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1. Review of project main goal and 
requirements.

Main goal: design, manufacture and test a breadboard model (BBM) 
of a position sensor targeting low cost, low accuracy (8 to 10 bits) and 
high reliability.

- Establish a set of requirements based on market survey.

- Identify the most suitable solution to achieve the requirements 
established. 

- Design a low cost, low resolution position sensor.

- Manufacture a breadboard model of the position sensor (TRL4).

- Perform functional testing of breadboard position sensor in laboratory 
conditions. 

- Analysis of results.



Market survey (ALTER):

- A market survey involved 25 European space industries

1. Review of project main goal and 
requirements.
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LRPS main requirements

Functional Requirements
LRPS_100 Measurement type: Absolute. Common requirement within the Space industry

LRPS_110 Measurement range: 360º. Measurement of one full revolution.

LRPS_120 Dead zones: None. Improved function w.r.t. potentiometers.

LRPS_130 Nominal/maximum speed steady: 30rpm. Use for high speed applications.

LRPS_140 Measurement overall accuracy in CW & CCW directions: 0.35º (10bits), 0,7º (9 bits) and 1.4º (8 bits). 

Physical properties and interfaces
LRPS_300 Mass <150g. We propose this weight as a maximum target

LRPS_310 Volume < 100mm in diameter and 15mm width

LRPS_320 Shaft attachment <50mm. Market demand to attend up to 50mm diameter shafts.

Thermal and enviorement

LRPS_500 Operation temperature (Qualification= -50ºC to + 100ºC) . High & low temperature measurements on 
prototype in test campaign.

Lifetime
LRPS_800 Unit Cost (Excluding non-recurrent cost) < 5,000€. Identified market demand

1. Review of project main goal and 
requirements.
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Main drives:

- Reduce cost implies no µP or FPGA

- Analog output preferred (direct potentiomenter sustitution).

- Size and weight may depend on the application (but similar to 
potentiometers).

1. Review of project main goal and 
requirements.
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Several TRL2 technologies were tested:

Technology Ref. of 
Stator

Ref. of 
Rotor ISS Output Description

Capacitive 0361 0363 02 Digital The rotor couples the electrodes in the stator to generate a digital output. Digital 
circuit is used to generate the digital word.

Inductive 0362 0364 01 Digital
The rotor avoids any coupling in the transformer located in the stator, so the digital 
pulse is not transmitted by the transformer. Digital circuit is used to generate the 
digital word.

Capacitive 0366 0367 01 Digital The capacitive coupling is measured by the device AD7747 and the measurement 
is transmitted by I2C.

Capacitive 0369 3610 04 Analog In this option, the rotor couples to electrodes in the stator. One of these electrodes 
has a shape that depending in the angular position. 

2. Final sensor selection and description.



2. Final sensor selection and description.

2. Review of the activities realized, final sensor 
configuration and preliminary characterization.
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- Final concept for LRPS: final electronics + LISN

2. Review of the activities realized, final sensor 
configuration and preliminary characterization.
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Test bench and software
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 DESCRIPTION OF THE PRODUCT 
 
The sensor consists of a capacitive transductor, that generates a DC voltage proportional to the 
rotor position. The sensor includes two stators, see Fig. 1 in green boards, and a rotor in yellow. 
The rotor is attached to the shaft by means of three pins, see Fig. 2. The rotor rotates free inside 
the sensor, and it is accommodated over a PTFE piece, so the adjustment in the Z-Axis is simple. 
The sensor is enclosed by an aluminium housing shown in Fig. 3. 
 

 
Fig. 1. Capacitive position sensor with analogue output. 

 
 

 
Fig. 2. Rotor dimension view. 

