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1 Introduction 

Over the past years the thread of intentional GNSS jamming and spoofing, aiming at falsifying 

the computed Position, Velocity and Time (PVT), has significantly increased since nowadays 

virtually anyone is able to perform GNSS attacks with low budget and open source code. Since 

today many sectors, including critical infrastructure, rely on Global Navigation Satellite Systems 

(GNSS) the necessity and relevance is given for the development of anti-spoofing techniques 

that allow to protect against GNSS attacks. 

In this activity state-of-the-art and emerging technologies that can be used for PVT assurance at 

the receiver level have been consolidated and a flexible anti-spoofing testbed has been 

developed (Figure 1-1) that can cope with different sensor configurations, emulate/integrate 

multiple technologies and includes simulators for sensor data, network aiding ranges and 

various spoofing attacks. An innovative anti-spoofing sensor fusion based on machine learning 

(ML) techniques has been developed and integrated into the testbed that allows to detect and 

mitigate diverse spoofing attacks. 

 

 

Figure 1-1: High-level Anti-Spoofing Testbed Architecture. Data simulations modules (red), User segment anti-
spoofing techniques: ML-supported Sensor Fusion (blue), GNSS SW Receiver (green) and Custom-off-the-shelf 

(COTS) Receiver (yellow). 

A data collection campaign has been conducted using a test vehicle equipped with an integrated 

sensor platform (ISP) from ANavS GmbH and a GNSS baseband sample recorder, provided by 

Airbus. Real sensor measurement, such as GNSS baseband samples, IMU, wheel odometry, 

camera and Lidar data have been recorded. GNSS baseband samples represent the raw radio 
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frequency (RF) signals that are received by a GNSS receiver and are used in this study to inject 

spoofing. The testbed and testbed modules have been implemented and validated and the 

machine learning based techniques have been trained followed by a performance evaluation 

covering different use cases and anti-spoofing techniques. The use cases comprise a static, low 

dynamic and high dynamic user, the anti-spoofing techniques compared are classical anti-

spoofing techniques (implemented in the Airbus Software Defined Radio (SDR)), the developed 

machine learning supported sensor fusion and the anti-spoofing capabilities of a commercial-

off-the-shelf (COTS) GNSS receiver. 

2 Innovative Anti-Spoofing Testbed and Sensor Fusion 

2.1 Anti-Spoofing Testbed 

The developed anti-spoofing testbed with the architecture shown in Figure 1-1 offers a flexible 

framework for testing and developing anti-spoofing techniques and can cope with different 

sensor configurations and emulate/integrate different technologies, grouped in Figure 2-1. 

 

Figure 2-1: Categorization and allocation of anti-spoofing techniques in the testbed. Type of 
technology/information (columns) and level of maturity and costs (group 1-3). Allocation to the GNSS SW 

Receiver (green boxes) and the ML-supported Sensor Fusion (blue boxes). Techniques not fully emulated but 
flexibility for future extension is offered (dashed boxes).  

The first part of the testbed architecture (left side), the data generation part, deals with real 

data acquisition and data simulation (red). The data is stored in a central file-based database 

with defined API interfaces and file formats (center). The user segment (right side) provides anti-

spoofing techniques processing the data stored in the database. Integrated anti-spoofing 

techniques comprise classical anti-spoofing techniques implemented in the GNSS SW Receiver 

(Airbus SDR, in green), the developed machine learning supported sensor fusion engine (blue) 
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and a custom-off-the-shelf GNSS receiver (Ublox, in yellow). Real GNSS baseband samples have 

been recorded that are processed by the spoofing attack simulator to inject different types of 

spoofing attacks, uncoordinated and coordinated attacks. The GNSS SW Receiver processes the 

baseband samples in software and generates GNSS observables, such as pseudorange, carrier 

phase, doppler shift and C/N0 measurements. The GNSS observables are processed by the 

machine learning supported sensor fusion. The COTS receiver is feed directly be replaying the 

authentic and the spoofed baseband samples. A performance analysis tool has been 

implemented in MATLAB to evaluate the performance of the different techniques comparing 

their output against a reference solution that has been generated from additional sensor 

measurements acquired during data collection. 

