

PPP GNSS Receiver for Cubesats

TRR/Final Review July 11th, 2023

Contents

- 1. Introduction
- 2. OrbFIX Requirements
- 3. OrbFIX Design
 - a. Mechanical
 - **b.** Electronics
 - c. Software
- 4. Challenges and updates
- 5. OrbFIX Preliminary Test Results
- 6. Way forward
 - a. Qualification Plan
 - b. SpaceRider IOD
- 7. Conclusions & AOB

ESA GSTP Building Blocks Activity aiming to:

•Design a COTS PPP GNSS receiver for space (->TRR)

• Preliminary assembly, integration and test

•Plan a qualification campaign and identify IOD opportunities

Precise orbit determination: COTS GNSS receiver & AI enhanced orbital propagator with three operating modes:

- low power: ANN&OP (100m in 2 hours @1.5 W)
- simple, low accuracy: GNSS (2m @ 2.5 W)
- nominal, high accuracy: PPP/Galileo HAS (10cm @ 3.5 W)

Electronic design

Electrical Diagram

Connectors

Connectors used:

- JST SM14B-SRSS-TB-LF Debug Unit;
- Samtec FSI-105-03-G-D-AD MotherBoard connector;
- Samtec SSQ-126-03-G-D Cubesat Bus;
- Chinch DCCM9SCBRPN SpaceWire Connector;
- Molex 53047-0210 Antenna 5V supply;

Features

Interfaces

- 3V3 primary power input;
- 1 x UART (up to 4Mbps);
- 1 x I2C communication;
- 1 x SPI Slave interface;
- 1 x SpaceWire;
- 1 x CAN controller;
- RF Interface.
- microSD slot (up to 4GB)

COTS GNSS receiver

- Multi-constellation, multi-frequency receiver in a low power module, capable of tracking all Global Navigation Satellite System constellations supporting all current signals.
- Antenna pre-amplification range: 15-50 dB;
- Antenna bias voltage: 3.0 5.5 V;
- Built-in current limit (150mA).

Other hardware features

- ON/OFF high level command interface or autostart upon voltage application;
- Available to bypass the microcontroller for direct access to the GNSS receiver;
- COTS counterparts are available for prototyping purposes.

OrbFIX - PCB Design

Multiple design specifications were taken into consideration, based on the CubeSat standard and the ECSS-Q-ST-70-12C ESA normative for printed circuit boards:

- The copper thickness of both the top and bottom sides are the same.
- Both the outer and the inner layers use a copper thickness of 35um.
- The distribution of copper within each layer is homogeneous.
- The fabricated thickness of the PCB is 1.6mm.
- The fabricated PCB has 4 copper layers.
- The BGA components of the PCB are circular and do not feature teardrops.
- All critical and differential tracks were routed on one single layer.

Mechanical design

Mechanical & thermal analysis

OrbFIX structural analysis

- First frequency: 191Hz
- Random vibration Von Mises stress:
 - Axial: 2.901e+00 N/m^2
 - Lateral: 1.674e-01 N/m^2
 - Lateral: 2.140e-01 N/m^2

OrbFIX thermal analysis

- Initial temperature: 20°C
- Simulation time: 3600 s
- storage temperature testing range [-40°C; +70°C]
 - Negative plateau -40°C
 - Tmin -> Tmax: -32.48°C -> -32.19°C
 - positive plateau +70°C
 - Tmin -> Tmax: +69.69°C -> 69.73°C
- operational temperature testing range [-30°C; +60°C]
 - Negative plateau -30°C
 - Tmin -> Tmax: +21.14°C -> +28.66°C
 - positive plateau +60°C
 - Tmin -> Tmax: +82.59°C -> 89.66°C

Preliminary design

Final design

- OrbFIX board + Aluminium Alloy cover
 - 4 alignment holes compliant with CubeSat specifications
 - 2 x M3 threaded holes for mounting the cover

