Advantages

- Simplicity small component count, no plasma contact
- No neutralizer reduced development and production cost
- Electrodeless operation increased operational lifetime
- Throttleable optimizing maneuver profiles
- Piezo FCU low mass and negligible power consumption
- Compatible with solid/liquid/gaseous propellants
- Novel ionization methodology using BC antenna
- Enables continuous drag compensation (ABEP)

300 km

200 km

<25 km

INTRODUCTION

Compatitor analyses BC-EP as reference

 \odot

	SSI BC-EP	Exotrail	Thrustme	BUSEK	DAWN	 300 km
	50-150 W	micro	NPT300	BHT-350	B1 thruster	
Thruster type	НРТ	HET	lon	HET	Chem (bi)	200 km
Throttleable – (multi-purpose: optimized manoeuvres, de-orbiting, collision avoidance)		\checkmark	\checkmark	\checkmark	V	
Drag compensation – (VLEO station keeping without lifetime penalty)	~	~	~	~	X	
Specific impulse – (indication of propellant mass usage efficiency)	~	~	\checkmark	~	X	100 km
Electrodeless – (grids and anodes are prone to erosion due to plasma contact imposing mission lifetime constrains)	~	Х	X	X	\checkmark	
Multi-propellant – (corrosive/inert fuel compatible, refuelling and ABEP compatible)		Х	Х	Х	Х	<25 km
No neutralizer – (cathodes increase risk, cost, power consumption and lead time)		X	X	X	\checkmark	 ((a))

TH primary objectives

- New design for 50-150 W with lab model as reference
- Dowscaling TH to fit low weight satellites
- Optimise for homogeneous resonsance mode
- Reflection coeffcient S_{11} < -20dB @ 40.68 MHz
- Impedance matched to Z = $50\pm0i \Omega$

PPU primary objectives

- RF signal output at 40.68 ± 1 MHz
- Variable RF power output 50-100 W ± 5%
- Electrical efficiencies > 50%
- DC/DC converter V_{bus} -> V_{valve} / V_{bias} / V_{gate}
- 10K ON/OFF cycling with degredation < 5%

FCU primary objectives

- Develop a minimum of 3 throttleable valve architectures
- Mass flow rate range 0.1 1.0 mg/s
- Minimum mass flow accuracy ±5%
- Internal leakage ≤ 10-3 mg/s
- 10K ON/OFF cycling
 - Mass flow degradation < 5%
 - Leakage degradation < 5%

300 km

BC-EP primary objectives

- Subsystems shall ignite plasma using lab model IPT
 - SSI FCU combined with IRS PPU
 - SSI FCU combined with SSI PPU
- Sustained operation within a mass flow range of 0.1- 1.0 mg/s
- Tests shall be conducted using Argon

300 km

200 km

100 km

TH ESA GSTP De-risking

- First version of a CAB BB TH model produced
 - Quartz plasma ignition tube
 - Permanent neodynium magets
 - Dual use injector
 - Brass Faraday cage
 - Insulation achieved using Ceramic holders for PCBs and antenna legs

TH ESA GSTP De-risking

PPU ESA GSTP De-risking

- Class A linear type
- Class E non linear type
- DC/DC converter manufactered and tested
- Signal generator board for both classes manufactured

FCU ESA GSTP De-risking

STE AR SPACE INDUSTRIES

- 4 Throttleable valve architectures realised
 - Valve specific design criticalities identified
 - ~ 20 Mitigation proposed and where applicable implemented
 - Assembly methodology per valve provided
- Mass flow and leakage test campaign conducted

FCU ESA GSTP De-risking

- All valves comply to the Interna leakage requirement
 - SL-BD-TS < 0.1 [μg/s]
 - CM-TR-MS < 0.1 [μg/s]
 - CM-TR-TS < 0.0015 [μg/s]
 - SL-BD-TS < 1.0 [μg/s] 🏼
- Life cycle testing only completed with 2 systems
 - Piezo failure and inconsistent measurements to blame
 - Endurance testing impact not negligible
- 2 Systems identified for follow on phase
 - CM-TR-TS and CM-TR-MS

BC-EP Testing, IRS PPU combined with SSI FCU

- Ignition Conditions (13/04/23, 20:02)
 - Backpressure 0.13 Pa
 - RF input power 65 W (on the readout screen)
 - 0.6 mg/s of gaseous argon
 - FCU voltage 65.0 V
 - FCU input pressure 3.017 Bar
- During operation:
 - Nominal operation power 59 W
 - Power reflection I_{solenoid} >9A: 0-15W
 - Power reflection I_{solenoid} 3-6A: 20-35W
 - Fluctuations observed ~ 0.25 Hz

BC-EP Testing, SSI Class E PPU combined with SSI FCU

- Ignition Conditions (14/04/23 17:12)
 - Backpressure 0.13 Pa
 - RF input power 60 W (obtained using indirect measurements)
 - 0.6 mg/s of gaseous argon
 - FCU voltage 89.0 V
 - FCU input pressure 2.0227 Bar
- During Operation:
 - Stable operation at flow rate range of 0.08 1.0 mg/s Ar
 - Stable at both high and low solenoid current (3 A & 9 A)
 - RF input power reduced to ~40 W
 - No plume instabilities observed

300 km

200 km

Visual Results

Ignition: 0.60 mg/s Ar @ 60W

Operation: 0.08 mg/s Ar @ 40W

Operation: 0.50 mg/s Ar @ 40W

Operation: 1.00 mg/s Ar @ 40W

CONCLUSION

BC-EP De-risking phase

STE AR SPACE INDUSTRIES

- BB TH dimensional design parameters established
- Preliminary performance BB TH simulated
- Two RF amplifier modules developed and tested
- DC/DC converter developed and tested
- Four throttleable valves developed and tested
- Successful plasma ignition
- Subsystem compatibility demonstrated

OUTLOOK

BC-EP De-risking phase

- TH performance measurements within operational regime
- Investigation into alternative propellants
- Thermal effects need to be addressed
- Higher efficiency linear RF amplifier topologies investigated
- Thermal model development of PPU
- Design and develop on-board signal generator for PPU
- Downscale throttleable valves
- Investigate presure regulatory behaviour of the valves

300 km

200 km

100 km

<25 km

OUTLOOK

BC-EP De-risking phase

LESSONS LEARNT

BC-EP De-risking phase

- Introduce a small breadboard test campaign early on within the product development cycle
- Better definition and descriptions of each subsystems in the test loop
- Pre-testing of each subsystem to avoid any delays during major test campaigns
- Bring plenty spare items and tools/equipment in order to avoid delays or incapability to run tests

LET'S BE IN TOUCH

Wolraad.Kempe@stellarspaceindustries.com

www.stellarspaceindustries.com

