Secure PNT with Sensor Fusion and Machine Learning

Final Presentation (FP)

31.08.2023

Dr. Robert Bensch, Dr. Patrick Henkel, ANavS GmbH Dr. Jan Wendel, Airbus Defence and Space GmbH

Enabling Technologies for Secure Position-Navigation-Time User Segments (ESA-TRP-TECESN-SOW-015054)

Advanced Navigation Solutions

Outline

Motivation

- Innovative Anti-Spoofing Testbed with Sensor Fusion and Machine Learning
 - Design
 - Results
 - Software and Hardware
- Summary
- Next Steps

Motivation – GNSS Attacks

Maritime coordinated attack. Image source [1]

Transport/logistics coordinated attack. Image source [2]

© 2022 ADVA. All rights reserved.

Communication/energy networks timing attack. Image source [3]

[1] Jamming and Spoofing of Global Navigation Satellite Systems (GNSS), Intertanko, 2019, p. 5, fig. 2 [2] GNSS Spoofing Detection, Identifying GNSS Spoofing, Hexagon, Novatel, 2023 [3] Introducing GNSS/GPS backup as a service (GBaaS), ADVA, 2022, slide 2

Motivation – GNSS Attacks

Attacks on GNSS positioning information

Jamming and Spoofing of Global Navigation Satellite Systems (GNSS), Intertanko, 2019, p. 5, fig. 2
 GNSS Spoofing Detection, Identifying GNSS Spoofing, Hexagon, Novatel, 2023
 Introducing GNSS/GPS backup as a service (GBaaS), ADVA, 2022, slide 2

Motivation – GNSS Attacks

Maritime coordinated attack. Image source [1]

Transport/logistics coordinated attack. Image source [2]

© 2022 ADVA. All rights reserved.

Communication/energy networks timing attack. Image source [3]

Attacks on GNSS timing information

[1] Jamming and Spoofing of Global Navigation Satellite Systems (GNSS), Intertanko, 2019, p. 5, fig. 2
[2] GNSS Spoofing Detection, Identifying GNSS Spoofing, Hexagon, Novatel, 2023
[3] Introducing GNSS/GPS backup as a service (GBaaS), ADVA, 2022, slide 2

Secure PNT with Sensor Fusion and Machine Learning – Final Presentation 31.08.2023

ENABLING TECHNOLOGIES FOR SECURE POSITION-NAVIGATION-TIME USER SEGMENTS

Background and justification:

Over the past years the thread of intentional GNSS jamming and spoofing, aiming at falsifying the computed Position, Velocity and Time (PVT), has significantly increased since nowadays virtually anyone is able to perform GNSS attacks with low budget and open source code. Since today many sectors, including critical infrastructure, rely on Global Navigation Satellite Systems (GNSS) the necessity and relevance is given for the development of anti-spoofing techniques that allow to protect against GNSS attacks. This activity aims at developing a flexible testbed architecture and a machine learning (ML) based fusion approach for the detection and mitigation of spoofing attacks at the receiver level that can cope with different sensor configurations.

Objectives:

- · Consolidation of the state-of-the-art and emerging technologies that can be used for PVT assurance
- Design and implementation of innovative spoofing detection and mitigation technique based on sensor fusion
- Design and implementation of a flexible testbed capable of emulating/integrating multiple selected technologies, including machine learning for spoofing detection and mitigation
- Performance assessment and benchmark of different solutions

Achievements and status:

- Definition of the system requirements (Scenarios, target techniques and sensors; testbed requirements, test plan; anti-spoofing sensors API; SRR achieved)
- Design of the anti-spoofing testbed and sensor fusion (CDR achieved)
- Anti-spoofing testbed implementation and validation successful (data collection; training of ML techniques; testbed user manual, validation report; TRR achieved)
- Testbed execution successful (all tests of the test plan performed; performance report; promising spoofing detection and mitigation performance; QR achieved)

Benefits:

- Flexible testbed architecture and implementation for the evaluation of multi-sensor anti-spoofing sensor fusion techniques including sensor data and spoofing attack simulation
- Machine learning based anti-spoofing techniques proposed and evaluated that show promising detection and mitigation performance

Next steps:

- Secure, robust and accurate positioning enabled by camera-, LiDAR- and/or RADAR-based localization on custom and publicly available maps.
- General purpose flexible machine learning techniques for multi-sensor data anomaly detection.
- Technical Note: "Guidelines for Sensor fusion-based GNSS Anti-Spoofing and Potential System Evolution" discusses potential system future evolution

