
BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2019 Automatic Source-code-based Testing, Improvement, Final Presentation, ESA Contract No. 4000116014 1

FAST II

Automatic Source-code-based Testing, Improvement

Final Presentation

Noordwijk, date tbd

ESA Contract No. 4000116014 (GSTP)

BSSE Team: Rainer Gerlich, Ralf Gerlich

SCISYS Team: Allan Pascoe, Glenn Johnson

ESA PO: Maria Hernek

Dr. Rainer Gerlich Tel. +49/7545/91.12.58
Auf dem Ruhbuehl 181 Fax +49/7545/91.12.40
88090 Immenstaad Mobile +49/171/80.20.659
Germany email Rainer.Gerlich@bsse.biz

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2019 Automatic Source-code-based Testing, Improvement, Final Presentation, ESA Contract No. 4000116014 2

Contents

 The Goals of the Project

 The FAST Approach

 Open Tool Interface

 VectorCAST Interface

 Cantata Interface

 Requirements-Based Testing

 Benchmarking

 Lessons Learned

 Conclusions and Outlook

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2019 Automatic Source-code-based Testing, Improvement, Final Presentation, ESA Contract No. 4000116014 3

The FAST Approach

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2019 Automatic Source-code-based Testing, Improvement, Final Presentation, ESA Contract No. 4000116014 4

About FAST and DCRTT

 FAST
 Flow-Optimised Automated Source-code-based Testing

 automate the test process from test data generation to report generation

 DCRTT
 Dynamic C Random Test Tool

 following DARTT, Dynamic Ada Random Test Tool

 tool supporting the FAST approach

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2019 Automatic Source-code-based Testing, Improvement, Final Presentation, ESA Contract No. 4000116014 5

Goals of the Project

 Identify DCRTT improvements
 establish a list of improvements during the previous activities

 define priorities for implementation

 Define an open interface and link to other tools
 support export of auto-generated test vectors

 consider Cantata and VectorCAST as certified tools

 Analyse support of Requirements-Based Testing (RQBT)
 investigate how the gap from auto-generated test vectors to

requirements can be closed

 analyse requirements of a typical space project

 define a concept for implementation

 Assess the achievements by Benchmarking

 perform benchmarking with other static analysers

 support an assessment for TRL 5

 perform a demo

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2019 Automatic Source-code-based Testing, Improvement, Final Presentation, ESA Contract No. 4000116014 6

The FAST Approach

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2019 Automatic Source-code-based Testing, Improvement, Final Presentation, ESA Contract No. 4000116014 7

From Test Preparation to Result
Evaluation before FASTII

Annotations and
Meta-Information

Source
Code

Configuration
Definition

Test Execution

all functions

or
integrated system

Test Report

Test
Driver

Filtering
criteria

Report Evaluation

code update by feedback
from test execution

Report Evaluation

more by feedback
from test execution

Test PreparationSoftware-under-Test

Auto-Meta-
Information from

Source Code

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2019 Automatic Source-code-based Testing, Improvement, Final Presentation, ESA Contract No. 4000116014 8

From Test Preparation to Result
Evaluation at the end of FASTII

Annotations and
Meta-Information

Source
Code

Configuration
Definition

Test Execution

all functions

or
integrated system

Test Report

Test
Driver

Filtering
criteria

Report Evaluation

code update by feedback
from test execution

Report Evaluation

more by feedback
from test execution

Test PreparationSoftware-under-Test

Open
Interface

Auto-Meta-
Information from

Source Code

Requiremts.
Oracles

Auto-Resizing
+

more

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2019 Automatic Source-code-based Testing, Improvement, Final Presentation, ESA Contract No. 4000116014 9

Interfaces of the
FAST Test Process in DCRTT
before FASTII

Requirements, Oracles
Source Code

Coverage Anomaly
Reports

Exec.
Time

Data Range
Monitoring

FAST Process
DCRTT

Prototypes

Types B
la

c
k

-B
o

x

Other
Metrics

Comparison
Exp. – Obs.

Test Report

Test
Driver Test Case Export

W
h

it
e

-B
o

x

Constants

Data Usage
static / dyn.

C
o

n
tr

a
c

ts

Constraints

Stimulation
Fault Injection

DCRTT Dynamic C Random Test Tool

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2019 Automatic Source-code-based Testing, Improvement, Final Presentation, ESA Contract No. 4000116014 10

Interfaces of the
FAST Test Process in DCRTT
at the end of FASTII

Requirements, Oracles
Source Code

Coverage Anomaly
Reports

Exec.
Time

Data Range
Monitoring

FAST Process
DCRTT

Prototypes

Types B
la

c
k

-B
o

x

Other
Metrics

Comparison
Exp. – Obs.

Test Report

Open Interface
Test Management

Tools

Cantata
VectorCAST W

h
it

e
-B

o
x

Constants

Data Usage
static / dyn.

Constraint-
Based Test

Data
Generation

C
o

n
tr

a
c

ts

Constraints

Stimulation
Fault Injection

Genetic
Algorithms

G
ra

y-
B

o
x

RQBT
Feedback

DCRTT Dynamic C Random Test Tool

integration only

integration only

Test
Driver

Test Case Export

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2019 Automatic Source-code-based Testing, Improvement, Final Presentation, ESA Contract No. 4000116014 11

The FAST Test Process
Detailed Flow before FASTII

Requ.
+

Source
Code

Auto-
Porting

Im
p

ro
ve

m
e

n
ts

Pre-Test
Report

Test
Report

Improvements Specification

Test Vectors
Input - Output

ConfirmationConfirmation

Test Environment
Host

for

function-under-test

Stimulation
Fault Injection

Platform
Diversification

Legend:

Auto-Process

Manual Activity

Test Drivers
+

Test Vectors
incl. Auto-Comparison

expected - observed

Coverage,Excp
Filtering

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2019 Automatic Source-code-based Testing, Improvement, Final Presentation, ESA Contract No. 4000116014 12

The FAST Test Process
Detailed Flow at the end of FASTII

Requ.
+

Source
Code

Auto-
Porting

Im
p

ro
ve

m
e

n
ts

Pre-Test
Report

Test
Report

Improvements Specification

Test Vectors
Input - Output

ConfirmationConfirmation

Test Environment
Host

for

function-under-test

Stimulation
Fault Injection

Platform
Diversification

Legend:

Auto-Process

Manual Activity

Test Drivers
+

Test Vectors
incl. Auto-Comparison

expected - observed

Coverage,Excp
Filtering

Oracles,RQBT

Feedback on Requirements Coverage, Auto-Propagation of fail/pass Information

Open
Interface

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2019 Automatic Source-code-based Testing, Improvement, Final Presentation, ESA Contract No. 4000116014 13

List of Major Extensions

 Improvements
 support csv-Format for defect reporting

 auto-resizing of pointer parameters

 auto-resizing of unconstrained arrays in parameter list

 support of assertions

 address validation

 support of object size validation for C library routines (memcpy, )

 constrained-based test data generation

 genetic algorithm for untyped byte streams (telecommands)

 Open Tool Interface
 link to Cantata

 link to VectorCAST

 RQBT
 support of oracles derived from requirements

 support of bottom-up propagation of requirements coverage and
passed/failed results