- OrbFIX board + Aluminium Alloy cover
 - 4 alignment holes specific to CubeSat specifications
 - 3 threaded holes on the cover to better secure it on the board
 - 3 additional clearance holes in the board for optional back cover

Software

Software Architecture

Initialisation sequence - Startup Task

- Initialisation of the file system and communication interfaces
- Loading default system parameters
- Starting housekeeping task

Housekeeping Task

- Periodic interrogation of system sensors
- Managing FDIR and operation modes
- Periodic PVT output in conformity with the current operating mode

Operation modes

- Low power ANN + OP algorithms
- Nominal PPP / high precision mode
- Simple Receiver PVT / standard precision mode

Software Architecture

Command Processing Task

- Unpacking the command frame
- Dispatching commands to corresponding tasks
- Interrogating system parameters
- Configuring system parameters
- Responding to the OBC through the communication task
- Configuring GNSS module through the communication task

Hex 52 Dec 82	Hex 53 Dec 83	Two byte CRC	1 byte subsystem	ID	Payload length		
				Two byte command ID			
Sync char 1	Sync char 2	CRC	OrbFix ID	Command ID	Length	Payload	End mssage
			<	Range of CRC to be calculated			

OrbFIX Command Frame

Processing Tasks

- Responsible of ANN, OP and PPP algorithms
- Run algorithms on request (OBC / Housekeeping)

Receiver Data Processing Task

- Delivering GNSS data to processing tasks
- Delivering periodic GNSS data to OBC through communication task

Communication Task

• Interface between tasks and physical subsystems

Memory management

Main idea

- Use an array of blocks with the total size
 NO_BLOCK * NO_PARTITION * sizeof(BLOCK)
- Functionality of struct **BLOCK**
 - state: tells if **BLOCK** is occupied;
 - size: tells the BLOCK maximum capacity (bytes);
 - location: points to the memory address that can be used through BLOCK
- All the **BLOCK**s in a partition have a fixed size
- The memory for **BLOCK** array is allocated once

Modelled perturbations

- J2
- 3rd body: Sun and Moon
- Solar radiation pressure
- Atmospheric drag (simple Jacchia-Roberts model)

Remarks

- The errors fall within the anticipated range
- Simple ANNs can be used to predict the propagation error
- These predictions can be used to

reshape the trajectory

Validation with AGI STK

Main idea (from De-Risk activity)

- Use a perceptron to estimate the OP's prediction error at a future time
- Multiple ANNs can estimate the error at certain points and their output can be used to reshape the orbit

Remarks

- OrbFix PPP algorithm is tailored for kinematic applications
- We run our algorithm on Windows and on MCU
- The accuracy of OrbFix PPP is (at 95th percentile)
 - X-axis: 6.886 (cm)
 - Y-axis: 5.866 (cm)
 - Z-axis: 6.786 (cm)

OrbFix PPP errors

Updates on HAS

- Successfully run the HAS algorithm as described in [RD-HAS]
- We are able to **decode live** the messages and compute the **corrections**
- Using the corrections, we can apply them as described in sec. 7 of [RD-HAS]

Observations

- The algorithm was implemented on GR716 and STM32
- GR716 is slow (up to 5 minutes per message)
- STM32 is much faster (up to 10 seconds per message)

Main idea

- GNSS receiver provides HAS encoded messages and Ephemeris to the Computation MCU
- Computation MCU decodes HAS corrections and packages them as RTCM correction messages for the GNSS receiver

PointPerfect Library

- Accept corrections as SPARTN-SSR messages provided via MQTT service
- Alongside with RTCM Ephemeris, position and timing provides RTCM corrections for RTK

Library Insights

- Successfully run the the PointPerfect Library on STM32 MCU
- We were able to obtain RTK Fixed precision level
- Consolidates our HAS correction integration approach

Challenges and Updates

Hardware Challenges

- Finding commercial components for development with RadHard equivalents.
- Needed to perform in-house procedures for pin cutting and forming for the MCU.
- Created option in which the end user may choose either the daughterboard or the SpaceWire controller due to size constraints.