Spoofing mitigation performance

ees

→ THE EUROPEAN SPACE AGENCY

Outline

Motivation

- **Innovative Anti-Spoofing Testbed with Sensor Fusion** and Machine Learning
 - Design
 - Results
 - Software and Hardware
- Summary
- Next Steps

NAVS

High-level testbed architecture

High-level testbed architecture

User Platform

- Testbed Server
 - Sensor data and spoofing attack simulator
 - Scenario database, and BB samples replayer
 - Anti-spoofing sensor fusion based on machine learning
 - GNSS software receiver
 - Commercial-Off-The-Shelf (COTS) receiver
 - Performance analysis tool

Categorization and allocation of anti-spoofing techniques

Type of information/ technology

High-level testbed architecture

User Platform

Testbed Server

- Sensor data and spoofing attack simulator
- Scenario database, and BB samples replayer
- Anti-spoofing sensor fusion based on machine learning
- GNSS software receiver
- Commercial-Off-The-Shelf (COTS) receiver
- Performance analysis tool

Machine learning supported anti-spoofing sensor fusion

Advanced Navigation Solutions

Machine Learning supported Anti-Spoofing Sensor Fusion ML-based Spoofing Detection Preprocessing GNSS observation and Multi-correlator navigation data, 🔶 data Multi-correlator data Spoofin NN-based Spoofing detection Input poofing Detection detections Output Pre-GNSS/INS PVT Postpro Sensor data Sensor data process 2D pose corrections/ Validity of matching cessing ing Camera images, Camera-based Camera images, 🔔 Map, GNSS/INS PVT Map Spoofing Detection 2D pose Camera images Map, Camera-based 2D camera-based All sensors PVT poses Localization (no GNSS) GNSS/INS PVT, All sensors PVT (no GNSS Preprocessing Sensor Fusion Spoofing 2D poses detections KF and drift Consistency Checks GNSS observation and navigation data Extended Kalman Filter Input Output Pre-U data State Prediction Sensor data Postpro State Update process cessing ing GNSS data. PVT robust Sensor data (w/o IMU data) to spoofing, Spoofing detections Integer Ambiguity Fixing

Machine learning supported anti-spoofing sensor fusion

Machine Learning based Spoofing Detection

Machine learning supported anti-spoofing sensor fusion

- Machine Learning based Spoofing Detection
- Anti-Spoofing Sensor Fusion

Machine learning supported anti-spoofing sensor fusion

Advanced Navigation Solutions

- Machine Learning based Spoofing Detection
 - 1. NN-based spoofing detection (Recurrent autoencoder (RAE) and DNN classifier, multi dimensional time-series data)
 - a) GNSS multi-correlator data
 - b) Cooperative consistency check of compatible sensor and GNSS-derived measurements
 - **2. Camera-based localization** on georeferenced road maps
 - **a)** Spoofing detection (verification of GNSS-based pose)
 - **b)** Spoofing mitigation (provision of camera-based pose)
- Anti-Spoofing Sensor Fusion

Machine learning supported anti-spoofing sensor fusion

- Machine Learning based Spoofing Detection
- Anti-Spoofing Sensor Fusion
 - Extended Kalman Filter based sensor fusion (EKF)
 - State prediction: IMU measurements
 - **State update:** GNSS measurements, additional sensors:
 - Real and Simulated Sensors
 - GNSS RTK, Integer Ambiguity Fixing
 - Classical consistency checks module
 - Inputs from ML module:
 - Spoofing detections and camera-based poses

Motivation

Outline

- Innovative Anti-Spoofing Testbed with Sensor Fusion and Machine Learning
 - Design
 - Results
 - Software and Hardware
- Summary
- Next Steps

Results: Overview

- Data Collection and Data Generation
- Anti-Spoofing Techniques Results

Results: Data Collection and Reference Trajectory

Advanced Navigation Solutions

58.15

32.71

Use Case	Datasets	Duration (min:sec)	Simulated Spoofing Attacks
Static	s1, s2, s3	10:35, 10:46, 09:49	Timing attack (TA)
Low dynamic	d1, d3	10:38, 36:31	Meaconing (MA) and Coordinated attack (CA)
High dynamic	d2	24:50	Meaconing (MA) and Coordinated attack (CA)

Overview of data collection location, trajectories and simulated attacks.

