

Real-time verification and testing facilities – RTFIP

Final Presentation

Original contract and CCN2

2023-09-05

Agenda

- Overview, what is RTFIP?
- Technical achievements
 - RTFIP-GRALS (main contract)
 - RTFIP-Launcher (CCN2)

OVERVIEW

© 2023 Astos Solutions GmbH

What is **RTFIP**?

Real-Time verification and testing Facilities

- for image processing for navigation (original contract)
- for launcher GNC (CCN2)

Origin

 In 2017, there was a need to extend the existing toolchain of using ASTOS as a SCOE simulator to make adaptations to new use cases more efficient.

RTFIP Relationships

What is RTFIP?

RTFIP was

- a co-funded project under GSTP Element 2
- an important support for Astos Solutions to perform the required technology developments to prepare ASTOS as testbench for real-time verification and validation of GNC algorithms as COTS software
- RTFIP ran in parallel
 - to other similar activities but focused on core technologies which had to be improved to create a COTS product.
 - to AOCS-SCOE development activities, unintendedly (RTFIP CCN2).
- ASTOS development requires after RTFIP
 - a product phase to achieve TRL 8 of the COTS product. Until then the functionalities are available with engineering service.
- All activities enabled Astos Solutions
 - to be successful in the microlauncher market with more than 40 customers
 - to build up a GNC section.

Achievements

CORE CONTRACT

© 2023 Astos Solutions GmbH

Objective

- Design and development of a reconfigurable and high-fidelity testing facility for GNC verification
- Demonstrate its capabilities in the GRALS/COMAU facility of the ESTEC Orbital Robotics and GNC Laboratory.

Building Blocks

- ASTOS software as dynamics, kinematics and environment simulator
- dSPACE SCALEXIO as real-time processing platform
- Simulink as basic modelling environment for algorithms and as glue to integrate the system elements
- Kuka/COMAU robotic arm interface
 - Astos Camera/Lidar simulator (scene generation, camera emulation)

Model In the Loop Simulator / Software in the Loop Simulator

- ASTOS extended by user sensor and actuator models
- GNC algorithms encapsulated
- For SIL the GNC algorithms are converted to code (manual conversion or using the Simulink coder)

Processor in the Loop Simulator

- ASTOS and user models executed by SCALEXIO
- GNC algorithms executed on LEON/RASTA
- Communication between SCALEXIO and RASTA over Ethernet. Communication protocol and GNC code automatically generated and deployed based on the SIL simulator.

Key Features

- ASTOS software is used as DKE simulator for all simulator configurations from MIL to HIL
- Easy switching between the configurations
- ASTOS' real-world data and sensor data is available in Simulink through an sfunction
- Sensors and actuators can be either used from ASTOS or added in Simulink
- ASTOS provides sensor/actuator error modelling capability
- Reconfiguration to PIL needs to be performed only once; afterwards easy switching between the configurations is possible.
- A target toolbox allows for target cross-compiling of the onboard code and integration in PIL/HIL testbench. Currently only for Gaisler RASTA and LEON4-N2X.
- An interface to the Astos Camera/Lidar real-time simulator is provided.
- An Operator GUI reduces the editable configuration parameters to those required for execution of the tests (GUI builder)

Demonstration Test Scenarios

- Two representative scenarios have been developed for the testing and performance evaluation of RTFIP.
- The scenario development comprised not only the ASTOS configuration but also the implementation of basic GNC algorithms in order to get feasible closed-loop simulations.
- Two domains have been selected:
 - . Rendezvous scenario
 - 2. Landing scenario on Moon

Architecture

Control of KUKA robot arm

KUKA robot arm with a camera mounted to the end-effector
Interfaces defined by KUKA

Achievements SVF FOR LAUNCHER GNC CCN2

Task 1: ASTOS Improvements

Objectives

- Improvements of various identified shortcoming of ASTOS
- List of performed activities
 - Investigation how to speed up ASTOS computational time to increase realtime update rate and implementation of most promising modifications
 - Result in increase between 32% and 43%
 - Other ASTOS improvements
 - Vehicle COM computation and node definitions related to DCAP
 - Improved sloshing model by adding special conditions for axial acceleration which allows for launch pad and coast arc phases
 - New simulation mode in ASTOS without grids for closed loop simulation and interfacing with DCAP correctly
 - Improved distributed aerodynamics computations
 - Input of user defined mode shapes and frequencies
 - Some minor changes ...