2.2 Anti-Spoofing Sensor Fusion and Machine Learning 

Figure 2-2 shows the overall machine learning supported anti-spoofing sensor fusion 

architecture. The upper part contains the machine learning based spoofing detection, the lower 

part contains the anti-spoofing sensor fusion. 

There are two approaches at the core of the machine learning based spoofing detection: 

• A neural network (NN) based approach that takes multi-dimensional time series data, 

i.e. multicorrelator outputs, as input to predict whether a GNSS attack is taking place or 

not, at each point in time. The approach has two stages: An unsupervised feature 

encoding step based on recurrent autoencoders (RAE), that learns a compact low-

dimensional representation from the input data without requiring labelled data 

(unsupervised). This step is followed by a supervised deep NN classifier, that is trained 

using labelled data to predict whether spoofing is taking place or not. 

• A camera-based approach is used to detect spoofing on the one hand, and to provide a 

global position and heading information on the other hand. A precise geo-referenced 

road map is generated from camera images and precise position and heading 

information a priori. To detect spoofing, camera images are projected to bird’s eye view 

(BEV), placed into the map using the current position and heading estimate and matched 

to the map using classical feature extraction and feature matching. This method is used 

to verify the position obtained from the GNSS receiver with camera image observations 

and an available road map of the environment. 

The two approaches described above are used for spoofing detection and mitigation as follows: 

• GNSS multi-correlator data time series data are used as input to train the NN-based 

approach. Correlator data as output of GNSS signal acquisition and tracking show a 

characteristic triangular pattern when authentic signals are tracked. The characteristics 

of these patterns change when spoofed signals are tracked, or show a specific transition 

when the spoofed signal takes over. 

• The general applicability of the NN-based approach has been further demonstrated 

using sensor data as input. Time series of vehicle wheel odometry velocity (magnitude) 
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and velocity (magnitude) derived from a GNSS/INS based solution was used as input 

and to train the NN-based approach. Since the vehicle wheel odometry sensor cannot 

be attacked by GNSS spoofing any deviation of these measurements relative to a GNSS-

based solution indicate GNSS spoofing. 

• The camera-based approach has been used to compute a 2D geo-referenced pose that 

is independent of GNSS signals and is fused in the sensor fusion to support positioning. 

Based on a positioning solution computed from all available sensors excluding the 

vulnerable GNSS signals, BEV-projected camera images are placed into and matched 

against the map. The obtained relative transformation yields a corrected pose that is 

fused as additional measurement into the sensor fusion. This step assists spoofing 

mitigation. 

• Furthermore, it has been demonstrated that camera image to map matching can 

provide important indications for a spoofing attack. If the user position has been 

attacked and manipulated, matching the camera image to the map fails and indicates 

spoofing. The position calculated from the GNSS signals could not be verified. Slighter 

drifts from the actual position can also be detected. Camera image matching provides 

a relative transformation that reflects the drift of the position computed from the GNSS 

signal, if this drift goes beyond the expected noise of the position estimate spoofing is 

possible.    

 

 

Figure 2-2: Machine learning (ML) supported anti-spoofing sensor fusion architecture. Top: ML-based spoofing 
detection. Bottom: Anti-spoofing sensor fusion. 
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The Sensor Fusion Engine is based on an Extended Kalman Filter (EKF) that performs the state 

prediction step using IMU measurements. All the other measurements are used to perform the 

state update. A proprietary and patented algorithm is used for integer ambiguity fixing that 

allows precise positioning at centimeter-level using carrier phase measurements. 

To perform classical consistency checks, such as C/N0, clock bias and clock drift, PVT monitoring 

and navigation message checks, a Consistency Checks module has been implemented. A 

separate preceding Kalman Filter is used to estimate the receiver clock bias and drift. A file-

based interface is provided to read signal specific spoofing detections, provided by the ML-based 

spoofing detection module. Fusion of spoofed signals is disabled in the Kalman Filter update 

step, such that only the authentic GNSS signals are used to compute the final user position. To 

support PVT calculation an interface is added to fuse additional pose information. 2D position 

and heading information computed by camera-image based map matching is fused using this 

interface to enhance the PVT solution. 