Implementation before FASTII

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2019 Automatic Source-code-based Testing, Improvement, Final Presentation, ESA Contract No. 4000116014 14

Resizing Example

int myFunc(char *ptr, char *ucArr[])

myFunc2(ptr,ucArr);
int myFunc2(char *para1, char *para2[]);

static unsigned int idx1=0,idx2=0;

para1[idx1]=1;
para2[idx2]=2;

Software-under-Test

char *ptr=malloc(???)
char *ucArr [???];

myFunc(ptr,ucArr); Test environment, auto-generated

Index may be defined at run-time,
correlation with maximum may not be possible

If too few elements are allocated  false positives

 Resize dynamically, record resizing and check against RQ

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2019 Automatic Source-code-based Testing, Improvement, Final Presentation, ESA Contract No. 4000116014 15

Open Tool Interface

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2019 Automatic Source-code-based Testing, Improvement, Final Presentation, ESA Contract No. 4000116014 16

Open Tool Interface
Principal Approach

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2019 Automatic Source-code-based Testing, Improvement, Final Presentation, ESA Contract No. 4000116014 17

VectorCAST

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2019 Automatic Source-code-based Testing, Improvement, Final Presentation, ESA Contract No. 4000116014 18

Output VectorCAST
Coverage Report

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2019 Automatic Source-code-based Testing, Improvement, Final Presentation, ESA Contract No. 4000116014 19

Example VectorCast
Test Script (2)
unconstrained array

-- Test Case Script
-- Environment :
vc_test_hello_vcast_1_BSSE_main_7
-- Function Under Test: hello_vcast_1 -
BSSE_main 7 of hello_vcast_1.c
-- Script Features
TEST.SCRIPT_FEATURE:C_DIRECT_ARRAY_INDEXING
TEST.SCRIPT_FEATURE:CPP_CLASS_OBJECT_REVISION
TEST.SCRIPT_FEATURE:MULTIPLE_UUT_SUPPORT
TEST.SCRIPT_FEATURE:STANDARD_SPACING_R2
TEST.SCRIPT_FEATURE:OVERLOADED_CONST_SUPPORT
-- End of header hello_vcast_1 - BSSE_main 7 of
hello_vcast_1.c
-- vc_test_7.tst generated by
dcrtt_open_if_cnv_vc.c for tool vc on <date>
-- Test File: hello_vcast_1.c
TEST.UNIT:hello_vcast_1
TEST.SUBPROGRAM:BSSE_main
-- mangled name BSSE_main
-- List of relevant data of function BSSE_main
-- #tot para= 2
-- #func para= 2
-- #glob para= 0
-- #constr para= 0
-- Parameters
-- signed int argc
-- char * argv[UC_LIT2]
-- Return
-- signed int _return_
TEST.NEW
TEST.NAME:(CL)BSSE_main.001
-- derived from DCRTT test case 1
TEST.NOTES:
No requirements provided
TEST.END_NOTES:

TEST.FLOATING_POINT_TOLERANCE: 9.99999974737875163555e-06
TEST.VALUE:hello_vcast_1.BSSE_main.argv[0]:<<malloc 26>>
TEST.VALUE:hello_vcast_1.BSSE_main.argv[1]:<<malloc 26>>
TEST.VALUE:hello_vcast_1.BSSE_main.argv[2]:<<malloc 26>>
TEST.VALUE:hello_vcast_1.BSSE_main.argv[3]:<<malloc 26>>
TEST.VALUE:hello_vcast_1.BSSE_main.argv[4]:<<malloc 26>>
TEST.VALUE:hello_vcast_1.BSSE_main.argc: -2147483648
TEST.VALUE:hello_vcast_1.BSSE_main.argv[0]: ""
TEST.VALUE:hello_vcast_1.BSSE_main.argv[1]: "lxivmf{lurnmkdzwlqrr
rjqg"
TEST.VALUE:hello_vcast_1.BSSE_main.argv[2]: "g
uxxclxgjnorgwhuqouzjmgi"
TEST.VALUE:hello_vcast_1.BSSE_main.argv[3]: "LQWT7WNaMA0K0HKJTMR
D1423"
TEST.VALUE:hello_vcast_1.BSSE_main.argv[4]: "1@i5}A6}7\\'%kB^I$2r
2)7m3"
TEST.VALUE:hello_vcast_1.BSSE_main.return: -2147483648
TEST.EXPECTED_USER_CODE:hello_vcast_1.BSSE_main.argc
{{ (signed long)<<hello_vcast_1.BSSE_main.argc>> == ((signed
long)-2147483648) }}
TEST.END_EXPECTED_USER_CODE:
TEST.EXPECTED_USER_CODE:hello_vcast_1.BSSE_main.argv
{{ strcmp(<<hello_vcast_1.BSSE_main.argv>>[0] , "1234567890") }}
{{ strcmp(<<hello_vcast_1.BSSE_main.argv>>[1] , "1234567890") }}
{{ strcmp(<<hello_vcast_1.BSSE_main.argv>>[2] , "1234567890") }}
{{ strcmp(<<hello_vcast_1.BSSE_main.argv>>[3] , "1234567890") }}
{{ strcmp(<<hello_vcast_1.BSSE_main.argv>>[4] , "1234567890") }}
TEST.END_EXPECTED_USER_CODE:
TEST.EXPECTED_USER_CODE:hello_vcast_1.BSSE_main.return
{{ (signed long)<<hello_vcast_1.BSSE_main.return>> == ((signed
long)0) }}
TEST.END_EXPECTED_USER_CODE:
TEST.END

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2019 Automatic Source-code-based Testing, Improvement, Final Presentation, ESA Contract No. 4000116014 20

Cantata

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2019 Automatic Source-code-based Testing, Improvement, Final Presentation, ESA Contract No. 4000116014 21

Output Cantata for
Test Script /
Statement Coverage

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2019 Automatic Source-code-based Testing, Improvement, Final Presentation, ESA Contract No. 4000116014 22

Output Cantata for
Test Script /
Decision Coverage

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2019 Automatic Source-code-based Testing, Improvement, Final Presentation, ESA Contract No. 4000116014 23

Requirements-Based Testing (RQBT)

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2019 Automatic Source-code-based Testing, Improvement, Final Presentation, ESA Contract No. 4000116014 24

Requirements and Coverage

Oracle

Functions

Requirements

Test Cases +

Counter Examples

Function Call

Derivation of oracles, intentionally automatically

Correlation of oracles with functions, intentionally automatically

Automatic execution of oracles in test environment

Test Driver Generation

Failed / passed
Results

Bottom-up Propagation of Results

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2019 Automatic Source-code-based Testing, Improvement, Final Presentation, ESA Contract No. 4000116014 25

Structure of an Oracle

O
ra

cl
e

Pre-Condition

Post-Condition

Function Call

IF true

Parameter
+

Global
Variables

Parameter
+

Globals
Variables

THEN apply

evaluate

fail / pass

check
Inputs

Outputs

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2019 Automatic Source-code-based Testing, Improvement, Final Presentation, ESA Contract No. 4000116014 26

Oracle Examples

status==active && mode==mode1 ? moniFlag==true

status==active && mode==mode2 ? moniFlag==true

status==active && mode==mode3 ? moniFlag==false

Pre-condition:
if true check post-condition

Post-condition:
if true: pass
if false: fail

Three
Oracles

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2019 Automatic Source-code-based Testing, Improvement, Final Presentation, ESA Contract No. 4000116014 27