 

Zoho Sign Document ID: QDN8JATXCH4XSU6ASYZ4YHX0TG2A2KUU7PN9BEPNSHG

 

EMX-LRPS-TN-0042 
Angular Sensor Manual . Page 10 of 9 

 

 
 

 
Technical Note: EMX-LRPS-TN-0042 for LRPS project. © emxys 2021 

Avda. Universidad S/N · Ed. Quorum IV, Parque Científico UMH, 03202 Elche Spain. 
 

will compare this with the calibration data. The resulting value will be provided in response by the 
algorithm. 
 

 
Fig. 6. LabVIEW application to control the sensor output. 

 
 ALGORITHM CONVERSION 

 
The algorithm is base in a previous calibration process. The calibration consists of a one or more 
complete rotations of the shaft with a known reference. These samples can be used afterwards in 
any system. The goal of this calibration is to linearize the shape of the response of the sensor. 
 
The python algorithm includes a representative list of points taken during the calibration, as 
commented before. From these points the algorithm generates the corresponding function that 
convert any pair of voltages to a degree position. The calibration process consists of just a turn 
(more than one) and the and a zero reference, determined by the operator. 
 
Command example: 
 

./python V1 V2 
 
Response:  
 

34.45º 
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 LabVIEW and interface verification. 

The attachment of the sensor to the testbench shall be updated and verified before the beginning 
of the test campaign. The points to be verified are: 
 

a) Attachment point of the sensor case to the test bench.  
b) Attachment point for rotor-holder with rotation shaft.  
c) LabVIEW communication. The capacitive solution with analogue output will be connected 

to a multimeter with USB connection and LabVIEW interface (Agilent 34970A). 
 

 
Fig. 4. Test-Bench communication configuration for each kind of sensor. 

 
 

 Dimension & Weight checking 
The dimensions will be checked to fulfil maximum dimension and weight limits as described in 
[AD3]. The sensor dimension has some considerations: distance between attachments, diameter 
of the sensor, diameter of the inner hole of the case and diameter of the hole for the shaft, see 
Table 1. 

 
Fig. 5. General view of both proposed designs for dimension characteristics. 
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 Maximum Ratings 
The sensor limits are presented in Table 1. 
 

Req. Requirement Value Comments 
LRPS_110 Measurement range 360º Measurement of one full revolution and 

not limitation of rotation in any direction. 

LRPS_130 Nominal/maximum 
speed steady 30rpm Use in high-speed applications. 

LRPS_210 Supply voltage 5.0VDC to 6.0VDC 
- Power positive pin -0.7V≤VDC≤5.6V.  
- Output signal in between 
0.1V≤OUT≤0.98·VDC 

LRPS_300 Mass 90g Weight (Cable not included). 

LRPS_500 Operation temperature 
(Qualification) -50ºC to +100ºC To Be Tested 

LRPS_510 
Non-Operation 
temperature 
(Qualification) 

-60ºC to +110ºC To Be Tested 

Table 1. List of maximum ratings. 
 

 SIGNAL CONVERSION 
 
The sensor includes two analog outputs that are shown in Fig. 5 below. The two signals should be 
processed by an algorithm to convert the voltage output as a position in degrees. This algorithm 
works by entering both voltages and gives in response the position of the shaft or rotor. 
 

 
Fig. 5. Analogue output of Lines Vout1 (black cable) and Vout2 (white cable). 

 
 LABVIEW APPLICATION 

 
A LabVIEW application is partner of the sensor as an example to control system that generates the 
corresponding position measured in degrees. The LabVIEW application is connected to a 
multimeter Agilent 34410A with one analogue channel. The analogue channel is commuted to both 
sensor outputs with two relays controlled by the device NI USB-6210. Each output of the sensor is 
select at time and measured the voltage. Fig. 6 shows the view of this LabVIEW application. To 
convert the DC voltage output in a position value measured in degrees see section 6. The LabVIEW 
application executes the algorithm indicating both DC values from the sensor, and the algorithm 

Zoho Sign Document ID: QDN8JATXCH4XSU6ASYZ4YHX0TG2A2KUU7PN9BEPNSHG

4. Description of the test campaign
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SENSOR Characterization

* At 25ºC, 5 measures CW and 5 measures CCW (Step 1º, 
range 360º, wait at each step 5 sec)

