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ABSTRACT

This paper presents the outcomes of the ALPER project
executed by Magellium under the ESA’s GSTP program.
Throughout this project, an essential component for abso-
lute localization in planetary exploration rovers has been
conceptualized, developed, and evaluated in a representa-
tive Martian environment. In the context of extended tra-
verse missions, where the sole reliance on relative local-
ization methods inevitably leads to error accumulation,
absolute localization algorithms hold paramount impor-
tance. To address this, three distinct algorithms were
designed, each characterized by an increasing degree of
autonomy — ranging from an operator-assisted approach
to a fully autonomous one. These algorithms are based
on three complementary strategies for matching orbital
and rover data: 1) Operator-guided visual tie-point track-
ing; 2) Constellation matching through rock detection on
rover DEM; 3) Dense image co-registration involving lo-
cal ortho-mosaics and orbital orthoimages. The primary
focus of this paper centers on the statistical assessment of
the operational capabilities of these algorithms. Further-
more, their practical application was demonstrated during
field trials conducted in the Bardenas Reales in July 2023.

Key words: Planetary Exploration, Vision based localisa-
tion, Absolute localisation.

1. INTRODUCTION

Over the past two decades, significant advancements
have been made in enhancing the autonomy of space
exploratory rovers, particularly through improvements
in localization processes. In 1997, the Mars Sojourner
rover of the Pathfinder mission demonstrated limited au-
tonomy of only 2-3 meters per sol, relying solely on
wheel encoders and a sun sensor. The Mars Exploration
Rovers (MER) Spirit and Opportunity (2004-2018) im-
proved their autonomy by incorporating Visual Odome-
try (VO) and Inertial Measurement Unit (IMU) measure-
ments to address potential slippages. The rover MSL Cu-
riosity (2012-) has achieved remarkable navigation mile-
stones, covering over 20 kilometers in 2450 sols, thanks
to the integration of VO technology. However, these
achievements, while commendable, still lag behind the
advancements in terrestrial robotics. Notably, the utiliza-
tion of absolute localization through GNSS has signifi-
cantly expanded the autonomy of rovers and autonomous
vehicles on Earth. The future aspirations of exploratory

missions, like the Mars Sample Return (MRS) campaign,
underscore the necessity for developing alternative tech-
niques for extraterrestrial applications. Given the ap-
proximately 20-minute one-way signal delay to Mars, it’s
evident that non-autonomous rover navigation imposes
substantial limitations on efficient exploration of the red
planet. Hence, contemporary and forthcoming space
rovers are designed with long traverses in mind. How-
ever, the current relative localization approaches pose
challenges due to unbounded error growth during rover
traversals. This work focuses on absolute localization
systems, which are capable of rectifying dead-reckoning
pose estimates as they progressively lose reliability. The
main obstacles associated with this type of approach re-
volve around constrained computational resources and
the substantial disparity in perspective between rover ac-
quisitions and the orbital data utilized for their localiza-
tion within a global frame of reference. Several com-
plementary approaches were implemented and evaluated
during ALPER to assess these challenges, providing an
increasing level of autonomy. Their principal functions
were benchmarked on a quad-core LEON4 processor,
showcasing their applicability for embedded space appli-
cations. The manuscript is structured as follows: Section
2 categorizes and surveys various approaches that utilize
information from aerial and orbital imagery to localize
rovers on the Martian surface. Section 3 outlines a pro-
posed assessment methodology for orbital-based local-
ization techniques. The results of the Monte Carlo cam-
paign conducted on a representative simulated environ-
ment and the live demonstration in the Bardenas Reales
are presented in Section 4. Finally, Section 5 provides
concluding remarks.

2. STATE OF THE ART

The main solutions that are being considered are map-
based absolute localisations using HiRISE stereo pair im-
ages, the latter having a resolution of 25cm/px - 1m/px
for the associated orthoimages and DTM. The idea is to
match landmarks in the global map with the ones in a lo-
cal map built by the rover’s sensors. According to [1], the
current techniques employed in the localisation of plan-
etary exploration rovers based on orbital imaging can be
categorized into three main classes of approach:

* Skyline matching

* Interest point matching

* Dense image/terrain matching



On-board sun sensors can also be used in complement
to these methods to estimate the absolute orientation of
the rover. Both MER, MSL as well as ExoMars integrate
such capabilities. Although an accuracy of a few degrees
can be achieved, long integration time is needed (from
15min to 1 h), and the estimation can be degraded when
the sun is at high elevations [2]. Skyline Matching tech-
niques do not achieve a sufficient level of accuracy for
the intended application and are burdened by high disk
storage usage [3].