Conclusion on
Requirements Analysis

 Readiness for Auto-Extraction of Information
 only some requirements found suitable for auto-generation of oracles

 machine-interpretable requirements required

 guidelines required

 Requirements Top-Down Tracking
 continuous chain of tracking required

 lack of tracking information down to function level

 DCRTT Implementation
 text notation for oracles defined

 infrastructure available supporting this notation

 support for bottom-up propagation available

 RQBT Demo
 manually defined oracle examples

 some related to suitable requirements of space application

 some defined for test and demonstration

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2019 Automatic Source-code-based Testing, Improvement, Final Presentation, ESA Contract No. 4000116014 28

Benchmarking

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2019 Automatic Source-code-based Testing, Improvement, Final Presentation, ESA Contract No. 4000116014 29

Selected Tools

Analysis
Type

Analysis Approach Soundness

DCRTT dynamic
test, auto-stimulation and
auto-test data generation

not sound

Astree

static abstract interpretation

sound

CodeProver sound

BugFinder not sound

QA/C static
symbolic execution, dataflow
analysis

not sound

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2019 Automatic Source-code-based Testing, Improvement, Final Presentation, ESA Contract No. 4000116014 30

Remarks on
Benchmarking Evaluation Results

 Boundary Conditions

 Benchmarking was performed at the end of development

 Many reports issued by the tools (up to 30.000)

 Unclear: Number of reports and effort in case of continued
application

 Application Impact
 number and type of reports strongly application dependent

 Configuration Impact

 number and type of reports strongly (tool-)configuration dependent

 Report Selection Impact

 evaluation results strongly depend on selection process

 number of reports issued may heavily differ between tools

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2019 Automatic Source-code-based Testing, Improvement, Final Presentation, ESA Contract No. 4000116014 31

Report Classification
Actual Condition

Defect present Defect not present
Reported
Condition

Defect present True Positive False Positive
Defect not present False Negative True Negative

Classification

Category
Criterion Applied Condition

Validity
tool Is the tool message formally correct?
state Can an undesired state be reached?

Context
with context

The execution conditions may be constrained by the
calling function (caller)

without context The execution conditions are not constrained

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2019 Automatic Source-code-based Testing, Improvement, Final Presentation, ESA Contract No. 4000116014 32

The Application

Version h-Files c-Files All Files KLOC - h KLOC - c KLOC - All Functions
early 170 150 320 32 151 183 3200
late 170 150 320 29 167 196 3400

Task Types

periodic
synchronous
sporadic
standard

Item
Version

early late
max. type nesting level 9 9
missing functions (OS interface, assembler), stubs 117 121
DCRTT support functions for generation of output 368 369
missing data 4 4

Figures approx.

 Two versions

 early version with potentially more defects

 late version with potentially less defects

 Intention of using two versions

 evaluate impact on reporting by number of reports

 no significant difference found

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2019 Automatic Source-code-based Testing, Improvement, Final Presentation, ESA Contract No. 4000116014 33

Analysis and Test Modes

Analysis Mode
Tool

DCRTT QAC Astree BugFinder CodeProver
EM 1 x x x x
EM 2 x x x x
EM 3 x x x
Unit testing x
functionwise x

Execution Mode Description
EM 1 deterministic / sequential execution of the task bodies
EM 2 non-deterministic / random execution of the task bodies
EM 3 modelling of concurrent execution of task bodies with pre-emption
Unit testing every function is subject of stimulation / testing
functionwise every function is independently analysed

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2019 Automatic Source-code-based Testing, Improvement, Final Presentation, ESA Contract No. 4000116014 34

Variation of Report Figures
Both Versions

To be considered:

different reporting policies of tools

• reporting for every location or not

• reporting for every path or not

• duplication of reports or not

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2019 Automatic Source-code-based Testing, Improvement, Final Presentation, ESA Contract No. 4000116014 35

Variation of Report Figures
Examples

Late Version
Defect Type Tool1 Tool2 Tool3 DCRTT Tool5 Comment

Assert 363 6 343 227 0 compromísed by stubbing
Concurrency
Issues

10755 807 2633 n/a n/a
non-relevant due to non-
representative scheduling

Unused Result 4909 732 0 n/a 0
Uninitialized
Variable

1140 26 1215 n/a 4

Early Version
Defect Type Tool1 Tool2 Tool3 DCRTT Tool5 Comment

Assert 243 6 251 219 0 compromísed by stubbing
Concurrency
Issues

10044 741 2014 n/a n/a
non-relevant due to non-
representative scheduling

Unused Result 4257 701 0 n/a 0
Uninitialized
Variable

1521 36 1298 n/a 19

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2019 Automatic Source-code-based Testing, Improvement, Final Presentation, ESA Contract No. 4000116014 36

Analysis Base

 Entry-Point Function

 Astree only supports analysis from single entry-point function

 auto-construction of entry-point function, the same used for all static
analysers

 calls all task bodies

 Analysis Modes (Invocation of Task Bodies)
 deterministic, grouped by task types, fixed sequence (mode 1)
 non-deterministic, random call of the sequence (mode 2)
 multi-tasking, using pre-emptive support if supported (Astree, CodeProver) (mode 3)

 DCRTT Modes

 unit testing: test environment built for every function of the application
 additionally: deterministic run of single entry point
 In both cases: Instrumentation for coverage and fault detection

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2019 Automatic Source-code-based Testing, Improvement, Final Presentation, ESA Contract No. 4000116014 37

Report Consolidation

 Report Contents
 text differs widely between tools for the same defect type

 multiple reports with different text may be issued for the same defect

 if more than one report is provided for a line or statement

 Use column for distinction (may differ between tools)
 statement id
 parameter or index id

 Automated merge of all reports from all tools
 mapping scheme required to make reports comparable (consolidation)

 standard defect types applied

 tool specific output format converted into standard report format

 no consideration of column or other id:
most important is the message per location (file, line), no TP locations are lost

 Consolidated Output
 merged list of reports according to standard defect type and location

 list of defects per location for cross-checking of mapping

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2019 Automatic Source-code-based Testing, Improvement, Final Presentation, ESA Contract No. 4000116014 38

Standard Defect Types (1/2)
Id Standard Defect Type Criticality

1 Array Index Out-of-Bounds Critical
2 Assert failure Critical
3 Dangling Pointer Critical
4 Dereference of Invalid or NULL Pointer Critical
5 File Access Error Critical
6 Format String Mismatch Critical
7 Invalid arithmetic operation Critical
8 Invalid function pointer Critical
9 Invalid Return Statement Critical

10 Loss of Precision Critical
11 Macro Use with Unintended Consequences Critical
12 Non-terminating Loop Critical
13 Possible Invalid Use of Function Critical
14 Possible Recursion Critical
15 Resource Leak Critical
16 Undefined Result Critical
17 Uninitialized Variable Critical
18 Unintended Use of Implicit Member Function Critical
19 Arithmetic Operation on NULL Pointer Warning
20 Arithmetic Overflow Warning
21 Cast to pointer of incompatible types Warning
22 Comparison of floating-point values Warning
23 Concurrency Issues Warning
24 Conflicting Declarations Warning
25 Incomplete List of Cases for enum-Type without default Warning
26 Intended Change of Invariant Data Warning