* At several temperatures in functional range, 5 measures 
CW (Step 1º, range 360º, wait at each step 5 sec)

Outputs:

*algorithm for angular position calculus

*LRPS performances table to be checked durig evaluation 
campaign

2. Review of the activities realized, final sensor 
configuration and preliminary characterization.
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- Final concept for LRPS: mechanical configuration
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- The apparition of noise is enlarged by the conditioning strategy used that relies on output 
the peak voltage of a waveform proportional to the angular position of the rotor. This 
strategy couples with the noise and offers an unstable measurement, difficult to eliminate 
with analog filtering. 

 
The study of this circuit together with our experience on previous projects related to measuring 
angular position have permitted us to propose the modifications described in the next section. 
 
 

 A NEW ROTARY SENSOR BASED ON CAPACITIVE COUPLING 
 
To correct the main problems enumerated in the previous section a mixed strategy of the circuits 
in section 5 and section 7 of [RD1] is proposed with the following changes: 
 

- Change the pattern on top of the voltage injecting stator and use the second stator to correct 
the resulting voltage as modified by the rotary movement of the rotor. The set stator-rotor 
may have, like this, a bigger capacitance to increase the signal to noise ratio. This strategy 
also uses our experience with previous CLAS project. 

- Change the output stage of the electronics to encode the information of the rotor position 
as proportional to phase difference with a reference signal. This produces a pulse width 
modulated (PWM) output easier to convert to a DC output by means of a low pass filter and 
that inherently eliminates high frequency noise. 

- Change the rotor to have a pattern in half of its surface, represented by lack of dielectric 
material, instead of a thin metal to induce a change in capacitance. 

 
These bullets are elaborated in the next subsections. 
 

 Capacitor pattern at the stators 
 
The plates that implement the measurement capacitances and the shape of the rotor have been 
changes to increment its absolute value and increment their absolute variation upon the rotation of 
the rotor in between them, see Fig. 1.  
 

 
Fig. 1. Plates that implement the measurement capacitances and the rotor. The text in Stator I 

labels the four different capacitances formed with Stator II. 
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Fig. 2. Definition of the angle a as the angle formed by the rotor with respect to a reference. 
 
 

 
Fig. 3. Relative value of capacitors C1, in blue, C2, in green, C3, in red, and C4, in yellow of Fig. 

1 vs. the angular position of the rotor as defined in Fig. 2. (Normalization value is 10pF.) 
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 Electronic conditioning circuit 
With the capacitance pattern described in the previous section a waveform displaced in phase by 
90o may be used to bias each capacitor and then add the resulting waveforms, multiplied by the 
actual value of its corresponding capacitances, as seen in Fig. 4, were the phase shifted signals 
are represented by a waveform that depends on sinusoidal voltages of certain frequency f, with 
9 = 2 ∙ : ∙ ;, and amplitude Vp. 
 

 
 

Fig. 4. The block diagram of the proposed conditioning electronics of the sensor. 
 
The addition of the four sinusoids that result at the Stator II in Fig. 4 is usually visualized as a 
phasor diagram as represented in Fig. 5, where each vector A1, A2, A3, and A4, represents the value 
of the sinusoidal voltage that bias each capacitance, C1, C2, C3 and C4 respectively, multiplied by 
the actual value of the capacitance, and the gain of the conditioning amplifier, G, as given by: 
 

 *' = < ⋅ &' 				?@Aℎ				@ = 1,2,3,4 
 
The addition of these four voltages provides a voltage at the output of the amplifier, Vamp, whose 
amplitude is: 
 

 D()* = < ∙ E(&$ − &&)$ + (&" − &%)$ 
 
 
And its phase shift, H, with respect to cos	(9 ∙ A), taken as reference: 
 

 H = A#L+" M,!+,",#+,$
N 

 
The representation of the phase shift, H, vs. the angular rotation, a, is shown in Fig. 6. As it may 
be seen presents a good linear dependence.  
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Fig. 15. The final version of the top stator, left, and bottom stator, right. 