2.1. Interest points matching
An interest point is a small region of an image/DTM

with distinctive characteristics, such as high con-
trast/elevation. In the case of the Martian terrain, interest
points can typically be rocks, craters, ridges or outcrops.
Such features can be detected on rover acquisitions and
orbital data. The basic principle of the interest points
matching algorithms is to identify corresponding pairs of
orbital and local features and to estimate the transforma-
tion between the two sets of features using methods such
as least square fitting. The pose of the rover is directly
computed from the result of this step. The main challenge
inherent to this type of approach is thus to reliably find a
correct match between an orbital and a local feature. Two
different ways to tackle the issue are mentioned in the lit-
erature.

2.1.1. Manual pairing

The articles [4] and [5] discuss manual efforts undertaken
by JPL to achieve absolute localization of the Curios-
ity rover within a reference framework. This involved
the “geo-referencing” of local orthorectified panoramas
in ArcMap using orbital images. This process entailed
identifying corresponding pairs of landmarks in both the
orthoimage to be ’geo-referenced” and the reference or-
bital orthoimage. An affine transformation is then calcu-
lated using a least squares fitting algorithm. In [5], the au-
thors routinely employed Spirit’s PanCam and NavCam
to generate DEMs and orthoimages of the rover’s imme-
diate surroundings. Various local landmarks like rocks,
craters, outcrops, and ridges were manually pinpointed
on these topographic outputs before being aligned with
HiRISE orthoimages. The rover’s position, acting as the
imaging “’center” on the Navcam orthoimage, could then
be established on the HiRISE orthoimage.

2.1.2.  Constellation matching
As opposed with the previous approach where every fea-
tures are individually described, constellation matching
search for similar feature constellations, where the spac-
ing between features now effectively acts as the descrip-
tor. Chen [7] developed a framework for this approach
known as DARCES. This algorithm was used in numer-
ous publications to address computational challenges and
resolution and perspective disparity. In [8], Carle et al.
presents an algorithms based on peak extraction from lo-
cal 3D LiDAR maps. In [9], Hwangbo et al. proposes a
similar approach using stereo cameras instead of LiDAR.
The features are rocks extracted on the rover DEM based
geometrical consideration (height of the peaks, area, etc).
In the system introduced by Boukas, Gasteratos, and
Visentin in [10], candidate ROIs are extracted from or-
bital and rover orthoimages based on entropy and Hessian

matrix eigenvalues, and visual odometry and IMU fusion
are used for relative localization to construct a local ROI
networks. The latter is periodically paired with the global
ROI network through the DARCES algorithm.

2.2. Dense image/terrain matching

The previous methods have to deal with the intricate
problem of pairing points of interest. The first method
struggles with automatic extraction of corresponding
pairs of visual landmarks, necessitating manual interven-
tion, while the second method relies on the presence of
rocks to produce a pose estimate. The technique in this
section aims to overcome these limitations by utilizing
the entire information of onboard and orbital orthoim-
age for rover localization. This involves building a fused
orthoimage mosaic along the rover’s path and perform-
ing dense co-registration between this mosaic and or-
bital images. In [6], Y. Tao et al. detail a system that
orthorectifies rover NavCam panoramas and constructs
an orthomosaic by adjusting individual orthomosaics us-
ing a graph-SLAM approach (SIFT feature detection and
matching, followed by bundle adjustment). The local
orthomosaic and orbital orthoimage undergo preprocess-
ing (resampling, Sobel filtering), and they are matched
using Mutual Information within a gradient descent op-
timization scheme. A simpler approach is outlined in
[11], where orthomosaics are generated solely with the
rover’s visual odometry (without bundle adjustment), us-
ing ZNCC as a similarity function. Promising results are
demonstrated in real MSL data, both for estimation accu-
racy and execution time on LEON4 hardware. There are
also some attempts to employ DTMs instead of orthoim-
ages. In [11], authors obtained poor results using DTMs
in the same system as with the orthoimages. Addition-
ally, Van Pham et al. propose a system in [12] based on
a particle filter estimation method to refine the rover po-
sition during traversal, achieving satisfactory outcomes,
particularly in terrains with significant relief.