Results: Simulated and Real Sensor Data

Simulated Data	Real Sensor Data					
Sensor Data Simulation	Real Sensor Data recorded with the Integrated Sensor Platform (ISP) and the					
• Barometer	Averna BB-Sample Recorder (Averna RP-					
 High-end IMU 	6120)					
Network Aiding Circulation	GNSS Baseband Samples (GPS and					
Network Alding Simulation	Galileo, samples rate 12.5 MHz)					
• Simulated LTE 4G-5G network	Low-cost IMU					
positioning at ranging level	Wheel odometry					
Spoofing Attack Simulation / Spoofed BB-	• Camera					
samples	• LIDAR					
Timing Attack						
Meaconing Attack						
Coordinated Attack						

Overview of simulated and recorded real sensor data.

Anchors for network aiding simulation

Camera images

Results: Spoofing Attack Simulation

Nulling emulation validation

Uncoordinated attack simulation

Advanced Navigation Solutions

AIRBUS

Results: Overview

- Data Collection and Data Generation
- Anti-Spoofing Techniques Results

Results: Overview

- Data Collection and Data Generation
- Anti-Spoofing Techniques Results
 - Anti-Spoofing Sensor Fusion based on Machine Learning
 - Individual techniques results
 - Overall results
 - GNSS SW Receiver (Airbus SDR) vs. COTS Receiver

Results: NN-based spoofing detection – Multi-correlator data

Advanced Navigation Solutions

	Total			Accuracy		
Dataset	Accuracy	Precision	Recall	СА	MA	ТА
Galileo	0.990	0.929	0.976	0.98	0.984	0.99
GPS	0.989	0.844	0.985	0.991	0.994	0.995

Mutli-correlator data based spoofing detection results for a model trained and tested on Galileo and GPS signals, respectively. Individual and total results for coordinated (CA), meaconing (MA) and timing attacks (TA).

Results: NN-based spoofing detection – Multi-correlator data

522.88

523.74

spoofing

ÁNAV

Spoofing detections across time for individual GPS and Galileo signals. Timing attack (dataset: s1_2 TA)

Results: NN-based spoofing detection – Sensor vs. GNSSderived measurements

Advanced Navigation Solutions

Datasat	Accuracy				
Dalasel	No Spoofing	СА	MA		
d1 (round 2)	0.996	0.902	0.991		
d2 (round 1)	0.981	0.912	0.931		
d3 (round 2)	0.975	0.796	0.823		

Sensor data based spoofing detection results for dynamic scenarios. The detection accurarcy is given for the nominal case and for coordinated (CA) and meaconing attacks (MA).

Results: NN-based spoofing detection – Sensor vs. GNSSderived measurements

Advanced Navigation Solutions

Spoofing detection across time (marked red) for a simulated coordinated attack (attack start marked with red dashed line). Consistency check of wheel odometry velocity (orange) and GNSS/IMU EKF derived velocity (blue). Signal difference in yellow.

Results: Camera-based localization – Road map generation

Advanced Navigation Solutions

Road map generation from bird's eye projected camera images.

Results: Camera-based localization – Two applications

Advanced Navigation Solutions

Road map generation from bird's eye projected camera images.

Results: Camera-based localization – Spoofing mitigation using camera-based pose from camera-image-to-map matching

Advanced Navigation Solutions

Road map generation from bird's eye projected camera images.

→ Camera-based absolute poses for sensor fusion

Results: Camera-based localization – **Spoofing detection** by camera-image-to-map matching

Advanced Navigation Solutions

Road map generation from bird's eye projected camera images.

Results: Camera-based localization – **Spoofing detection** by camera-image-to-map matching

Valid camera-image-to-map matches

The set of the set of

d1 r2

Camera-image-to-map matching in Nominal scenario / No Spoofing Camera-image-to-map matching in Faulty scenario / Coordinated attack

Results: Overview

- Data Collection and Data Generation
- Anti-Spoofing Techniques Results
 - Anti-Spoofing Sensor Fusion based on Machine Learning
 - Individual techniques results
 - Overall results
 - GNSS SW Receiver (Airbus SDR) vs. COTS Receiver

Results: Anti-Spoofing Sensor Fusion based on Machine Learning. Sensor fusion performance without spoofing mitigation.