 
Further, as a means to increase the accuracy, we have decided to include a second phase shift 
measurement with respect to the cosine signal generated at the oscillator and present it as an 
output. Thus, two PWM waveforms are generated: one by comparing the output of the top rotor 
with the reference sinus and another one with the cosines. That results in two PWM signals shifted 
in 180 degrees. This provides the following advantages: 
 

- A certain degree of redundancy is provided, since both signal provide the same information. 
- Both signals may be averaged (by the customer) to get a better signal to noise 

measurement. 
- In case of failure (and depending on the failed component3) one of the signals may be 

missed but the other one may still be present. This adds robustness to the sensor. 
 
The component count and price does not increase with respect to the previous version of the circuit 
(EMX-LRPS-SC-0369-ISS03) when compared to issue 4 since the study of issue 3 has allowed to 
simply parts of the electronics. The cost assessment is updated in Annex 1. 
 

 CONCLUSION OF PROPOSED DESIGNS 
 
Based on previous studies that involve theoretical modelling and laboratory results a new proposal 
of a low cos low resolution sensor is made. The difficulties found involve the necessity of not using 
microprocessors or FPGAs and therefore the development of conditioning circuits not found in 
available literature. Nevertheless, the use of a phase comparators and low pass filtering makes us 
believe that this proposal may provide the results expected as traditionally this combination 
produces good signal to noise ratios in radio applications. 
  

 
3 This is to be addressed by a failure tree. 
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2. Review of the activities realized, final sensor 
configuration and preliminary characterization.

4

- Final concept for LRPS: mechanical configuration

 

EMX-LRPS-TN-0037 
Concept Review and Analysis. Page 7 of 26 

 

 
 

 

Technical Note: EMX-LRPS-TN-0037 for LRPS project. © emxys 2021 

Avda. Universidad S/N · Ed. Quorum IV, Parque Científico UMH, 03202 Elche Spain. 

 

- The apparition of noise is enlarged by the conditioning strategy used that relies on output 
the peak voltage of a waveform proportional to the angular position of the rotor. This 
strategy couples with the noise and offers an unstable measurement, difficult to eliminate 
with analog filtering. 

 
The study of this circuit together with our experience on previous projects related to measuring 
angular position have permitted us to propose the modifications described in the next section. 
 
 

 A NEW ROTARY SENSOR BASED ON CAPACITIVE COUPLING 
 
To correct the main problems enumerated in the previous section a mixed strategy of the circuits 
in section 5 and section 7 of [RD1] is proposed with the following changes: 
 

- Change the pattern on top of the voltage injecting stator and use the second stator to correct 
the resulting voltage as modified by the rotary movement of the rotor. The set stator-rotor 
may have, like this, a bigger capacitance to increase the signal to noise ratio. This strategy 
also uses our experience with previous CLAS project. 

- Change the output stage of the electronics to encode the information of the rotor position 
as proportional to phase difference with a reference signal. This produces a pulse width 
modulated (PWM) output easier to convert to a DC output by means of a low pass filter and 
that inherently eliminates high frequency noise. 

- Change the rotor to have a pattern in half of its surface, represented by lack of dielectric 
material, instead of a thin metal to induce a change in capacitance. 

 
These bullets are elaborated in the next subsections. 
 

 Capacitor pattern at the stators 
 
The plates that implement the measurement capacitances and the shape of the rotor have been 
changes to increment its absolute value and increment their absolute variation upon the rotation of 
the rotor in between them, see Fig. 1.  
 

 
Fig. 1. Plates that implement the measurement capacitances and the rotor. The text in Stator I 

labels the four different capacitances formed with Stator II. 
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Fig. 2. Definition of the angle a as the angle formed by the rotor with respect to a reference. 
 