3. TECHNICAL DESCRIPTION

As previously discussed, no single method proves effec-
tive across all potential mission environments. Therefore,
the ALPER project developed three distinct approaches
based on complementary modalities. Considering the
current state-of-the-art, the project opted to concentrate
on interest point matching (manual pairing and constel-
lation matching) as well as dense image matching tech-
niques. Automated feature pairing, and terrain matching
methods either lack the necessary reliability or fail to pro-
vide estimations meeting the required accuracy thresh-
old (less than 5 HiRise pixels, equivalent to 1.25 meters).
These three algorithms demonstrate increasing levels of
autonomy. The initial algorithm (TPT) integrates and ex-
tends the manual interest point matching approach intro-
duced in [4]. The second one (CM) employs constellation
matching with a local network containing rocks extracted
from a local DEM. For orbital rocks, manual selection by
an operator is performed before the traverse. The final al-
gorithm (DICOR) involves registering local orthomosaics
with orbital orthoimages, requiring no operator interven-
tion.
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3.1. TPT: Tie-Point Tracking

The Tie-Point Tracking (TPT) algorithm’s principle is to
identify and visually track local landmarks that were se-
lected on HiRISE orbital images by an Operator, and to
estimate the rover pose by computing a local-to-orbital
transformation that minimises the positioning errors of
these landmarks. It is composed of a ground segment and
a board segment, as illustrated in Figure 1. The ground
segment encompasses the user interfaces and the tools
to select tie-points and isolated orbital landmarks. The
board segment implements the core functions in charge
of estimating the rover’s absolute pose. It is composed of
three main submodules: tracking, local feature creation
and pose estimation.

Tracking: When a new acquisition is available, the
Tracking component updates the position of the local vi-
sual features and associated local landmarks by locating
them in the new rover image and disparity map. It is
based on the algorithm described in [13], developed to
track a visual target on MER. The algorithm takes into
account the scale and illumination changes of the target
by introducing a template image magnification factor and
prior to a brute force window ZNCC matching with pyra-
midal image reduction. In TPT, a multi-target capability
was introduced.

Pose estimation: At a given frequency, the Pose Esti-
mation component computes the best transformation be-
tween the orbital and local landmarks via a least square
fitting approach (Figure 2). The result of this points fit-
ting step is used to produce an estimation of the 2D rover
pose in an absolute frame of reference (x, y and yaw).
Local Feature Creation: When an unpaired orbital land-
mark enters in the rover field of view, a new local land-
mark is created. To do so, the orbital landmark is pro-
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Figure 3. architecture of the CM component

jected into the rover’s last NavCam acquisition. The re-
sulting pixel positions are used as starting position to de-
tect a new visual features. Upon success, the new visual
feature is projected back in the local reference frame us-
ing the disparity map to create a local landmark. The
resulting tie-point is then ready to be tracked at the next
iteration. The detection algorithm finds the most salient
area in a search window based on contrast. The size and
shape of the search window is adapted with the current
rover pose uncertainty.

3.2. CM: Constellation Matching

The core principle of the Constellation Matching (CM)
system is to estimate the pose of the rover by matching
an orbital landmark network — created by the operator-,
with a local landmark network — build autonomously by
the rover during its traverse. The considered landmarks
are rocks that are both visible on the orbital orthoimages
and on the rover DEM (size of 30cm-1m). The global ar-
chitecture of the component is illustrated in Figure 3. The
ground segment enables the operator to select the orbital
landmarks. The board segment is composed of two main
functions: local network update and pose estimation.
Local network update: When a new acquisition is avail-
able, the Local Network Update component updates the
position of the existing local landmarks as well as their
uncertainty relatively to the new rover position. New
local landmarks are extracted from the rover DEM and
landmarks with a two high relative uncertainty are re-
move from the local network. The rock extraction pro-
cess (Figure 4) is the key element of the component. First,
the local DEM is divided into roughly 1-2m cells using a
grid pattern. Within each cell, a plane equation is com-
puted using a RANSAC plane-fitting algorithm. A height
map is filled with all points that deviate from this fit-
ted plane (distance to the fitted plane). A binary mask
is then computed on the entire grid by thresholding the
height map and morphological operations are applied to
filter out the outliers. Clusters are then identified on the
mask and characterized (area, shape) to form areas denot-
ing landmarks candidates. The candidates that meet the
geometric requirements are added to the local network.
Pose Estimation: When the CM system is ready for new
pose estimation (enough local landmarks detected since
last matching), the Pose Estimation component matches
the local and orbital landmark network and estimates the
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transformation between the two networks. Landmarks
from the local network are updated based on the results of
the matching step. The 2D pose of the rover in the global
frame of reference is then estimated (x, y and yaw). If
the current input pose is too uncertain. The networks
are matched using a modified version of the DARCES
constellation matching algorithm: A “triangle” of lo-
cal landmarks is matched with a triplet of orbital land-
marks taking into account the uncertainties of the local
landmarks (both absolute and relative to the rover posi-
tion). A transformation is computed from this match and
the whole network is transformed to the same reference
system as the orbital network. A matching score is com-
puted using the entire local network. If the score is below
a threshold, the match is a success, otherwise the process
is repeated with another local feature “triangle”, using a
RANSAC-like approach.

