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Motivation — GNSS Attacks
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Data center - San Francisco Data center - New York

Attacker

© 2022 ADVA. All rights reserved.

Maritime coordinated attack. Transport/logistics coordinated attack. Communication/energy networks timing attack.
Image source [1] Image source [2] Image source [3]

[1] Jamming and Spoofing of Global Navigation Satellite Systems (GNSS), Intertanko, 2019, p. 5, fig. 2
[2] GNSS Spoofing Detection, Identifying GNSS Spoofing, Hexagon, Novatel, 2023
[3] Introducing GNSS/GPS backup as a service (GBaaS), ADVA, 2022, slide 2
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Attacks on GNSS timing information

[1] Jamming and Spoofing of Global Navigation Satellite Systems (GNSS), Intertanko, 2019, p. 5, fig. 2
[2] GNSS Spoofing Detection, Identifying GNSS Spoofing, Hexagon, Novatel, 2023
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ENABLING TECHNOLOGIES FOR SECURE POSITION-NAVIGATION-

TIME USER SEGMENTS

TRP T606-606ES Contract 4000129660 YoC: 2023
TO: Gianluca Caparra (TEC-ESN)

Initial: 2 Achieved: 4 Target TRL: 3 Date: Q4 2022

Background and justification:

Over the past years the thread of intentional GNSS jamming and spoofing, aiming at falsifying the computed Position, Velocity and Time (PVT), has significantly increased
since nowadays virtually anyone is able to perform GNSS attacks with low budget and open source code. Since today many sectors, including critical infrastructure, rely
on Global Navigation Satellite Systems (GNSS) the necessity and relevance is given for the development of anti-spoofing technigues that allow to protect against GNSS
attacks. This activity aims at developing a flexible testbed architecture and a machine learning (ML) based fusion approach for the detection and mitigation of spoofing
attacks at the receiver level that can cope with different sensor configurations.

Objectives:

* Consolidation of the state-of-the-art and emerging technologies that can be used for PVT assurance

* Design and implementation of innovative spoofing detection and mitigation technique based on sensor fusion

= Design and implementation of a flexible testbed capable of emulating/integrating multiple selected technologies, including machine learning for
spoofing detection and mitigation

* Performance assessment and benchmark of different solutions

Contractor{s): ANavS (DE), Airbus Defence & Space (DE) ESA Budget: m

Eesa

AIRBUS

[ -

Achievements and status:

+ Definition of the system requirements (Scenarios, target techniques and sensors; testbed requirements, test plan; anti-spoofing sensors API; SRR achieved)

+ Design of the anti-spoofing testbed and sensor fusion (CDR achieved)

* Anti-spoofing testbed implementation and validation successful (data collection; training of ML technigues; testbed user manual, validation report; TRR achieved)
* Testbed execution successful (all tests of the test plan performed; performance report; promising spoofing detection and mitigation performance; QR achieved)

Benefits:

* Flexible testbed architecture and implementation for the evaluation of multi-sensor anti-spoofing sensor fusion techniques including sensor data and
spoofing attack simulation

= Machine learning based anti-spoofing techniques proposed and evaluated that show promising detection and mitigation performance

Next steps:

* Secure, robust and accurate positioning enabled by camera-, LiDAR- and/or RADAR-based localization on custom and publicly available maps.

= General purpose flexible machine learning techniques for multi-sensor data anomaly detection.

* Technical Note: ,Guidelines for Sensor fusion-based GNSS Anti-Spoofing and Potential System Evolution® discusses potential system future evolution
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Design: Anti-Spoofing Testbed
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High-level testbed architecture
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Design: Anti-Spoofing Testbed

Advanced Navigation Solutions

Motion Network GNSS signal Additional input

Consistency checks -
: Based Based processing

Step detectors i I
Clock drift 4G/5G Cell ID Multi-peak | Multiple antennas I
) IMU acquisition G apntennas] I
(low-end WiFi RSSI signature - e
Group 1 .. el sensor) SQM
Navigation messag Cross-check using Barometer
Odometer network assistance Code-carrier
| PVT | data F em— Magnetometer

I Cf No I N . .