3 Results 

3.1 Data Collection and Data Simulation 

Measurement Vehicle, Equipment, Location and Recorded Tracks 

In the data collection campaign real sensor data including data to generate the reference 

trajectory have been recorded using a measurement vehicle, VW Golf 7, a sensor platform 

mounted on top of the vehicle and a baseband sample recorder, depicted in Figure 3-1. 

 

 

Figure 3-1: Measurement vehicle (top left) with mounted data acquisition and reference system, the Integrated 
Sensor Platform (ISP) from ANavS GmbH for multi-GNSS, IMU, wheel odometry, camera and lidar data recording. 

Averna Recorder for BB-sample acquisition (top right), connected to one antenna of the ISP. Location of RTK 
initialization and static datasets acquisition (s2, s3) with open sky conditions (bottom). 
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Several datasets have been recorded in Munich-Obermenzing close to the interchange A8/A99 

including urban areas and highway covering static, low-dynamic and high-dynamic user 

scenarios. The static scenarios have been recorded at the location shown in Figure 3-1 and 

marked in Figure 3-2. The three tracks that are marked in Figure 3-2 cover the dynamic scenarios. 

 

 

Figure 3-2: Overview of data collection in Munich-Obermenzing (interchange A8/A99). Dynamic use cases (tracks 
1-3, dots mark start/end point). Initialization and static use cases (marked by white arrow). Another static use 

case (s1) was recorded at a different location, in Munich-Laim. 

An overview of the recorded datasets and the injected simulated spoofing is given in Table 3-1. 

Each dataset covers at least 10min of recording to provide enough time for sensor fusion 

approaches to converge before injected spoofing attacks are activated. The dynamic datasets 

consist of three rounds of the respective track. This allows to split the data into training, 

validation and test set, for example to generate maps during training and using separate data 

for validation and testing for the camera-based approaches. 

 

Use Case Datasets Duration (min:sec) Simulated Spoofing Attacks 

Static s1, s2, s3 10:35, 10:46, 09:49 Timing attack (TA) 

Low dynamic d1, d3 10:38, 36:31 Meaconing attack (MA) and Coordinated (CA) 

High dynamic d2 24:50 Meaconing attack (MA) and Coordinated (CA) 

Table 3-1: Overview of use cases and datasets. Each dynamic dataset consists of three rounds of the track. 
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In this study three types of spoofing have been simulated, timing attacks, meaconing attacks 

and coordinated attacks. Timing attacks are applied to the static use cases, meaconing and 

coordinated attacks are applied to the dynamic use cases, see Table 3-1. Meaconing represents 

an uncoordinated attack in which navigation signals are rebroadcast without any 

synchronization to the authentic signals. In contrast, timing attacks and coordinated attacks 

require a proper synchronization to the authentic signals to achieve sophisticated attacks that 

let the user position slowly drift away from the original position for example. 

Reference Trajectory Generation 

First of all, after data acquisition, a highly precise reference trajectory has been generated, which 

is visualized in Figure 3-3. The reference trajectory has been used for sensor data simulation on 

the one hand, and on the other hand for performance evaluation of the anti-spoofing 

techniques. 

 

Figure 3-3: Reference trajectory computed using sensor fusion with multi-GNSS RTK (three Ublox receivers), IMU 
and wheel odometry. The velocity (magnitude) is color-coded. The highway high-dynamic track 2 appears “red”, 
with high velocities. Tracks 1 and 2 appear “blue, green, yellow” with low and medium velocities, cp. Figure 3-2. 

Simulated Data and Real Sensor Data 

This study combines both sensor data simulation and the use of real sensor data. Table 3-2 

summarizes the data simulated in the testbed, which comprises sensor data, network aiding 

ranges and simulated spoofing attacks represented by spoofing injected GNSS baseband 

samples. Real sensor data are acquired using the Integrated Sensor Platform (ISP) and the 

Averna BB-Sample recorder. Since GNSS baseband sample recording yields large raw data files, 
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in this activity the GNSS signals to be recorded were restricted to GPS and Galileo signals at a 

samples rate of 12.5 MHz. 