3.3. DICOR: Dense Image Co-Registration

The Dense Image Co-Registration (DICOR) component
estimate the pose of the rover by matching an orbital or-
thoimage with a local orthomosaic built autonomously by
the rover along its traverse. Contrary to TPT and CM,
it does not require any operator intervention and is thus
only composed of a board segment. The global approach
is similar to [11], i.e. mosaic built using only the in-
put rover pose (no bundle adjustment) and matching done
with ZNCC score function. The system is composed of
three main functions: acquisition buffer update, orthomo-
saic building and pose estimation.

Acquisition buffer update: The acquisition buffer stores
the rover acquisitions of the last 10-15 meters traveled,
with a step of 1-1.5 meter. When a new acquisition is
available, it is added to the buffer of local acquisition if
the zone covered by the rover image is sufficiently dif-
ferent from the previous update. Acquisitions too distant
from the current one get removed from the buffer. Con-
sequently, the buffer consistently maintains about 10 ac-
quisition entries.

Orthomosaic building: Before performing pose estima-
tion, all acquisitions currently in the local acquisition
buffer undergo orthorectification, pre-processing, and are

then combined to create a local orthomosaic. These lo-
cal orthoimages are generated at the orbital orthoimage
resolution, typically 25cm per pixel for HiRISE images.
The assembly process employs a straightforward blend-
ing technique. Orthoimages are positioned relative to
each other based on the rover’s input pose, and radiomet-
ric data from the most recent orthoimages is overlaid onto
the mosaic when available. This approach ensures a fast
orthomosaic assembly and prioritizes the incorporation of
the most recent acquisitions during the matching process.
The primary aim here is to maximize the influence of the
most recent acquisitions in order to accurately estimate
the rover’s current pose, even in cases where there might
be some relative localization drift.

Pose Estimation: Once the local orthomosaic is built, the
local orthomosaic is matched with the orbital orthoimage
and the 2D translation between them is estimated. The
2D position of the rover in the global frame of reference is
then estimated based on this result. The matching process
is based on a two-level pyramidal grid search approach.
A sample-based ZNCC matching score is computed for
each pose within the search window at the higher pyra-
mid level. Several candidates are selected among the
pixels with the best matching score. To ensure accu-
racy, a search at full resolution is then conducted within a
small window surrounding these chosen candidates. This
is necessary because the best score may correspond to a
different local minimum between the downscale and full-
scale search. In this context, a sample refers to a small
rectangular portion of the local orthomosaic where the
ZNCC score is computed. The global matching score is
determined by averaging the scores of all these samples.
These samples are positioned on the orthoimage using a
simple grid scheme. This approach helps minimize the
influence of local exposure or illumination artifacts that
might be visible in the local orthoimages, such as reflec-
tions, shadows, radiometric variations between acquisi-
tions, etc.