Criticality
 hint that a defect type

may turn out as

highly critical
less critical
uncritical
to be ignored
(remarks, comments,)

 recommendation what

should be checked first.

 used for statistics

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2019 Automatic Source-code-based Testing, Improvement, Final Presentation, ESA Contract No. 4000116014 39

Standard Defect Types (2/2)
Id Standard Defect Type Criticality
27 Invalid pointer operation Warning
28 Invariant Condition Warning
29 Invariant Expression Warning
30 Loss of Update Warning
31 Memory Size Mismatch Warning
32 Name overloading Warning
33 Parameter Type Mismatch in Function Call Warning
34 Possible invalid arithmetic operation Warning
35 Possible invalid pointer operation Warning
36 Possible Loss of precision Warning
37 Possible misuse of signed integer Warning
38 Tainted Data Warning
39 Timeout during Execution Warning
40 Unnecessary Loop Construct Warning
41 Unnecessary Operation Warning
42 Unreachable Code Warning
43 Unreliable arithmetic cast Warning
44 Unreliable pointer cast Warning
45 Unused Result Warning
46 Change of Data expected, but missing Uncritical
47 Incomplete List of Cases for enum-Type with default Uncritical
48 Inconsistent Overloading Uncritical
49 Multiple return paths Uncritical
50 Security Issue Uncritical
51 Unintended Change of Data Uncritical
52 DefectTypeIgnore ignore

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2019 Automatic Source-code-based Testing, Improvement, Final Presentation, ESA Contract No. 4000116014 40

Defect Type Support by DCRTT
Standard Defect Type Critic. DCRTT Messages Description

Array Index Out-of-Bounds

C

CorrMem Corrupted memory detected
OutOfRangeLow Index <0
OutOfRangeHigh Index > maximum value for constrained arrays

Assert failure AssertFailed Assertion failed

Dereference of Invalid or
NULL Pointer

*Excp
A number of different messages on exceptions depending on the location in code
(application or test environment)

ExcpMissFunc Exception in a generated stub
ExcpBasicFunc Exception in a support function of a stub
ExcpDataProcess Exception in data range monitoring function
ExcpNULLInj Exception after injection of a NULL pointer
StdExcpC++ Standard exception from C++
TermExcpC++ Termination exception from C++
InvalidAddr Access of an invalid address, general message if source cannot be exactly determined
AddrIsReadOnly Address is not writable
AddrIsNotRW Address is not readable and not writable
AddrIsNULL Address is NULL, e.g. passed to index checking
NULLptrDeref Dereference of a NULL pointer

Uexit
Unexpected termination of a test, condition could not covered by any of the implemented
exception handlers, probably due to an invalid address

File Access Error FileHandleErr File handling error (open, close, file access, not opened)
Non-terminating Loop FileTooBig Log-file too large, possibly an indication of an infinite loop condition

Possible Recursion
RecursExcp Exception during exception handling
Recursion Stack overflow possibly due to recursion

Resource Leak Resource leak File not closed, malloc-memory not freed

Arithmetic Overflow

W

FpNan Contents of floating point data is not a number
FpInf Contents of floating point data represents infinite
intOverflow Integer overflow occurred

Concurrency Issues tbd The support will be given soon.

Invariant Condition
WasAlwaysTrue The condition was always true, possibly invariant condition
WasAlwaysFalse The condition was always false, possibly invariant condition

Timeout during Execution TimeoutIntMonitor
The test run was terminated due to reaching the time limit, possibly a deadlock or the
system hangs

Unreachable Code
WasNotReachedBlk The block was never reached
WasNotReachedCnd The condition was never reached

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2019 Automatic Source-code-based Testing, Improvement, Final Presentation, ESA Contract No. 4000116014 41

Std. Defect Types vs. Tools(1/2)

No contribution for late version

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2019 Automatic Source-code-based Testing, Improvement, Final Presentation, ESA Contract No. 4000116014 42

Std. Defect Types vs. Tools(2/2)

No contribution for late version

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2019 Automatic Source-code-based Testing, Improvement, Final Presentation, ESA Contract No. 4000116014 43

Coincidences vs. Criticality

#Coincidences
of Tools

Counts / Early Version
Critical Warning Uncritical Ignored All

1 7510 20259 0 9957 37726
2 1810 1565 0 48 3423
3 257 17 0 0 274
4 15 4 0 0 19
5 0 0 0 0 0

9592 21845 0 10005 41442

#Coincidences
of Tools

Counts / Late Version
Critical Warning Uncritical Ignored All

1 7874 23104 0 9775 40753
2 1858 1158 0 4 3020
3 268 8 0 0 276
4 6 0 0 0 6
5 0 0 0 0 0

10006 24270 0 9779 44055

Figures are related to consolidated set < sum of all reports

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2019 Automatic Source-code-based Testing, Improvement, Final Presentation, ESA Contract No. 4000116014 44

Coincidences vs. Tools (late)

Cnt % Tool Combinations / Late Version
2390 5.43 Tool1 Tool3

251 0.57 Tool1 Tool3 DCRTT
113 0.26 Tool1 DCRTT
141 0.32 Tool1 Tool2

49 0.11 Tool1 Tool5
5 0.01 Tool1 Tool2 Tool3 DCRTT
7 0.02 Tool1 Tool2 Tool3
1 0.00 Tool1 DCRTT Tool5
9 0.02 Tool1 Tool3 Tool5
1 0.00 Tool1 Tool2 Tool3 Tool5
2 0.00 Tool1 Tool2 Tool5

277 0.63 Tool2 Tool3
6 0.01 Tool2 Tool3 Tool5
1 0.00 Tool2 Tool5
2 0.00 Tool3 Tool5

38 0.09 Tool3 DCRTT
871 1.98 DCRTT

9 0.02 DCRTT Tool5
44055 100.00 Total

Figures are related to consolidated set < sum of all reports

Figures are related
to sum of
consolidated reports
44055

D = DCRTT

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2019 Automatic Source-code-based Testing, Improvement, Final Presentation, ESA Contract No. 4000116014 45

Coincidences vs. Criticality and
Tools / late / multi-tasking

All Critical Warning
#Coinc. Tool Comb. % #Coinc. Tool Comb. % #Coinc. Tool Comb. %

369 T1 T2 0,69 7 T1 T2 0,01 354 T1 T2 0,66
22 T1 T2 T3 0,04 22 T1 T2 T3 0,04
25 T1 T2 T3 D 0,05 25 T1 T2 T3 D 0,05

4 T1 T2 T3 T5 0,01 4 T1 T2 T3 T5 0,01
10 T1 T2 T5 0,02 10 T1 T2 T5 0,02

6929 T1 T3 12,99 4507 T1 T3 8,45 2422 T1 T3 4,54
1099 T1 T3 D 2,06 1099 T1 T3 D 2,06

39 T1 T3 T5 0,07 39 T1 T3 T5 0,07
302 T1 D 0,57 302 T1 D 0,57

7 T1 D T5 0,01 7 T1 D T5 0,01
103 T1 T5 0,19 15 T1 T5 0,03 88 T1 T5 0,17

1021 T1 T2 1,91 2 T1 T2 0,00 1019 T1 T2 1,91
22 T1 T2 T5 0,04 22 T1 T2 T5 0,04

3 T1 T5 0,01 3 T1 T5 0,01
80 T3 D 0,15 80 T3 D 0,15

6 T3 T5 0,01 6 T3 T5 0,01
1097 D 2,06 1074 D 2,01 23 D 0,04

20 D T5 0,04 20 D T5 0,04
53327 All 100,00 14790 All 27,73 28648 All 53,72

Figures
are
related
to sum
of all
reports
53227

D =
DCRTT

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2019 Automatic Source-code-based Testing, Improvement, Final Presentation, ESA Contract No. 4000116014 46