Simulated Data Real Sensor Data 

Sensor Data Simulation 

• Barometer 

• High-end IMU 

Network Aiding Simulation 

• Simulated LTE 4G-5G network 

positioning at ranging level 

Spoofing Attack Simulation 

• Timing Attack 

• Meaconing Attack 

• Coordinated Attack 

Real Sensor Data recorded with the Integrated 

Sensor Platform (ISP) and the Averna BB-

Sample Recorder 

• GNSS Baseband Samples (GPS and 

Galileo, samples rate 12.5 MHz) 

• Low-cost IMU 

• Wheel odometry 

• Camera 

• LiDAR 

Table 3-2: Overview of simulated data and recorded real sensor data. 

In the following samples of the resulting simulated and real sensor measurements are presented 

including: 

• Real Sensor Low-Cost IMU and Simulated High-End IMU 

• Camera Images 

• Anchor Selection for Network Aiding Simulation  

• Spoofing attack simulation 

 

Figure 3-4 shows samples of the recorded low-cost IMU data compared to the simulated high-

end IMU data. The high-end IMU shows less noise, which mainly reflects the fact that vehicle 

vibrations are present in the real tests but not in simulation. Apart from the noise both IMU data 

are very similar to each other, which validates the generation of simulated IMU data.  



Enabling Technologies for Secure Position-Navigation-

Time User Segments (ESA-TRP-TECESN-SOW-015054) 

Executive Summary Report 

  

Page 11 of 21 

 

 

 

 

 

Figure 3-4: Comparison between Low-Cost IMU (left column) and High-End IMU (right column) for acceleration 
(top) and angular rates (bottom). 

In Figure 3-5 sample images of the high-quality RGB camera are shown, which is mounted inside 

the Integrated Sensor Platform. Exemplarily images from low-dynamic urban scenes and from 

high-dynamic highway scenes are shown. In this study these camera images have been used to 

generate a precise road map on the one hand, and to perform camera image to map matching 

on the other hand. Resulting camera-based pose measurements support the sensor fusion and 

camera image to map matching has been demonstrated to be applicable for GNSS-pose 

verification and spoofing detection. 
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Figure 3-5: Sample camera images recorded in low-dynamic (top row) and high-dynamic scenarios (bottom row). 

Network aiding simulation has been performed to simulate LTE 4G-5G network positioning at 

ranging level. To increase realism anchor positions have been chosen at real radio mast 

positions, in our study two anchors have been chosen, which is the minimal reasonable 

configuration, see Figure 3-6. 

 

Figure 3-6: Anchors selected for network aiding ranges simulation. Complete trajectory (green) with 1st anchor 
(blue) and 2nd anchor (red). 

The developed spoofing attack simulator uses the recorded baseband samples to generated 

spoofing injected baseband samples that can be processed by the GNSS SW receiver. Three types 
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of spoofing have been implemented: Timing attack (spoofs time information), meaconing attack 

and coordinated attack (spoof position information). Various parameters can be configured to 

adjust spoofing attacks, such as start and end times, signal strength and target fake position, for 

example. Figure 3-7 shows example results of a meaconing and a coordinated attack compared 

to the reference trajectory. 

 

Figure 3-7: Results of the validation of the uncoordinated (left) and the coordinated attack simulation (right). The 
reference trajectory (red) is plotted against the estimated receiver position (blue). Meaconing leads to a jump to 

the fake position (left), the coordinated attack leads to a smooth drift from the correct to the fake position 
(right). 

3.2 Tests Overview 

Table 3-3 gives an overview of the test categories applied for generating the test plan. The 

categories include the three use cases, the phases testbed training and performance evaluation, 

nominal and faulty scenarios and finally the three anti-spoofing techniques, classical anti-

spoofing techniques (GNSS SW receiver), machine learning based anti-spoofing sensor fusion 

and the commercial-off-the-shelf (COTS) receiver. 

 

Use Cases 

UC1: static 

UC2: low dynamics 

UC3: high dynamics 

 

Phases 

TT: Testbed 

Training 

PE: Performance 

Evaluation 

Scenarios 

NS: Nominal 

FS: Faulty 

Anti-Spoofing 

Techniques 

CL: Classical 

ML: Machine Learning 

CO: Commercial RX 

Table 3-3: Test categories overview 

The following two sections show results obtained during performance evaluation for the static 

and the dynamic use cases in faulty conditions for all the three anti-spoofing techniques. Faulty 

scenarios start in nominal conditions without spoofing until the spoofing attack starts. Timing 

attacks last until the end of the dataset. Meaconing and coordinated attacks are tested within a 
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single dataset, where the coordinated attack follows the meaconing attack after a 100sec period 

without spoofing. 