4. EVALUATION

4.1. Simulated environments

The simulator used during the project is based on
Blender, which proved to be a powerful tool for generat-
ing highly detailed Martian-like terrain, allowing precise
control over environmental characteristics. This capabil-
ity is essential for Monte-Carlo campaigns where various
terrain parameters, including rock density, soil texture,
and illumination conditions, need meticulous adjustment
to ensure statistical relevance. The simulator enables the
creation of terrain at user-specified dimensions, manual
modeling of relief, and the addition of procedural tex-
tures with two key advantages: preventing pattern repeti-
tion and incorporating realistic local relief. Objects like
rocks and outcrops can be automatically placed on the
terrain with adjustable size and density. The simulator
also allows manipulation of the artificial sun’s settings,
trajectory, and internal characteristics. Users can gen-
erate orbital orthoimages and create custom trajectories
(Figure 5). Ground truth and odometry files are auto-
matically generated, and stereo-bench configurations can
be customized for data acquisition. Finally, Magellium’s
algorithms are employed to generate disparity maps and



Table 1. Variability in Simulated Terrain Characteristics

sun inclination 20°  45° zenith
Mean rock-to-rock distance 2m  4m 6m
Terrain relief flat hilly cratered

Rock r Terrain:
Density | Relief
» x 3

.

.v"' .

v 4

Figure 5. Simulated trajectories and terrains

DEMs from the acquired stereo images. With this simu-
lator, 17 datasets were generated, each of them with dif-
ferent combination of trajectory characteristics, sun in-
clination, rock density and terrain relief. Different types
of rocks populates the simulated environment, from large
boulders to smaller gravel. Those impacted by the “mean
distance between rocks” parameter fall within the size
range of 20cm to 1m in width. The different terrain con-
figurations are summarised in Table 1.

4.2. Monte Carlo evaluation campaign

The Monte-Carlo test campaign is designed to assess
and validate the performance of localization algorithms,
determining their operational capabilities across various
scenario characteristics and noise levels in data inputs. It
encompasses a substantial number of test datasets based
on the simulated trajectories presented in the previous
section, as well as some real case datasets taken from
the Erfoud dataset [14]. Different noise level configu-
rations are defined to artificially degrade algorithm input
poses, simulating varying odometry quality in terms of
drift and initial offset. Randomly generated noise rolls
from these configurations are introduced during tests,
with each noise roll applied to a random sub-segment of
a trajectory constituting a test run. In the following sec-
tion, the success rate is defined as the proportion of runs
where the estimation error is less than or equal to 1.25
meters (equivalent to 5 HiRISE pixels). The estimation
rate, on the other hand, represents the proportion of runs
in which the algorithm conducted an estimation, regard-
less of whether it was correct or incorrect. In the sim-
ulated dataset, the step between acquisitions is approxi-
mately 30cm.

4.2.1. TPT
A run of the TPT Monte Carlo campaign is defined by the
relief type, the sun inclination, the trajectory, the start-
ing point on this trajectory and by the noise level of the
input pose and of the operator selected visual features.
The campaign is composed of 80,244 runs in total. The
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Figure 7. TPT: Estimation error vs. input final error

first part of the campaign focuses on the impact of sev-
eral parameters on the initial pose estimation — such as
number of tie-points, their distribution on the image and
the accuracy of their selection by the operator. The initial
phase assesses parameters impacting initial pose estima-
tion (Figure 6). Reliable estimates require at least three
tie-points, resulting in an average error reduction from 1
meter and 7.5 degrees with two tie-points to less than 0.5
meters and 1.5 degrees with three or more. Adding more
than three tie-points doesn’t significantly enhance results.
Regarding visual feature noise, TPT delivers good re-
sults, even with an average error of up to 10-15 pixels
on 640x512 images. This provides operators with a rea-
sonable margin for feature selection.

The second part of the campaign focuses on the perfor-
mances of the autonomous tracking and feature reprojec-
tion stage. During this phase, the input pose is assumed
to have no initial error. If the tracking phase produces sat-
isfactory results -regardless of the terrain characteristics-,
the reprojection step falls short. Visual features are often
inaccurately selected, leading to pose estimations not sig-
nificantly better than the input pose. Figure 7 illustrates
that with an accurate input pose (less than 2% error), TPT
tends to worsen the estimation. However, when the input
error exceeds 3%, TPT yields slightly better results. No-
tably, the success rate remains above 50% until the input
error reaches 9%, compared to 5% without TPT. How-
ever, the dead reckoning distance increases, indicating
that the algorithm becomes ineffective on average after
25 meters with a 2% input error, as opposed to 15 meters
with a 9% input error.