 

 
Fig. 3. Relative value of capacitors C1, in blue, C2, in green, C3, in red, and C4, in yellow of Fig. 

1 vs. the angular position of the rotor as defined in Fig. 2. (Normalization value is 10pF.) 
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 Electronic conditioning circuit 
With the capacitance pattern described in the previous section a waveform displaced in phase by 
90o may be used to bias each capacitor and then add the resulting waveforms, multiplied by the 
actual value of its corresponding capacitances, as seen in Fig. 4, were the phase shifted signals 
are represented by a waveform that depends on sinusoidal voltages of certain frequency f, with 
9 = 2 ∙ : ∙ ;, and amplitude Vp. 
 

 
 

Fig. 4. The block diagram of the proposed conditioning electronics of the sensor. 
 
The addition of the four sinusoids that result at the Stator II in Fig. 4 is usually visualized as a 
phasor diagram as represented in Fig. 5, where each vector A1, A2, A3, and A4, represents the value 
of the sinusoidal voltage that bias each capacitance, C1, C2, C3 and C4 respectively, multiplied by 
the actual value of the capacitance, and the gain of the conditioning amplifier, G, as given by: 
 

 *' = < ⋅ &' 				?@Aℎ				@ = 1,2,3,4 
 
The addition of these four voltages provides a voltage at the output of the amplifier, Vamp, whose 
amplitude is: 
 

 D()* = < ∙ E(&$ − &&)$ + (&" − &%)$ 
 
 
And its phase shift, H, with respect to cos	(9 ∙ A), taken as reference: 
 

 H = A#L+" M,!+,",#+,$
N 

 
The representation of the phase shift, H, vs. the angular rotation, a, is shown in Fig. 6. As it may 
be seen presents a good linear dependence.  
 

3KDVH�FRPSDUDWRU

/RZ�SDVV�ÀOWHU 2XW

6WDWRU�, 5RWRU 6WDWRU�,,

�

�

�

�

6WDWRU�, 5RWRU 6WDWRU�,,

�

$PSOLÀHU

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

&RPSOH[�SODQH�

The output is a 
PWM with a 
pulse amplitude 
proportional to 
the rotor angle

Very simple electronics: all space qualified counterparts with a ROM Price 
of 4000€ aprox. (for small number of units).

ü 2 x 4-opam ICs + 4 logic gates + 1 flip-flop (1 output).

ü + 1 x 4-opam + 4 logic gates + 1 flip-flop (2 output partial redundancy).

2. Final sensor selection and description.
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 DESCRIPTION OF THE PRODUCT 
 
The sensor consists of a capacitive transductor, that generates a DC voltage proportional to the 
rotor position. The sensor includes two stators, see Fig. 1 in green boards, and a rotor in yellow. 
The rotor is attached to the shaft by means of three pins, see Fig. 2. The rotor rotates free inside 
the sensor, and it is accommodated over a PTFE piece, so the adjustment in the Z-Axis is simple. 
The sensor is enclosed by an aluminium housing shown in Fig. 3. 
 

 
Fig. 1. Capacitive position sensor with analogue output. 

 
 

 
Fig. 2. Rotor dimension view. 
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 LabVIEW and interface verification. 

The attachment of the sensor to the testbench shall be updated and verified before the beginning 
of the test campaign. The points to be verified are: 
 

a) Attachment point of the sensor case to the test bench.  
b) Attachment point for rotor-holder with rotation shaft.  
c) LabVIEW communication. The capacitive solution with analogue output will be connected 

to a multimeter with USB connection and LabVIEW interface (Agilent 34970A). 
 

 
Fig. 4. Test-Bench communication configuration for each kind of sensor. 

 
 

 Dimension & Weight checking 
The dimensions will be checked to fulfil maximum dimension and weight limits as described in 
[AD3]. The sensor dimension has some considerations: distance between attachments, diameter 
of the sensor, diameter of the inner hole of the case and diameter of the hole for the shaft, see 
Table 1. 