3.3 Static Use Case 

Figure 3-8 illustrates the performance of the GNSS SW receiver and the COTS receiver anti-

spoofing techniques in a static use case when facing a simulated timing attack starting at 150s. 

 

Figure 3-8: GNSS position error in North direction observed in static condition, faulty scenario. The start of the 
timing attack is indicated (golden line). The position error of the COTS receiver (red) is shown in comparison to 

the GNSS SW receiver (blue) and the reference (green). 

First of all, the COTS receiver applies stronger smoothing and filtering compared to the GNSS 

SW receiver that does not apply any smoothing. Thus, the GNSS SW receiver PVT solution shows 

an increased noise level. Furthermore, both the COTS receiver and the GNSS SW receiver were 

fooled by the timing attack, since a significant change in the noise characteristics takes over as 

soon as the spoofing attack starts. The fact that the position is driven towards the correct 

position when spoofing starts is due to the fact that only the timing information has been 

spoofed but not the positional information (e.g. pseudorange measurements), and prior to the 

spoofing attack, the position solution shows the residual impact of ionosphere, troposphere and 

other error sources, which are not present to the same extend in the spoofing signals. 

Figure 3-9 and Figure 3-10 show the results of the ML-based spoofing detection and Anti-

Spoofing Sensor Fusion for the static use case with timing attack. Figure 3-9 (left) indicates the 

GPS and Galileo signals that have been detected as being spoofed (red dots) and the start of the 

spoofing attack. Spoofing was correctly identified for all spoofed signals during the complete 

spoofing attack. Moreover, the start of the spoofing attack was detected accurately. Very few 

false positive spoofing detections occurred at the beginning of the dataset. However, when 

these spoofing detections occurred, no measurements were available and the signals could not 

be tracked by the software receiver. These false positive detections correctly identify unusually 

low signal quality and have no effect since no measurements were generated. In Figure 3-10 



Enabling Technologies for Secure Position-Navigation-

Time User Segments (ESA-TRP-TECESN-SOW-015054) 

Executive Summary Report 

  

Page 15 of 21 

 

(right) the performance of the ML-based Anti-Spoofing Sensor Fusion is shown, compared to the 

performance of the other techniques presented in Figure 3-8. The position estimate converges 

closely to the reference position before spoofing starts, in contrast to the GNSS only techniques 

(Figure 3-8), which can be attributed to the additional fusion of simulated network aiding range 

measurements. No obvious effect of spoofing can be observed from the position error plotted 

in Figure 3-9 (right). Spoofing mitigation was successful with all detected spoofed samples being 

discarded. During the spoofing attack, since all GNSS measurements are rejected, only the 

simulated range measurements contribute to the PVT solution. 

 
Figure 3-9: ML-based spoofing detection in static condition, faulty scenario. Left: GNSS measurement availability 

(green) and spoofing detections (red). Right: Anti-Spoofing (AS) Sensor Fusion position in North direction. The 
ML-AS position estimate (blue) is shown in comparison to the reference (green). The start of the timing attack is 

indicated (golden line).

 

Figure 3-10: ML-based Anti-Spoofing Sensor Fusion: Comparison of spoofing detection and mitigation 
performance between nominal and faulty scenarios for timing attack with and without mitigation enabled. The 

horizontal position error is given as a cumulative distribution function (CDF). 
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Figure 3-10 reports the horizontal position error as a cumulative distribution function comparing 

timing attack without spoofing mitigation (orange) and with spoofing detection and mitigation 

enabled (blue). Similar plots are provided for the nominal case with no spoofing injected 

(unspoofed). A clear performance improvement is achieved when applying the developed 

spoofing detection and mitigation, and the performance is nearly recovered to the performance 

achieved in the nominal case. Both result plots for the unspoofed cases (purple and green) fall 

onto each other, showing that the anti-spoofing technique does not decrease the performance 

if no spoofing is present. 