422. CM
For the CM campaign, three noise sources were evalu-
ated: the initial pose error, the relative error (both posi-
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tion and heading) between successive acquisitions. The
first challenge is the algorithm’s ability to provide a good
pose estimation with a large search window, and the sec-
ond put to test its robustness to errors in the construction
of its local feature network. A total of 255,280 runs com-
pose the full campaign. A run stops at the first pose es-
timation outputted by the algorithm. As can be seen on
Figure 8, CM performs well, even with strong noise on
input poses the estimated poses remain on average below
1m, regardless of the input noise. It is especially robust to
initial pose offset: both the average error, the estimation
and succes rate are not significantly impacted by the level
of noise. Nevertheless, it can be noted that the increase of
the error standard deviation (black ‘T” on Figure 8) can
be explained by the growing number of estimation with
an error above 10m (up to 1% of the runs with an ini-
tial offset of 20m), while the success rate is always above
98% (c.tf. Figure 9).

As it has been observed, the terrain characteristic that im-
pact the most CM is logically the rock density. With a low
rock density (less than one rock every 6m), the algorithm
is less robust to strong input noise, with a success rate
dropping to 86% with an error between successive acqui-
sitions of 15cm and to 72% with an input offset of 15m.
During the campaign, all runs were performed using the
same set of parameters. In the case of low rock density, a
better success rate could be achieved by employing more
conservative parameters, albeit at the expense of the es-
timation rate. In contrast, for all other terrain character-
istics, such as relief and sun inclination, CM gave satis-
factory results, similar to those in the nominal case. It
also showcased strong robustness against input heading
errors. It consistently delivers a heading estimation error
averaging less than 2 degrees, even when the input error
ranges up to 20 degrees.

4.2.3. DICOR
Similarly to the CM campaign, the initial position error
and the relative error between successive acquisitions are
evaluated during the DICOR campaign. The relative er-
ror tests the robustness of the matching function to a dis-
torted local orthomosaic. Contrary to CM, no noise was
applied to the heading, since DICOR does not estimate it.
The full campaign consist in 348015 runs. In the nomi-
nal case, DICOR performs well with various input noises
(c.f. Figure 10). Specifically, the success rate remains

100% -
100% I
99%

99% — - 10m

»

fa
2 98% — 6rm-10m
Y 9w 3m-6m
97% 1.25-3m
<1.25m

repartition of the estimation

— | CCESS Fate

0 0 0 0 0 0 0

Inital pose offset in m

Figure 9. CM: Nominal conditions - Repartition of the
pose estimation errors

 JE— 100
[Ty ..

2.5 . .

.
el
]

¥ R

=]
o

el
o
success rate (in %)

cor]

0 0.08 0.150.23 0.31 0.38 0 2 7 13 16 20
mean error between
successive acquisitions in m

pose estimation error in m

o w
o]
S

initial position offset in m

Figure 10. DICOR — Nominal conditions - pose estima-
tion error vs. relative error between successive acquisi-
tions and input initial error

above 98% for an initial position error of up to 16m and
an error of 27cm between successive acquisitions (with a
30cm acquisition step). The slight decrease in the success
rate observed with an input error of 31cm is primarily due
to 18% of ”small” estimation errors (less than 3 meters).
On the other hand, the drop in the success rate associated
with a 20-meter input offset is attributed to 3% of “large”
estimation errors (exceeding 10 meters).

Contrary to CM, the sun inclination is the terrain char-
acteristic that has the most negative impact on the perfor-
mances of DICOR (c.f. Figure 11). This can be explained
by the radiometric differences (illumination, shadows and
sun reflection) between the rover images (taken with a
sun inclination of 20° or at the zenith) and the orthoim-
ages (taken with a sun inclination of 45°). A strong relief
also degrade the results for a large initial offset, notably
due to the fact that the orthoimages are shrinked because
of the terrain obstacles, when compared to the nominal
case.

It has to be noted that the results obtained in the Bar-
denas are overly pessimistic due to inaccuracies present
in the ground truth data collected during the field test-
ing, especially in the “orbital” orthoimage produced by
the drone. However, they are in line with what could be
expected from a terrain with relief variations and differ-
ences in sun inclination different between the orbital or-
thoimage and the rover images, which was the case here.