 
Fig. 5. General view of both proposed designs for dimension characteristics. 

Test bench and software

Sensor LRPS Breadboard
Signal Input Output Voltage

Vcc X 4.5V to 5.5V
GND -- -- 0V

Chassis -- -- 0V
Output 1 -- X 0V to 5.5V
Output 2 -- X 0V to 5.5V

Electrical interface for proposed 
design.

2. Final sensor selection and description.
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8-bit = 0.4%
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 Maximum Ratings 
The sensor limits are presented in Table 1. 
 

Req. Requirement Value Comments 
LRPS_110 Measurement range 360º Measurement of one full revolution and 

not limitation of rotation in any direction. 

LRPS_130 Nominal/maximum 
speed steady 30rpm Use in high-speed applications. 

LRPS_210 Supply voltage 5.0VDC to 6.0VDC 
- Power positive pin -0.7V≤VDC≤5.6V.  
- Output signal in between 
0.1V≤OUT≤0.98·VDC 

LRPS_300 Mass 90g Weight (Cable not included). 

LRPS_500 Operation temperature 
(Qualification) -50ºC to +100ºC To Be Tested 

LRPS_510 
Non-Operation 
temperature 
(Qualification) 

-60ºC to +110ºC To Be Tested 

Table 1. List of maximum ratings. 
 

 SIGNAL CONVERSION 
 
The sensor includes two analog outputs that are shown in Fig. 5 below. The two signals should be 
processed by an algorithm to convert the voltage output as a position in degrees. This algorithm 
works by entering both voltages and gives in response the position of the shaft or rotor. 
 

 
Fig. 5. Analogue output of Lines Vout1 (black cable) and Vout2 (white cable). 

 
 LABVIEW APPLICATION 

 
A LabVIEW application is partner of the sensor as an example to control system that generates the 
corresponding position measured in degrees. The LabVIEW application is connected to a 
multimeter Agilent 34410A with one analogue channel. The analogue channel is commuted to both 
sensor outputs with two relays controlled by the device NI USB-6210. Each output of the sensor is 
select at time and measured the voltage. Fig. 6 shows the view of this LabVIEW application. To 
convert the DC voltage output in a position value measured in degrees see section 6. The LabVIEW 
application executes the algorithm indicating both DC values from the sensor, and the algorithm 

Zoho Sign Document ID: QDN8JATXCH4XSU6ASYZ4YHX0TG2A2KUU7PN9BEPNSHG

0,000

0,100

0,200

0,300

0,400

0,500

0,600

0,700

0,800

0,900

1,000

 -  50,00  100,00  150,00  200,00  250,00  300,00  350,00

Er
ro

r(%
)

Rotor position (deg)

Repeatability

V1 Output

V2 Output

2. Final sensor selection and description.
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3. Review of test campaign.

Test flow and schedule at ALTER
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SENSOR Characterization

* At 25ºC, 5 measures CW and 5 measures CCW (Step 1º, 
range 360º, wait at each step 5 sec)

* At several temperatures in functional range, 5 measures 
CW (Step 1º, range 360º, wait at each step 5 sec)

Outputs:

*algorithm for angular position calculus

*LRPS performances table to be checked durig evaluation 
campaign

3. Review of test campaign.
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LRPS evaluation tests

Thermal Vacuum

*using accuracy measurements test bench
*2 measures CW (Step 1º, range 360º, wait at each step 5 
sec) at high and low temperatures

Mechanical tests

*stator and rotor in a fixed position
*reduced functional tests after each axis test for major damage 
check
*accuracy measurements after tests 

Cube F1=5183.76 Hz
Plate F1=10629.61 Hz

EMC and ESD

*CS and CE
* sensor fixed position monitoring
* use the LISN manufactured by EMXYS
* accuracy measurements after tests