Unspoofed, Trajectory of low-dynamic scenario Coordinated attack, Trajectory of low-dynamic scenario Meaconing attack, Trajectory of low-dynamic scenario

Results: Anti-Spoofing Sensor Fusion based on Machine Learning. Sensor fusion performance with spoofing mitigation.

Comparison between mitigated unspoofed, mitigated CA and mitigated MA, and the CA and MA without mitigation.

Results: Overview

- Data Collection and Data Generation
- Anti-Spoofing Techniques Results
 - Anti-Spoofing Sensor Fusion based on Machine Learning
 - **GNSS SW Receiver vs. COTS Receiver**

effective against simulated spoofing attacks (a,b) COTS receiver was resistant against coordinated and meaconing attacks, but not

- effective against timing attack (a,b)
- Ublox receiver shows partially very low availability (c)
- Ublox solution shows strong extrapolation artifacts, even when signal with sufficient quality are available (d)

Results: GNSS SW Receiver vs. COTS Receiver

400

Ground Truth

Airbus SDR

O UBX Timing Attack

500

40

600

b) Coordinated and meaconing attack affect SW-receiver, but not Ublox (in this case)

c) Low availability of COTS solution d) Strong extrapolation of COTS receiver

Innovative Anti-Spoofing Testbed with Sensor Fusion

Motivation

Outline

and Machine Learning

- Design
- Results
- Software and Hardware
- Summary
- Next Steps

Software and Hardware – Overview

High-level testbed architecture

Hardware Modules

- Multi-Sensor RTK Module
- Computer Vision Module (NVIDIA Jetson embedded platform)

Software Modules

- Sensor Data and Network Aiding Simulator
- Spoofing Attack Simulator
- GNSS SW Receiver
- Anti-Spoofing Sensor Fusion based on Machine Learning
- Performance Analysis Tool

Hardware Deliverables – Overview

Advanced Navigation Solutions

MSRTK Module

- Industrial Casing (with • Touchscreen)
- 3x Ublox Dual-Frequency • **GNSS** Receivers
- 3x Survey-grade GNSS • Antennas
- High-grade MEMS IMU • (Epson-MG370)
- Interfaces: •
 - Ethernet •
 - Wi-Fi
 - CAN
 - LTE

Multi-Sensor RTK Module

Hardware Deliverables – Demo Video

Advanced Navigation Solutions SimpleScreenRecorder _ 🗆 😣 obert@dell-precision-3541-003:-\$ Recording Start recording Enable recording hotkey Enable sound notifications ✓ Ctrl + Shift + Hotkey: Information Preview Total time: 0:00:00 Preview frame rate: 10 \$ FPS in: 0.00 Note: Previewing requires extra CPU time FPS out: 0.00 (especially at high frame rates). Size in: 1846x1043 52610 Size out: File name: File size: 0 B Bit rate: 0 bit/s Start preview Log [PageRecord::StartPage] Starting page .. [PageRecord::StartPage] Started page. Cancel recording Save recording

Motivation

Outline

- Innovative Anti-Spoofing Testbed with Sensor Fusion and Machine Learning
 - Design
 - Results
 - Software and Hardware
- Summary
- Next Steps

Summary

- Flexible anti-spoofing testbed, including sensor data and spoofing attack simulation developed
- Innovative anti-spoofing sensor fusion based on machine learning developed, that achieves very promising results in all tested scenarios
- Comparison to classical anti-spoofing techniques and performance of a COTS receiver
- Testbed software and data acquisition hardware provided

Outline

Motivation

- Innovative Anti-Spoofing Testbed with Sensor Fusion and Machine Learning
 - Design
 - Results
 - Software and Hardware
- Summary

Next Steps

ENABLING TECHNOLOGIES FOR SECURE POSITION-NAVIGATION-TIME USER SEGMENTS

Advanced Navigation Solution

Testbed architecture

Next Steps

Secure, robust and accurate positioning enabled by camera-, LiDAR-

and/or RADAR-based localization on custom and publicly available

maps.

General purpose flexible machine learning techniques for multi-sensor

data anomaly detection.

→ D501: TN – Guidelines for Sensor fusion-based GNSS AS and

Potential System Evolution

Thank you for listening!

Questions?

Contact information

www.anavs.de

Managing director:
Phone:
Fax:
Email:

Dr. Patrick Henkel +49 (0) 89 890567-21 +49 (0) 89 890567-20 patrick.henkel@anavs.de

Address:

ANavS GmbH Gotthardstraße 40 80686 München

Advanced Navigation Solutions