Processing Resources & Architecture Challenges

- Small internal RAM of the MCU
- External RAM speed (~10x slower than internal)
- Tradeoff between external RAM size and price
- Limited customisation of the communication interfaces
- Slow processing speed

Software Challenges

- Undefined memory usage scenario (Internal RAM + External RAM available at boot)
- Memory segmentation due to repeated allocation and deallocation of different sized blocks
- HAS decoding takes ~10 seconds (due to the Reed-Solomon algorithm)
- PPP solution computed at 0.1 Hz

Testing Challenges

- small dimensions of the DUT in relation to the mounting adapter. Difficulties in discerning between DUT and adapter share in the test results;
- small components and overall dimensions of the device, therefore limited space available for thermal sensors.

Challenges and Updates

Hardware Updates

- The PCB features the option of adding non radhard components for prototyping purposes.
- The PCB will feature another MCU for precise positioning algorithms

Processing Resources & Architecture Updates

- Added 512kB external RAM for data that does not require fast access speed
- MCU has been clocked to 50MHz (from 20MHz)

Software Updates

- Added custom instructions to initialise the external RAM at boot before loading the code
- Implemented custom memory allocation system to avoid segmentation
- Precise positioning algorithms will be moved to the additional MCU
- Galileo HAS decoding

OrbFIX Preliminary Test Results

Environmental testing

OrbFIX vibration testing

- Frequency search: 5-2000 Hz/0.25g
- Sinusoidal vibration: 3-200 Hz

• Random vibration: 20-2000 Hz

• Testing configuration:

Results:

- several spectrum changes larger than ECSS recommendations occurred during the frequency search after random vibration;
- modifications at the level of the alignment fixing holes, as a proof of mechanical stress:

- Successful test campaign: very good results for the OrbFIX's EM particularities acting as a driver for improving tests and analysis for the final qualification phase.
- no dimensional, functional or performance modifications suffered by the DUT

Environmental testing

OrbFIX thermal vacuum testing

- Pressure: < 10⁻⁵ hPa
- Storage: -40°C -> +70°C

• Operational: -30°C -> +60°C

Results:

- no dimensional, functional or performance modifications were observed after the thermal testing campaign
- all functional tests at extreme temperatures were successful

Testing configuration:

Radiation testing

Total mission duration: 3 years

- SSO Orbit
- 800 km altitude
- at solar maximum

Sources:

- Trapped proton flux: AP-8 Max model;
 - Average typical flux
 - Peak trapped flux
- Solar protons
 - As total fluence for the mission duration: SAPPHIRE model
 - As peak proton flux (worst week): CREME-96 model
- Galactic cosmic protons (only the hidrogen component of the GCR).

Set-up and installation - PIF

- Proton energies 30 MeV 200 MeV
- DUT:
 - OrbFIX 1st hardware iteration
 - Two GNSS receivers:
 - on main board
 - on daughter board
 - \circ $\,$ partial shielding for: MCU, RAM, Flash

Set-up configuration

- MCU provided power control for receivers
- each receiver connected to PC for detailed debugging
 - USB connection
- each receiver logging on each SD Card (unshielded)

Experimental fluxes

- Irradiation at 200 MeV, 100 MeV, 50 MeV, 30 MeV
- Flux was targeting worst week or increased:
 - but was adjusted to reduce rate of resets
 - kept at high values to obtain relevant total fluences

Irradiation sequence:

200 - 100 - 50 -30 - 200 - 50 - 100 - 30

- Irradiation at fluxes:
 - above worst trapped proton
 - above worst week solar flux
 - up to worst 5 minutes in orbit

Experimental fluences

Lessons learned

Vibration testing

- Increase the stiffness of the cover (a third screw was added for the cover mounting)
- Optimize the fixtures, to reduce its contributions during testing and better secure its alignment