Report Summary

 Configuration definition
 defined in contact with tool supplier when many options supported

 iterations, if required

 fairness: optimise results for each tool

 Configuration update
 where possible, options were activated to get reports for defect types missing so far

 then number of reports significantly increased, other defect types than intended
were activated in addition

 Results from manual evaluation
 DCRTT without context always a TP (precision 100%)

 static analysers without context: precision < 100% due to (over-)approximation

 Report filtering for TP detection
 guided by DCRTT filtering mechanisms and reduced number of reports (entry-point)

 first detected with DCRTT, then checked for occurrence in reports of the other tools

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2019 Automatic Source-code-based Testing, Improvement, Final Presentation, ESA Contract No. 4000116014 47

Report Summary

Tool
Early Version Late Version

entry-point-function unit
test

entry-point-function unit
testdeterm. non-det. multi-task. determ. non-det. multi-task.

DCRTT 31 31 n/a 1590 16 21 n/a 1638

Other
Tools

One tool supplier denied publishing of data,
therefore no figures are published with reference to a tool

range 800 – 29000 (entries in std. csv-file)
(entries extracted from tool-specific report files)

 Entry-point function DCRTT
 number of reports and false positives significantly decreased for entry-point function
due to consideration of context

 TP could easily identified, but low coverage (~20%) due to missing stimulation

 future goal: injection of telecommands and stimulation of external interfaces

 Unit testing DCRTT
 filtering mechanisms provided to prioritize reports

 Other tools
 no filtering mechanisms

more
functions

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2019 Automatic Source-code-based Testing, Improvement, Final Presentation, ESA Contract No. 4000116014 48

Evaluation Results for 6 TP

Tool Version
Execution

Mode
#Reports

TP
FP

with ctxt
w/o
ctxt

with
ctxt

w/o
ctxt

tot data task stub

DCRTT
330

deterministic
31 4 31 27 20 3 4 0

non-deter.

450
deterministic 16

1
16 15 8

3 4 0
non-deter. 21 21 20 13

Vers. Function Location Id

Reported by

DCRTT
Other
ToolsEntry-point-

version
Module
Testing

early
func1

X 1

determ. +
non-determ.

x

2x

X+2 2

X+5 3

func2 Y 4 2x

late
func3 Z 5

determ. +
non-determ.

none 1x

func4 U 6 none x 2x

4 + 1 from DCRTT entry-point execution
+ 1 from DCRTT unit testing

source of FP
non-representative
analysis environment

The two issues for the late version –

highlighted in the analysis – have no

impact on the current operational

concept and mission performance.

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2019 Automatic Source-code-based Testing, Improvement, Final Presentation, ESA Contract No. 4000116014 49

Evaluation Results for 6 TP

Tool Version
Execution

Mode
#Reports

TP
FP

with ctxt
w/o
ctxt

with
ctxt

w/o
ctxt

tot data task stub

DCRTT
330

deterministic
31 4 31 27 20 3 4 0

non-deter.

450
deterministic 16

1
16 15 8

3 4 0
non-deter. 21 21 20 13

Vers. Function Location Id

Reported by

DCRTT
Other
ToolsEntry-point-

version
Module
Testing

early
func1

X 1

determ. +
non-determ.

x

2x

X+2 2

X+5 3

func2 Y 4 2x

late
func3 Z 5

determ. +
non-determ.

none 2x

func4 U 6 none x 2x

4 + 1 from DCRTT entry-point execution
+ 1 from DCRTT unit testing

C
O

P
Y

 f
o

r
sn

ap
sh

o
r

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2019 Automatic Source-code-based Testing, Improvement, Final Presentation, ESA Contract No. 4000116014 50

Reporting Aspects: DCRTT

 reports only generated when a real anomaly is detected

 FP only may occur due to

 missing context at the function interface

 Porting inaccuracies

 provision of information on current context for defect activation

 priorisation by content-sensitive filtering for out-of-range reports

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2019 Automatic Source-code-based Testing, Improvement, Final Presentation, ESA Contract No. 4000116014 51

Reporting Aspects:
Abstract Interpretation

 complexity may require approximation of the context

 loss of context implies reporting of false positives

 mapping of vectors (use of arrays) big challenge for context
representation

 loss of context may increase coverage due to consideration of
more combinations than for real context

 but increased number of false positives due to invalid combinations

 loss of context  missing context, not only at the function interface
as for DCRTT

but also inside a function and following call tree

 this may explain the number of reports and false positives

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2019 Automatic Source-code-based Testing, Improvement, Final Presentation, ESA Contract No. 4000116014 52

Evaluation Issues

 Static Analyser Reports
 all reports have same prior probability of being FP or TP

 in presence of many reports (thousands and much more)  huge manual effort

 sampling of reports  risk of missing TP (factual conversion to FN)

 sound approach ends up as potentially unsound for the whole evaluation process

 TP information from DCRTT was used to check reports of static analysers

 in case of static analysers other TP found by evaluation of a subset

 Required:
 information on context of the defect needed

 indicator(s) highlighting potential defects

 tool with high precision

 TP evaluation

 in a reasonable number of cases full context crossed task boundaries

 difficult to assess: is it a TP or not? Decided in favour of the tool as TP

 difficult to obtain a fair comparison

 about 60 reports evaluated manually for each version, up to 3 hours per report

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2019 Automatic Source-code-based Testing, Improvement, Final Presentation, ESA Contract No. 4000116014 53

Indicator Examples (1/2)

DCRTT Report for Out-of-Bounds 1

OutOfRangeHigh; testId=660, func=03271, block=1 arrId=16596 idx=1 Value=7, upLim=7 at
<location>

idx=1  first index of array with id 16596 is out-of-bounds

DCRTT: indicator for a potential TP

value=7 and upLim=7

IS filtered by DCRTT

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2019 Automatic Source-code-based Testing, Improvement, Final Presentation, ESA Contract No. 4000116014 54

Indicator Examples (2/2)

DCRTT Report for Out-of-Bounds 2

OutOfRangeHigh;testId=8, func=00589, block=8 idx=1 Value=4128, upLim=4096
stmt=memcpy_BSSE at <location>

idx=1  dest-para of memcpy with size 4096 while 4128 bytes shall be copied

DCRTT: one report only

Static analyser reported about 600 possible combinations with invalid / impossible
combinations of source, destination and size

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2019 Automatic Source-code-based Testing, Improvement, Final Presentation, ESA Contract No. 4000116014 55

Context Considerations

 Defect reporting and DCRTT
 evaluation without context (robustness testing, security issues) always a TP

 evaluation with context: issues on knowledge of the context

issue can be solved by provision of semantic information

 every report highlights an issue which possibly may be invalidated only by
non-representative context generated in the test environment

 DCRTT entry-point approach
 most of defect detection mechanisms available just as for unit testing

 every report is a TP if the context is representative for the operational conditions

 much less FP compared to unit testing with insufficient context information

 less manual effort for evaluation

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2019 Automatic Source-code-based Testing, Improvement, Final Presentation, ESA Contract No. 4000116014 56

Lessons Learned

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2019 Automatic Source-code-based Testing, Improvement, Final Presentation, ESA Contract No. 4000116014 57

Sources of False Positives
 Mismatch of Verification Criteria and Programming Style

 if verification criteria are not considered during development  high number of FP

 verification tool(s) should be considered continuously over the development cycle

 Non-representativity of the analysis environment
 just exposing the source code to the analysis may not be sufficient

 e.g. stubbing, scheduling scheme, dynamic changes of object structure (telecmd.)