3.4 Dynamic Use Cases 

Figure 3-11 illustrates the performance of the GNSS SW receiver and the COTS receiver anti-

spoofing techniques in a low dynamic use case when facing a coordinated attack followed by a 

meaconing attack. The position estimates in North direction and in North and East direction are 

plotted against the reference. 

 

Figure 3-11: Position estimate in North direction in low dynamic conditions, faulty scenario for the COTS receiver 
(red) in comparison to the GNSS SW receiver (blue) and the reference (green). Left: Position in North direction. 

Right: Position in North and East direction. The time ranges of spoofing attacks are indicated. A coordinated 
attack is followed by a meaconing attack. 

The GNSS SW receiver was fooled by both spoofing attacks. The coordinated attack results in a 

position drift, see Figure 3-11 first box, and the meaconing attack results in a jump to the fake 

position, not visible in Figure 3-11, because the fake position is far off. The COTS receiver was 

not affected by the spoofing attacks, however the availability of the COTS receiver position fixes 

was rather low (red markers) and the COTS receiver shows strong position extrapolation (red 

markers overshooting the reference trajectory) even when valid GNSS measurements are 

available, as confirmed by the GNSS SW receiver. 

Figure 3-12 and Figure 3-13 show the results of the ML-based spoofing detection and Anti-

Spoofing Sensor Fusion for the low dynamic use case with a meaconing attack followed by a 

coordinated attack. Figure 3-12 indicates the GPS and Galileo signals that have been detected 

as being spoofed (red dots) and the start and end times of the spoofing attacks. Spoofing was 
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correctly identified for all spoofed signals during both spoofing attacks. Moreover, the start of 

the spoofing attacks was detected accurately, also the end of spoofing attacks was detected 

correctly, though some detections extend a bit beyond the spoofing end. An exception represent 

false alarm detections for the three Galileo signals (PRN08, PRN07 and PRN02) in the time range 

between both spoofing attacks. Apart from this very few false positive spoofing detections 

occurred before the first and after the second attack. These are related to cases where no 

measurements were available and the signals could not be tracked. These false positive 

detections correctly identify unusually low signal quality and have no effect since no 

measurements were generated. The false alarm detections between the spoofing attacks are 

not critical since they do not introduce spoofed samples but discard signals that could be used 

for navigation. Still, enough GNSS signals remain and together with the additional sensors yield 

a performant solution as shown in and Figure 3-13 (right). 

 

Figure 3-12: GNSS measurement availability (green) and Machine Learning based spoofing detections (red) for 
low dynamic conditions, faulty scenario. The start and end of spoofing attacks is indicated (golden lines and 

dashed lines). A coordinated attack is followed by a meaconing attack. 

Figure 3-13 shows that spoofing affects the solution if mitigation is disable (left) and spoofed 

samples are processed. On the other hand, when spoofing mitigation is enabled (right) spoofed 

signals are detected (Figure 3-12) and discarded which results in a solution close to the 

reference. During coordinated attack the position is dragged away (top left, first attack window), 

and during meaconing attack (top left, second attack window) the position is affected as well, 

but does not jump to the fake position as in the GNSS-only solution from the GNSS SW receiver 

(Figure 3-11, left). Sensor fusion with absolute camera-based poses and network aiding ranges 

helps to compensate the meaconing attack when spoofed GNSS samples as used. After the first 

spoofing attack the position solution is still falsified but recovers to the correct solution after 66 

seconds approximately. The sensor fusion filter was affected by the first attack such that it could 

not recover immediately after the first spoofing attack. In contrast, after the meaconing attack 

ends, the correct position was achieved much faster. Notably the scenario of multiple spoofing 

attacks following each other has not been targeted initially and thus was not considered before 

in the training and testbed implementation phase.  
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Figure 3-13: ML-based Anti-Spoofing (AS) Sensor Fusion position error in North (top) and in North and East 
direction (bottom) observed in low dynamic conditions, faulty scenario. Left: Spoofing mitigation disabled. Right: 
Spoofing mitigation enabled. The start and end of spoofing attacks is indicated (golden lines and dashed lines). A 
coordinated attack is followed by a meaconing attack. The ML-AS position error (blue) is shown in comparison to 

the reference (green). 