Thermal testing

- The GNSS receiver's temperature was approximately 20°C degrees higher than the shroud temperature, but within normal limits.
- easy and fast access to data (live temperature data and specification data for critical components) make difference in taking decision during testing campaign.
- Test time could be reduced with a smaller testbed mass and an optimized adapter

Proton irradiation testing

- A dedicated testbench would have accelerated the operations during testing
- The support equipment (eg: debugger) should be kept away from the irradiation area
- SD cards which are space-proven shall be tested
- The communication interfaces should be kept simple (UART instead of USB)
- Functional testing discovered a software bug, but a workaround was implemented and still confirmed the SD card functionality

Way forward

Qualification plan

- Qualification according to ESA's ECSS testing standards
- Relevant margins, tolerances, levels and durations for a space segment equipment will be used
- Functional and environmental tests will be conducted in the campaign

Vibration testing

- Equipment needed: vibration shaker, mounting adapter
- Control and monitor accelerometers on the mounting and on the DUT, respectively
- Powered off DUT
- Vibration testing campaign with the following sequence for both sinusoidal and random vibrations: **low level sine run**, **full level run**, **low level sine run**
- Functional verifications to be run at specific moments of the test(before, intermediary, after)
- Resonance search(low level sine profile): 5-2000 Hz with 0.25g amplitude
- Testing profiles:

Sinusoidal					
Acceleration [g]					
1					
2					
4					
4					
2					
1					

Random				
Frequency [Hz]	PSD [g ² /Hz]			
20	0.007			
30	0.007			
70	0.035			
900	0.035			
1000	0.034			
2000	0.009			

Qualification plan

Thermal vacuum testing

- Pressure: < 10⁻⁵
- Equipment needed: thermal vacuum chamber, mounting adapter
- Temperature sensors placed in specific places
- A TRP shall be selected
- Powered on at functional testing
- 8 complete cycles for qualification
- Functional verifications to be run at specific moments of the test(before, intermediary/at plateaus, after)
- Testing profiles:

Functional testing

- Prove that the DUT withstood any required test while performing its routine in nominal manner
- Benchmark functional tests will be conducted before, during and after every other test in the qualification plan
- Board expected to perform nominally
- Any deviation shall be documented and analysed
- Organisation of the test:
 - Cycle through the operating modes (low power, simple, nominal)
 - Perform ADC readings of current consumption.
 - Perform GNSS data acquisition.
 - Perform communication with a target host by cycling through the provided commands
- Minimum EGSE:
 - Debugger for the DUT, jumper wires, OBC Emulator, power source, GNSS antenna
 / GNSS simulator, RF cable, voltage and current measurement tools

Radiation Testing

- Ionising test
 - \circ 30 krad ~ 3 years in LEO
 - gamma ray source
 - characterization after test and after 48 hours
 - 1 CPU & 2 COTS GNSS receivers || 2 CPU & 4 COTS GNSS receivers
 - destructive
- High energy proton test
 - procedure modified by lessons learned
 - 30 200 MeV
 - 1 CPU & 2 COTS GNSS
 - o non-destructive

IOD and potential users

- In-orbit validation
 - Space Rider maiden flight agreed (signed MOU)
 - Potential satellites for IOD
- Commercial
 - Pitching to satellite developers
 - Discussions with OneWeb
 - Interest from constellations and launchers

OrbFIX BB Phase 2 outcome:

- Design of a COTS PPP GNSS receiver for space
 - \circ Capable to receive & decode Galileo HAS corrections
 - $\circ~$ Additional microcontroller for HAS decoding and PPP
- 1 assembled prototype and 1 EM, **TRL 5**
- TVAC, vibrations & proton irradiation testing of prototype
- Qualification plan -> ESA GSTP BB Phase 3 -> TRL 8
- Planned Space Rider IOD -> ESA GSTP BB Phase 3 -> **TRL 9**

Thank you!