 Non-representativity of the analysis method
 context vs. robustness trade-off and approach of chosen tool

 provision of required context information by tool and user

 Approximation of the context
 exact representation of the context vs. memory consumption

 context information may be lost due to approximation

 benefits of using context information may be lost  increased number of FP

 Missing or non-visible checks
 checks not present to ensure valid conditions

 checks present but not visible for the verification tool, e.g. task boundaries or
ground checks

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2019 Automatic Source-code-based Testing, Improvement, Final Presentation, ESA Contract No. 4000116014 58

Context Approximation
Example 1/2: interval approx.

typedef enum {
lit0=0,lit1=1,lit2=2,
litInvalid=255

} TySet;

TySet map2set(uint8 para){
if (para==0) return lit0;
else if (para==1) return lit1;
else if (para==2) return lit2;
else return litInvalid;

}

int myArr[lit2+1];

void myFunc(uint8 para) {
idx=map2set(para);

if (idx != litInvalid)
myArr[idx]=0;

return;
}

setEnum =0,1,2,255 exact

setReturn=0,1,2,255 exact
setApprox=[0,255] interval approx.

setApprox =[0,255]

setApprox2=[0,254], 255 removed
idx may be > 2: FP will be reported

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2019 Automatic Source-code-based Testing, Improvement, Final Presentation, ESA Contract No. 4000116014 59

Context Approximation
Example 2/2: min/max

int myMapping[6]=
{1,3,5,54,7,78};

char mySrc [100];
char myDest[5];

void myFunc(int idx) {
if (idx>0 && idx<6) {

memcpy(dest,
src,
myMapping[idx]);

return;
}

int main(int argc, char* argv)
{

myFunc(2);
return 0;

}

array contents is approximated /
squashing
by min/max: [1,78]

min/max are considered here:[1,78]

myFunc is called with
idx=2  size=5 which is valid

but taking the maximum 78 the
following report is issued:
78 out-of-bounds [0,5]

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2019 Automatic Source-code-based Testing, Improvement, Final Presentation, ESA Contract No. 4000116014 60

Coding Style vs. False Positives

 Missing context
 highly desirable: support of constraints and correlations

 already practice in other domains like automotive

 valid for static and dynamic analysis tools

 More precise code
 use of const whenever appropriate (global data)

 avoids stimulation / overriding of meaningful data

 Context-independent units
 no external context, full set of checks in unit

 conflict: checks to be repeated in every task?

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2019 Automatic Source-code-based Testing, Improvement, Final Presentation, ESA Contract No. 4000116014 61

Conclusions and Outlook

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2019 Automatic Source-code-based Testing, Improvement, Final Presentation, ESA Contract No. 4000116014 62

Recommendations

 Ensure a representative context to the degree possible

 Choose the right tool approach for the envisaged verification goal

robustness testing vs. pure unit testing, context-sensitive or not

provide as much context-information as possible

 Consider the feedback from the verification tool(s) as early as possible
during coding

 Fix the defects according to the tool feedback

 Discuss a trade-off on protection against invalid data

check or do not check?

Checking will reduce the amount of false positives

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2019 Automatic Source-code-based Testing, Improvement, Final Presentation, ESA Contract No. 4000116014 63

Conclusions on Evaluation
 Evaluation Strategy

 a large amount of reports requires selection of a subset
representative context for functions

 filtering algorithms should be supported by a tool
 filtering should provide report sets having a higher chance to evaluate as FP

 Soundness
 soundness may be lost if evaluation is limited to a subset
 soundness may be lost if report file does not include all reports on TP

 Coincidences
 reports on the same defect and location do not necessarily suggest it is a TP
 a single report at presence of more than one tool does not necessarily imply it is a FP
 analysis may be limited to the intersection of report sets from sound tools

 Context

 approximation of the context may cause more FP than missing context at the interface

 Comparison early vs. late version
 in most cases more reports for early version, no indication for defect hiding

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2019 Automatic Source-code-based Testing, Improvement, Final Presentation, ESA Contract No. 4000116014 64

Evaluation Process

 Manually evaluated reports: ~60 per version, in total ~120
 assessment for {tool / state criterion} x {with / w/o context} = 4 combinations

 TP considered for state criterion / with context: most representative

 evaluation effort rather high, up to 4 hours

 originally intended 20 per tool and version

 Selection criteria
 TP directly pointed to by DCRTT

 TP identified during analysis of a TP

 randomly selected reports from the critical set

 Assessment for remaining TP
 assessment of TP on relevance (filtering: due to stubs, non-visible pre-checks)

 relevant TP forwarded to developer team

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2019 Automatic Source-code-based Testing, Improvement, Final Presentation, ESA Contract No. 4000116014 65

Detection of Relevant TP

Version Id Ref1 Detected
by

Detection Method
Confir
med

Reported by
other Tools

early

1 1,2,3

DCRTT

directly by index reporting

in filtered file

2

2 4 2

3 added2 sampling 2

late

1 5 directly by index reporting

in filtered file

yes 2

2 6 yes 2

3 added
sampling / comparison
early/late

no 2

4 added sampling no 2

The smaller the report set,
the higher the probability to detect
TP candidates by sampling

late/1: the report from a (sound) tool was not in the
(standard) tool report, difficult to find

(1)Reference to previous slide „Evaluation Results for 6 TP

(2) Candidate TP added from sampling

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2019 Automatic Source-code-based Testing, Improvement, Final Presentation, ESA Contract No. 4000116014 66

Detection of Relevant TP

Version Id Ref
Detected

by
Detection Method

Confir
med

Reported by
other Tools

early

1 1,2,3

DCRTT

directly by index reporting

in filtered file

2

2 4 2

3 added sampling 2

late

1 5 directly by index reporting

in filtered file

yes 2

2 6 yes 2

3 added
sampling / comparison
early/late

no 2

4 added sampling no 2

The smaller the report set,
the higher the probability to detect
TP candidates by sampling

late/1: the report from a (sound) tool was not in the
(standard) tool report, difficult to find

COPY for SNAPSHOT

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2019 Automatic Source-code-based Testing, Improvement, Final Presentation, ESA Contract No. 4000116014 67

Final Evaluation Results (early)