3. Review of test campaign.
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Instrument characterisation at ALTER: noise

Position (Deg)
V1 V2

Mean Value Absolute noise range Standard 
deviation

Mean 
Value

Absolute 
noise 
range

Standard 
deviation

0º 1.266V 2.9mV 0.04% 3.801V 2.8mV 0.04%
45º 1.806V 3mV 0.05% 4.341V 2.5mV 0.001%
90º 2.4659 V 1.2mV 0.018% 2.7802V 217.9mV 3.845%
135º 2.987V 4.2mV 0.07% 0.5469V 4.8mV 0.07%
180º 3.645V 1.8mV 0.03% 1.193V 1.9mV 0.04%
225º 4.198V 2mV 0.04% 1.745V 3mV 0.04%
270º 4.76V 189mV 2.08% 2.471V 5mV 0.05%
315º 0.652V 2mV 0.03% 3.186V 2mV 0.03%
360º 1.267V 5mV 0.04% 3.801V 4mV 0.04%

Noise level for different positions.

Noise figure is 5 times less the 8-bit resolution 

3. Review of test campaign.
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Temperature Direction of rotation Error Max. Reference
25ºC CW <0.2º REF0
25ºC CCW <0.7º REF0
45ºC CW <7º REF0
45ºC CW <2º Temp. Ref.
65ºC CW <8º REF0
65ºC CW <3.5º Temp. Ref.
85ºC CW <8º REF0
85ºC CW <4º Temp. Ref.
0ºC CW <12º REF0
0ºC CW <6º Temp. Ref.
-10ºC CW <13º REF0
-10ºC CW <3º Temp. Ref.

Summary of maximum error in thermal characterization.

REF0 = 1st turn at 25ºC
Temp. Ref. = 1st turn at refered temperature

ü TVAC and mechanical vibration did not alter the sensor measurement.

3. Review of test campaign.
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4. Analysis of results.

- 8-bit accuracy is obtained at laboratory conditions.

- Improvements (mechanical and electronics) needed to increase TRL:

• Close the mechanical interface and present the sensor as an equivalent
mechanical substitution to potentiometers, with a mechanical (cylindrical) body
and a rotating axis.

• Improve the electronics to deliver one analog output similar to potentiometers
and minimize the “death zone” to less than 5 degrees.

• Realize an electrical interface similar to potentiometers (one reference, +5VDC
supply and output measurement between the reference and the supply).

• Improve the pattern of the stators to minimize the error and a minimum of 10-
bit over all the temperature range.
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5. Conclusions.

- A promising technology that delivers space angular measurements at competitive 
prize for space applications has been identified.

- This technology is not feasible for industrial or automotive applications that are 
microprocessor based.

- After first test in temperature the accuracy of the sensor has been compromised due 
to mechanical issues. The complete range was not reached due to some parts that 
were out of range.  Requirements affected:

Ø LRPS_140 Accuracy 10-bit to 8-bit at all temperature range
Ø LRPS_500 Temperature range

- The Road Map.

- The sensor presents a good noise response with a very low power 
consumption.

- The performance is quite repetitive at each temperature point.
- Mechanical solution shall be improved to minimize the effect of the temperature 

on the resolution and easy integration.



THANKS!!!
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2. Review of the activities realized, final sensor 
configuration and preliminary characterization.

9

Test bench and software

 

EMX-LRPS-TN-0042 
Angular Sensor Manual . Page 7 of 9 

 

 
 

 
Technical Note: EMX-LRPS-TN-0042 for LRPS project. © emxys 2021 

Avda. Universidad S/N · Ed. Quorum IV, Parque Científico UMH, 03202 Elche Spain. 
 