Figure 3-14 reports the horizontal position error as a cumulative distribution function comparing 

the scenario of a meaconing attack followed by a coordinated attack without spoofing mitigation 

(orange, red) and with spoofing detection and mitigation enabled (dark and light blue). Two 

variants have been tested, “ver2” represents a more sophisticated attack in which the spoofer 

power level is only increased at the start of the spoofing attack (duration of 30s) instead applying 

a constant high power level during spoofing. Similar plots are provided for the nominal case with 

no spoofing injected (unspoofed). A clear performance improvement is achieved when applying 

the developed spoofing detection and mitigation, and the performance is nearly recovered to 

the performance achieved in the nominal case. The performance achieved for the more 

sophisticated attack “ver2” is comparable to the original attack variant. Both result plots for the 

unspoofed cases (purple and green) fall onto each other, showing that the anti-spoofing 

technique does not decrease the performance if no spoofing is present. Figure 3-15 shows 

validation results that illustrate the performance of the developed ML-based Anti-Spoofing 

Sensor Fusion under the tested meaconing and coordinated spoofing attacks plotting the 

resulting trajectories in the region where spoofing was injected. 
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Figure 3-14: ML-based Anti-Spoofing Sensor Fusion: Comparison of spoofing detection and mitigation 
performance between nominal and faulty scenarios for coordinated followed by meaconing attack with and 

without mitigation enabled. The horizontal position error is given as a cumulative distribution function (CDF). 

 

Figure 3-15: Validation results comparing the ML-based Anti-Spoofing Sensor Fusion performance with enabled 
spoofing detection and mitigation (green, dark and bright blue) and without spoofing detection and mitigation 
(orange, red). Mitigation enabled with no spoofing (green), mitigation enabled coordinated attack (CA) (dark 

blue), mitigation enabled meaconing attack (MA) (bright blue). Without spoofing detection and mitigation: CA 
(orange) and MA (red). The region where the spoofing attack was injected is shown. 
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4 Conclusion 

In this study, state-of-the-art and emerging technologies that can be used for PVT assurance at 

the receiver level have been consolidated and a flexible anti-spoofing testbed has been 

developed that can integrate different sensors and technologies. The testbed implementation 

contains modules for sensor data, network aiding and spoofing attack simulation, a GNSS 

software receiver for processing GNSS baseband samples and a machine learning based anti-

spoofing sensor fusion. A performance analysis tool allows to evaluate and compare different 

solutions. Three anti-spoofing techniques, classical techniques implemented in the GNSS SW 

receiver, the machine learning based anti-spoofing sensor fusion and the anti-spoofing 

capabilities of a COTS receiver have been evaluated in static and dynamic use cases using 

simulated spoofing attacks injected by the spoofing attack simulated. The developed machine 

learning based anti-spoofing sensor fusion shows very promising results for spoofing detection 

and mitigation in the evaluation performed in the testbed using simulated spoofing attacks. The 

main contributing machine learning techniques developed are a neural network approach that 

predicts spoofing from time series of GNSS multi-correlator data and a camera-image-to-map-

matching approach that yields camera-based georeferenced poses for sensor fusion, which has 

been demonstrated to be effective for spoofing detection as well. The neural network approach 

has also been demonstrated to be effective for spoofing detection using sensor data. Besides 

the machine learning techniques, the extended Kalman Filter (EKF) based anti-spoofing sensor 

fusion engine is a main component. It includes classical consistency checks, spoofing mitigation 

by rejecting spoofed GNSS signals and fusion of all real and simulated testbed measurements, 

including GNSS measurements, IMU, wheel odometry and barometer measurements, camera-

based poses and network aiding ranges. 

In conclusion, the goals of the project have been achieved completely. Next steps can be built 

on the results obtained using visual sensors and maps that allow to obtain independent global 

position and heading information, without the need of additional infrastructure, apart from a 

prebuilt map. In this sense, the development of secure, robust and accurate positioning enabled 

by camera-, LiDAR and/or RADAR-based localization on custom and publicly available maps is a 

highly interesting direction. Further detailed discussion on potential system future evolution is 

provided in the project technical note on “Guidelines for Sensor fusion-based GNSS Anti-

Spoofing and Potential System Evolution”. 
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