Report
Assessment

Tool
w/o ctxt

State
w/o ctxt

Tool
with ctxt

State
with ctxt

TP 39 37 10 8
assert 8 8 3 2

out-of-bounds 21 21 5 5
dereference 8 8 0 0
uninitialised 1 0 1 0

undefined result 1 0 1 0
FP 3 5 32 34
Total 42 42 42 42

Relevance Assessment
Number of
TP Reports

should be fixed Index out-of-bounds 2
not relevant Assertion failure due to stub 1

not relevant
Supposing that telecommand contents is checked on-
ground or in another task, check not visible

4

not relevant Assertion always fails due to coding 1

Consolidated reports 42 < 58 manually evaluated reports

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2019 Automatic Source-code-based Testing, Improvement, Final Presentation, ESA Contract No. 4000116014 68

Final Evaluation Results (late)

Report
Assessment

Tool
w/o ctxt

State
w/o ctxt

Tool
with ctxt

State
with ctxt

TP 48 46 11 9
assert 7 7 1 1

out-of-bounds 34 33 9 8
dereference 6 6 0 0
uninitialised 1 0 1 0

FP 8 10 45 47
Total 56 56 56 56

Relevance Assessment

Number of
TP Reports

In
450

Overlap
with
330

should be fixed one-of-index fault (1x), invalid index (1x) 2 0
not relevant hidden check 3 0
not relevant Assertion failure due to stub 1 1

not relevant
Supposing that telecommand contents is checked on-
ground or in another task, check not visible

3 3

Consolidated reports 56 < 57 manually evaluated reports

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2019 Automatic Source-code-based Testing, Improvement, Final Presentation, ESA Contract No. 4000116014 69

DCRTT Potential

 Defect detection
 evaluation without context (robustness testing, security issues) always a TP

 evaluation with context: issues on knowledge of the context

issue can be solved by provision of semantic information

 every report highlights an issue which possibly may be invalidated only by
non-representative context generated in the test environment

 DCRTT entry-point approach
 most of defect detection mechanisms available as for unit testing

 every report is a TP if the context is representative for the operational conditions

 much less FP if the context is not representative

 less manual effort for evaluation

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2019 Automatic Source-code-based Testing, Improvement, Final Presentation, ESA Contract No. 4000116014 70

Outlook DCRTT

 Entry-Point Function

 the significant reduction of FP is impressing due to
representative context for functions

 TC injector based on inputs in EDS / XML format will be considered

 stimulation moves from module level to system level

 still a challenge: provision of schedule information to reduce related FP

 Untyped byte streams

 genetic algorithms on unit level

 first experience quite promising

 Coverage

 future increased use of constrained-based test data generation

 extension of the support

 Open Interface

 expecting use of the link

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2019 Automatic Source-code-based Testing, Improvement, Final Presentation, ESA Contract No. 4000116014 71

Proposed Test Strategy

 Testing in representative context

 entry-point function / integrated system and full DCRTT instrumentation

o telecommand injection and stimulation of external interfaces

o representative scheduling

o constrained-based testing and genetic algorithms for the subset of
functions for missing coverage

 full set of functions for unit testing complemented by constraints and
correlations not found automatically

 Robustness testing

 DCRTT and full set of functions with fault injection activated
invalid data / no constraints and fault-injection-wrappers

 entry-point function / integrated system with fault-injection wrappers

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2019 Automatic Source-code-based Testing, Improvement, Final Presentation, ESA Contract No. 4000116014 72

Thank you for your attention !

Questions?

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2019 Automatic Source-code-based Testing, Improvement, Final Presentation, ESA Contract No. 4000116014 73

Back-up

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2019 Automatic Source-code-based Testing, Improvement, Final Presentation, ESA Contract No. 4000116014 74

Example VectorCast
Test Script
scalar parameters

-- Test Case Script
-- Environment :
vc_test_hello_vcast_1_BSSE_main3_9
-- Function Under Test: hello_vcast_1 - BSSE_main3
9 of hello_vcast_1.c
-- Script Features
TEST.SCRIPT_FEATURE:C_DIRECT_ARRAY_INDEXING
TEST.SCRIPT_FEATURE:CPP_CLASS_OBJECT_REVISION
TEST.SCRIPT_FEATURE:MULTIPLE_UUT_SUPPORT
TEST.SCRIPT_FEATURE:STANDARD_SPACING_R2
TEST.SCRIPT_FEATURE:OVERLOADED_CONST_SUPPORT
-- End of header hello_vcast_1 - BSSE_main3 9 of
hello_vcast_1.c
-- vc_test_9.tst generated by
dcrtt_open_if_cnv_vc.c for tool vc on <date>
-- Test File: hello_vcast_1.c
TEST.UNIT:hello_vcast_1
TEST.SUBPROGRAM:BSSE_main3
-- mangled name BSSE_main3
-- List of relevant data of function BSSE_main3
-- #tot para= 2
-- #func para= 2
-- #glob para= 0
-- #constr para= 0
-- Parameters
-- signed int argc
-- char ** argv
-- Return
-- signed int _return_

TEST.NEW
TEST.NAME:(CL)BSSE_main3.001
-- derived from DCRTT test case 1
TEST.NOTES:
No requirements provided
TEST.END_NOTES:
TEST.FLOATING_POINT_TOLERANCE: 9.99999974737875160000e-006
-- malloc for global data
-- no malloc for globals required
-- malloc for parameters
TEST.VALUE:hello_vcast_1.BSSE_main3.argv: <<malloc 1>>
TEST.VALUE:hello_vcast_1.BSSE_main3.argc: -2147483648
TEST.VALUE:hello_vcast_1.BSSE_main3.argv: ""
TEST.VALUE:hello_vcast_1.BSSE_main3.return: -2147483648
TEST.EXPECTED_USER_CODE:hello_vcast_1.BSSE_main3.argc
{{ (signed long)<<hello_vcast_1.BSSE_main3.argc>> == ((signed
long)-2147483648) }}
TEST.END_EXPECTED_USER_CODE:
TEST.EXPECTED_USER_CODE:hello_vcast_1.BSSE_main3.argv
{{ <<hello_vcast_1.BSSE_main3.argv>> == "" }}
TEST.END_EXPECTED_USER_CODE:
TEST.EXPECTED_USER_CODE:hello_vcast_1.BSSE_main3.return
{{ (signed long)<<hello_vcast_1.BSSE_main3.return>> == ((signed
long)0) }}
TEST.END_EXPECTED_USER_CODE:
TEST.END

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2019 Automatic Source-code-based Testing, Improvement, Final Presentation, ESA Contract No. 4000116014 75

C

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2019 Automatic Source-code-based Testing, Improvement, Final Presentation, ESA Contract No. 4000116014 76

Example Cantata
Test Script
scalar parameters 1/2

/* TCcnt=1 mode=rnd by coverage only */
void checksAgainstDCRTToutputRandom_M1_1(){

int DCRTTcheckCnt=0,DCRTTdiffCnt=0,DCRTTcheckVal=0;
DCRTTdiffCnt += DCRTTcheckVal;

/* Test Parameter Check: arr ; funcPara */
DCRTTcheckCnt++;
DCRTTcheckVal=CHECK_S_INT_DCRTT((signed long)_arr_[0],(signed long)-2147483648);
DCRTTdiffCnt+=DCRTTcheckVal;
DCRTT_stdout_fprintf(getFormatStringAssertion(),1-