 DESCRIPTION OF THE PRODUCT 
 
The sensor consists of a capacitive transductor, that generates a DC voltage proportional to the 
rotor position. The sensor includes two stators, see Fig. 1 in green boards, and a rotor in yellow. 
The rotor is attached to the shaft by means of three pins, see Fig. 2. The rotor rotates free inside 
the sensor, and it is accommodated over a PTFE piece, so the adjustment in the Z-Axis is simple. 
The sensor is enclosed by an aluminium housing shown in Fig. 3. 
 

 
Fig. 1. Capacitive position sensor with analogue output. 

 
 

 
Fig. 2. Rotor dimension view. 
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will compare this with the calibration data. The resulting value will be provided in response by the 
algorithm. 
 

 
Fig. 6. LabVIEW application to control the sensor output. 

 
 ALGORITHM CONVERSION 

 
The algorithm is base in a previous calibration process. The calibration consists of a one or more 
complete rotations of the shaft with a known reference. These samples can be used afterwards in 
any system. The goal of this calibration is to linearize the shape of the response of the sensor. 
 
The python algorithm includes a representative list of points taken during the calibration, as 
commented before. From these points the algorithm generates the corresponding function that 
convert any pair of voltages to a degree position. The calibration process consists of just a turn 
(more than one) and the and a zero reference, determined by the operator. 
 
Command example: 
 

./python V1 V2 
 
Response:  
 

34.45º 
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 LabVIEW and interface verification. 

The attachment of the sensor to the testbench shall be updated and verified before the beginning 
of the test campaign. The points to be verified are: 
 

a) Attachment point of the sensor case to the test bench.  
b) Attachment point for rotor-holder with rotation shaft.  
c) LabVIEW communication. The capacitive solution with analogue output will be connected 

to a multimeter with USB connection and LabVIEW interface (Agilent 34970A). 
 

 
Fig. 4. Test-Bench communication configuration for each kind of sensor. 

 
 

 Dimension & Weight checking 
The dimensions will be checked to fulfil maximum dimension and weight limits as described in 
[AD3]. The sensor dimension has some considerations: distance between attachments, diameter 
of the sensor, diameter of the inner hole of the case and diameter of the hole for the shaft, see 
Table 1. 

 
Fig. 5. General view of both proposed designs for dimension characteristics. 
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 Maximum Ratings 
The sensor limits are presented in Table 1. 
 

Req. Requirement Value Comments 
LRPS_110 Measurement range 360º Measurement of one full revolution and 

not limitation of rotation in any direction. 

LRPS_130 Nominal/maximum 
speed steady 30rpm Use in high-speed applications. 

LRPS_210 Supply voltage 5.0VDC to 6.0VDC 
- Power positive pin -0.7V≤VDC≤5.6V.  
- Output signal in between 
0.1V≤OUT≤0.98·VDC 

LRPS_300 Mass 90g Weight (Cable not included). 

LRPS_500 Operation temperature 
(Qualification) -50ºC to +100ºC To Be Tested 

LRPS_510 
Non-Operation 
temperature 
(Qualification) 

-60ºC to +110ºC To Be Tested 

Table 1. List of maximum ratings. 
 

 SIGNAL CONVERSION 
 
The sensor includes two analog outputs that are shown in Fig. 5 below. The two signals should be 
processed by an algorithm to convert the voltage output as a position in degrees. This algorithm 
works by entering both voltages and gives in response the position of the shaft or rotor. 
 

 
Fig. 5. Analogue output of Lines Vout1 (black cable) and Vout2 (white cable). 

 
 LABVIEW APPLICATION 

 
A LabVIEW application is partner of the sensor as an example to control system that generates the 
corresponding position measured in degrees. The LabVIEW application is connected to a 
multimeter Agilent 34410A with one analogue channel. The analogue channel is commuted to both 
sensor outputs with two relays controlled by the device NI USB-6210. Each output of the sensor is 
select at time and measured the voltage. Fig. 6 shows the view of this LabVIEW application. To 
convert the DC voltage output in a position value measured in degrees see section 6. The LabVIEW 
application executes the algorithm indicating both DC values from the sensor, and the algorithm 
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