Task 2: DCAP/MBS improvements

- Objective: make it work!
- Background
 - LGSST & LAUMBS development
 - coupling of ASTOS and DCAP (called MBS)
 - additional linearized flexible dynamics (called LFD) integrated in ASTOS using modeshape export from DCAP
 - Instabilities after stage separation
 - Minor other topics

Task 2.1: Mode Shape Accuracy

- Analysis of mode shape accuracy considering different boundary conditions of the beam approximation (fix-free, free-free) against a newly implemented FEM algorithm and an analytic solution resulted in two bug-fixes.
- Outcome
 - DCAP: Risk of wrong boundary conditions
 - The mode shapes computed by DCAP are not very accurate in case of multiple flexible beams stacked together (3-stage rocket). A new program based on FEM drastically improve the simulation accuracy.

Future switch to new FEM tool

Task 2.2: Numerical Instability

- Extensive analysis considering 3 main drivers for instability
 - phase length
 - external forces (such as the engine thrust)
 - free hinge degree of freedom (up to 10 stages)
- Results are summarized in TN-010

- Outcome
 - MBS simulations get unstable in case of several free DoFs and complex dynamics. That situation happens already after the first stage is jettisoned for VEGA.
 - The origin of this behavior is located in the core DCAP files, but not identified yet
 - A work-around could be to lock all rotational degree of freedom of jettisoned stages, but a final solution to allow such long simulations is not available yet

Task 2: Summary MBS vs LFD

Application	ASTOS-MBS (DCAP)	ASTOS- LFD	ASTOS- FEM
Simulation of a single flexible body	Х	Х	
Long time simulation with stages separation, e.g. end-to- end multi-stage launcher ascent simulation		Х	
Non-linear time simulations, e.g. non-linear spring stiffness, prescribed motion of components,	Х		
Detailed simulations over short time, e.g. stage/payload separation, landing, docking,	Х		
Long time simulation, e.g. towing of returning flyback booster with flexible rope	Х		
Relative movement of vehicle equipment, e.g. solar panel/antenna deployment, component separation with spring elements,	Х		
Export of vehicle mode shapes and linearized dynamics for control design required by ASTOS-LFD	Only single stage/satellite	Input to LFD	Х

- MBS is the "(Flexible) multibody dynamics" EoM where DCAP is computing the system dynamics
- LFD: is the "Linear flexible dynamics" where equations for the flexibility are added to the ASTOS EoM
- **FEM**: Finite element model developed for cross-validation, which will be used for mode shape export in the future

© 2023 Astos Solutions GmbH

Task 3: Tool-Chain for Real-Time Simulation

Topics

- Improvement of data handling
- Integration of RTFIP development into the commercial trunk of the ASTOS repository
- Demonstration that old RTFIP cases will work with the new commercial ASTOS trunk

ASTOS DMS Data Management System

- Old ASTOS versions wrote all data into a file after simulation for post-processing
 - hundreds of output functions
 - High frequency output desired by control engineers
 - long-term simulations result in extremely huge simulation files tht cannot be loaded an more.
- Long-time, closed-loop and real-time simulations require to see the simulation data almost in real-time, during simulation.
 Solution
 - Client–server communication concept over TCP
 - Various clients can create data, e.g. ASTOS simulation, GUI, SCALEXIO, ...
 - Special concepts for downsampling of data for improved visualization and speed-up of plotting.

Integration of RTFIP into Commercial ASTOS software

- Based on the experience gained in the core RTFIP activity, the DMS code has been rewritten.
- All parts of the ASTOS GUI that interact with the simulation files had to be adapted.
- Especially the migration from discrete update events towards a continuous change of the simulation data required significant changes in the ASTOS GUI code.
- Finally, all aspects of the RTFIP development made it into the trunk of the ASTOS software repository (solving conflicts with parallel developments).
- Further testing and bugfixing until release (ongoing).

Conclusion

- RTFIP has paved the way for a major redesign of the ASTOS architecture
- Reusability and rapid configuration have been identified as key aspects of future AOCS test systems, where the developments initiated by the RTFIP have been key for us.
- The RTFIP validation campaigns where very valuable in the domain of MBS simulations. They also revealed the limitations of the current solutions and initiated new developments.