DCRTTcheckVal,DCRTT_DIFF_OUT_STR,DCRTTcheckCnt,"_arr_[0]",getAssertionString(DCRTTcheckVal),"INOUT FUNCPARA");
/* Section end of parameter check: arr */
/* Test Parameter Check: return ; return */

DCRTTcheckCnt++;
DCRTTcheckVal=CHECK_S_INT_DCRTT((signed long)_retDCRTT_,(signed long)0);
DCRTTdiffCnt+=DCRTTcheckVal;
DCRTT_stdout_fprintf(getFormatStringAssertion(),1-

DCRTTcheckVal,DCRTT_DIFF_OUT_STR,DCRTTcheckCnt,"_retDCRTT_",getAssertionString(DCRTTcheckVal),"RETURN");
/* Section end of parameter check: return */

DCRTTdiffCnt=DCRTTcheckCnt-DCRTTdiffCnt;
DCRTT_stdout_fprintf(" %d differences of %d in output for test Random_M1_" "1" "

ASSERTION_TRACE_OUT_OUT_SUM\n",DCRTTdiffCnt,DCRTTcheckCnt);
fflush(fdCompare);

}
#endif /* DCRTT_NO_CHECKS_ON_RESULTS */
void compareParaValues(char *testCaseId){
FUNCBEGINcantpp

if (fdCompare) DCRTT_FPRINTF(fdCompare,"\n/* == */\n");
if (fdCompare) DCRTT_FPRINTF(fdCompare,"\n/* Identification of changes for test case %s */\n",testCaseId);
sprintf(cantppTestLside,"_arr_");
sprintf(cantppTestRside,"_arrInput_");
cmpCnt =0;
actAssignStmts=0;

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2019 Automatic Source-code-based Testing, Improvement, Final Presentation, ESA Contract No. 4000116014 77

Example Cantata
Test Script
scalar parameters 2/2

compareDCRTT_arr (compEQ,&cmpCnt,prtCtrlEQ,fdCompare,1,&actAssignStmts,5000,cantppTestLside,cantppTestRside,"
",&_arrInput_,&_arr_);

compareDCRTT_arr
(compEQ,&cmpCnt,prtCtrlEQ,fdCompare,1,&actAssignStmts,5000,cantppTestLside,cantppTestRside," ",&_arrInput_,&_arr_);

if (fdCompare) DCRTT_FPRINTF(fdCompare," %d items out of %d are identical for arr regarding IN - OUT comparison of
PARA 0 ASSERTION_TRACE_IN_OUT_IDENT INOUT FUNCPARA \n",cmpCnt,actAssignStmts);cmpCnt =0;

actAssignStmts=0;
compareDCRTT_arr

(compNE,&cmpCnt,prtCtrlNE,fdCompare,1,&actAssignStmts,5000,cantppTestLside,cantppTestRside," ",&_arrInput_,&_arr_);
compareDCRTT_arr

(compNE,&cmpCnt,prtCtrlNE,fdCompare,1,&actAssignStmts,5000,cantppTestLside,cantppTestRside," ",&_arrInput_,&_arr_);
if (fdCompare) DCRTT_FPRINTF(fdCompare," %d items out of %d are different for arr regarding IN - OUT comparison of

PARA 0 ASSERTION_TRACE_IN_OUT_DIFF INOUT FUNCPARA \n",cmpCnt,actAssignStmts);
strcpy(cantppTestLside,"_retDCRTT_");
sprintf(cantppTestRside,"_retDCRTT_Input");
cmpCnt =0;
actAssignStmts=0;
compareDCRTT__return_

(compEQ,&cmpCnt,prtCtrlEQ,fdCompare,1,&actAssignStmts,5000,cantppTestLside,cantppTestRside,"
",&_retDCRTT_Input,&_retDCRTT_);

if (fdCompare) DCRTT_FPRINTF(fdCompare," %d items out of %d are identical for _retDCRTT_ regarding IN - OUT
comparison of RETURN ASSERTION_TRACE_IN_OUT_IDENT RETURN \n",cmpCnt,actAssignStmts);

cmpCnt =0;
actAssignStmts=0;
compareDCRTT__return_

(compNE,&cmpCnt,prtCtrlNE,fdCompare,1,&actAssignStmts,5000,cantppTestLside,cantppTestRside,"
",&_retDCRTT_Input,&_retDCRTT_);

if (fdCompare) DCRTT_FPRINTF(fdCompare," %d items out of %d are different for _retDCRTT_ regarding IN - OUT
comparison of RETURN ASSERTION_TRACE_IN_OUT_DIFF RETURN \n",cmpCnt,actAssignStmts);

if (fdCompare) DCRTT_FPRINTF(fdCompare,"\n/* == */\n\n");
if (fdCompare) fflush(fdCompare);

FUNCENDcantp
}

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2019 Automatic Source-code-based Testing, Improvement, Final Presentation, ESA Contract No. 4000116014 78

Output Cantata for
Test Script
Project Information

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2019 Automatic Source-code-based Testing, Improvement, Final Presentation, ESA Contract No. 4000116014 79

Output Cantata for
Test Script /
Test Results Overview

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2019 Automatic Source-code-based Testing, Improvement, Final Presentation, ESA Contract No. 4000116014 80

Output Cantata for
Test Script /
Result Check

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2019 Automatic Source-code-based Testing, Improvement, Final Presentation, ESA Contract No. 4000116014 81

Output Cantata for
Test Script /
Result Summary

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2019 Automatic Source-code-based Testing, Improvement, Final Presentation, ESA Contract No. 4000116014 82

Logic Flow for RQBT

Require
ments

High Level Low Level

Auto-Backtracing for Requirements Verification

Requirement Dependencies

Requirements Refinement

Require
ments

Final level:
machine-

interpretable

Source
Code

Oracles

manual / auto
coding

auto-
extraction

RQBT

ReQuirements-
Based Testing

Only
required on this final level!

Verification feedback
from oracle

Fulfilled
or

Counter Example

Challenge:
Notation for machine-readable code

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2019 Automatic Source-code-based Testing, Improvement, Final Presentation, ESA Contract No. 4000116014 83

Impact by Non-representative
Analysis Environment

 function stubbing
 stubs may / will not provide representative output

 e.g. possible conflict between coverage and random output and assertions

 scheduling
 calling task entries in a non-representative sequence will produce FP

 the entry-point function must consider the scheduling concept

 dynamic change of context
 the format of telecommands can be described formally

 but the overall structure is dynamically defined at run-time

 the tool gets an untyped byte stream

 challenge for static analysers, source of many FP

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2019 Automatic Source-code-based Testing, Improvement, Final Presentation, ESA Contract No. 4000116014 84

Duplicates for Snapshots

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2019 Automatic Source-code-based Testing, Improvement, Final Presentation, ESA Contract No. 4000116014 85

Std. Defect Types vs. Tools(1/2)

No contribution for late version COPY ANONYM

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2019 Automatic Source-code-based Testing, Improvement, Final Presentation, ESA Contract No. 4000116014 86

Std. Defect Types vs. Tools(2/2)

No contribution for late version COPY ANONYM