4.3. Field tests

Three sites with varying geological features were cho-
sen in Bardenas Reales. A Parrot ANAFI Ai drone cap-
tured aerial images at three different times of the day:
morning (with long shadows), when the sun was at its
zenith, and at dusk (with no shadows). These images
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Figure 12. Bardenas field test trajectories and Magel-
lium’s robot

were used to create downsampled orthoimages at 25cm
per pixel resolution and DTMs at 1m per pixel resolution.
On each site, multiple short trajectories were recorded
using Magellium’s rover equipped with a PTU-mounted
stereo-bench, IMU, and centimetre-accurate RTK GPS
for precise ground truth positioning (c.f. Figure 12). In
total, 19 trajectories were conducted, spanning distances
from 15m to 40m, and involving two acquisition scenar-
ios: 1) the rover, with a fixed PTU, acquired data every
50cm, and 2) at intervals of 1.5-2m, the rover captured
three images to create panoramas with a 150° FOV. A live
demonstration of the three algorithms (TPT, CM and DI-
COR) was conducted in the presence of an ESA observer
in Zone 3.

43.1. TPT
As could be observed during the Monte-Carlo campaign,
TPT exhibited precise initial pose estimation with an er-
ror of only 0.5 meters. However, it was challenging to
determine a parameter set that struck the right balance
between offering sufficient constraints for effective track-
ing and maintaining flexibility for feature reprojection.
With the selected parameter set, which prioritized feature
reprojection, TPT successfully provided 17 pose estima-
tions over an 18-meter-long trajectory. These estimations
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Figure 13. CM: results of the demonstration trajectory
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Figure 14. DICOR: results of the demonstration trajec-
tory

had an average error of 0.77 meters and a maximum dead
reckoning distance of 8 meters. Towards the end of the
trajectory, TPT displayed an error of 3.2% relative to the
traveled distance, outperforming odometry, which had an
error of 5.5%.

432. CM

CM exhibited strong performance in the demonstration
trajectory, achieving an average estimation error of 0.63m
across 19 estimations. This was achieved with an input
odometry error amounting to 6.6% of the traveled dis-
tance and an initial offset of 7 meters (with a maximum
error of 9.8m). The evolution of the estimation error and
the complete trajectory can be observed in Figure 13.

4.3.3. DICOR

DICOR performed well in the beginning of the trajectory
with 4 estimations with an error bellow 2px of the orbital
image. A series of 3 estimations with an error around 4-
5px of the orbital image (1-1.3m) were produced in the
middle of the trajectory. As can be seen in Figure 14,
those degraded results can be explained by the presence
of a strong and contrasted linear feature (i.e. a small river
bed) in the rover images. This translates into a score map
exhibiting a spread optimum region, instead of a well de-
fined peak. This issue could easily be fixed by adding
a score map analysis step in the overall process to reject
such uncertain estimations. Overall, the estimation re-
sults are very satisfying, with an average estimation error
of 0.79m for the entire 36m-long trajectory with an input
odometry relative error between 7 and 15% of the trav-
eled distance and an initial offset of 7m.



Table 2. Computation time of a CM cycle on the LEON4
processor

Rock extraction 545 40.5
Grid creation 12 0.9

Plane fitting 511 38.9

Blob detection 13 1.0

Network update 10 0.7
Pose estimation 800 59.5

4.4. Benchmark on Leon4

The benchmark’s primary goal is to evaluate the com-
putational efficiency of core algorithm functions using
applicable hardware. This was achieved by integrating
benchmarking capabilities into the CM library, which
was then deployed on the GR-CPCI-GR740 development
board. Notably, this board is equipped with a radiation-
tolerant quad-core 32-bit LEON4FT processor. Results
from the evaluation on synthetic data indicate that a full
estimation cycle, excluding DEM computation, runs in
slightly more than one second (c.f. Table 2).

5. CONCLUSION

The operator-guided visual tie-point tracking algorithm
demonstrated robust and accurate localization perfor-
mances as long as the selected visual features are visible
to the rover. However, the reprojection method proved
to be too simplistic to be reliable over longer traverse,
highlighting the need more sophisticated matching tech-
niques like constellation matching. By showcasing a de-
pendable localization accuracy of less than 5 HiRISE pix-
els (1.25 meters) across diverse terrains and input data
noises, the two automated absolute localisation modules,
namely Constellation Matching and Dense Image Co-
Registration, underscored their robustness and pertinence
for missions related to planetary exploration.
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