q

[} .
Correlator levell | Mu]tggi:l’ai)t?nms :
techniques |
(N N S AOA.K

1
— | . 1
Feature matching Radar | FRemote processing of 1M Rob s I Beamforming
. o ishEvi ----I ; d chi obust use o I
Group 2 (e.g. FishEye encrypted chips 1| carrier phase |
camera) Camera | | (ora-posteriori j | measurements | Ranging on signals [l

| broadeast) I of opportunity ||

I' ] -‘-. -.-
L i — IVectm tr acklngl | /UWB)

IMU (high- 4 [
end sensor)| | | I
Feature matching | Cooperative | | 1
(e.g. map matching)y Lidar ] consistency checks | | 1
Group 3 po=—— (e.g. observables I Wireless secure ||
Clock drift I Ultrasoni?l consistency or I time transfer I
(high-end clock) | “presence of encry‘ptedl I
I' Thermal | signals) I
vision | I
I I

Categorization and allocation of anti-spoofing techniques

)s

Secure PNT with Sensor Fusion and Machine Learning — Final Presentation 31.08.2023 1k AIRBUS A



Design: Anti-Spoofing Testbed
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Design: Anti-Spoofing Testbed
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Design: Anti-Spoofing Sensor Fusion and
Machine Learning
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Results: Overview
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Results: Data Collection and Reference Trajectory A

Use Case Datasets | Duration (min:sec) | Simulated Spoofing Attacks

Static s1,s2,s3 | 10:35, 10:46, 09:49 | Timing attack (TA)

Low dynamic | d1, d3 10:38, 36:31 Meaconing (MA) and Coordinated attack (CA)
High dynamic | d2 24:50 Meaconing (MA) and Coordinated attack (CA)

Overview of data collection location, trajectories and simulated attacks.
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Reference trajectory computed using ANavS Integrated
Sensor Platform (ISP) and ANavS Multi-GNSS RTK
Sensor Fusion.
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Results: Simulated and Real Sensor Data

Simulated Data Real Sensor Data

Real Sensor Data recorded with the
Integrated Sensor Platform (ISP) and the
e Barometer Averna BB-Sample Recorder (Averna RP-
6120)

Sensor Data Simulation

e High-end IMU

e GNSS Baseband Samples (GPS and

Network Aiding Simulation _
Galileo, samples rate 12.5 MHz)

° Simulated LTE 4G-5G network ° Low-cost IMU

positioning at ranging level e  Wheel odometry
Spoofing Attack Simulation / Spoofed BB- e (Camera

samples e LiDAR

e Timing Attack
e  Meaconing Attack

° Coordinated Attack

Overview of simulated and recorded real sensor data. -
Cameraimages
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Results: Spoofing Attack Simulation
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Results: NN-based spoofing detection — Multi-correlator data A

S

Advanced Navigation Solutions

Machine Learning supported Anti-Spoofing Sensor Fusion

Preprocessing

GNSS observation and
= navigation data,
Multi-correlator data

ML-based Spoofing Detection

Multi-correlator
data

NN-based

Dataset Total Accuracy
atase Accuracy |Precision [Recall CA MA TA
Galileo 0.990 0.929 0.976 0.98 0.984 0.99

GPS

0.989

0.844

0.985

0.991

0.994

0.995

Mutli-correlator data based spoofing detection results for a model trained and
tested on Galileo and GPS signals, respectively. Individual and total results
for coordinated (CA), meaconing (MA) and timing attacks (TA).
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Results: NN-based spoofing detection — Multi-correlator data A

Spoofing Prediction Ground Truth

CA-PRNO1 CA-PRNOL
G P S CA-PRNO3 CA-PRNO3
CA-PRNO4 CA-PRNO4
CA-PRNOS | CA-PRNOS
CA-PRNO7 CA-PRNO7
CA-PRNOY 4 [ | CA-PRNOY 4 ||
CA-PRN12 A | CA-PRN12 |
CA-PRN14 ] | CA-PRN14 { |
CA-PRN15 4 | CA-PRN15 4 |
CA-PRNL16 CA-PRN16 -
CA-PRNL7 CA-PRN17 -
CA-PRN19 | cA-PRN19 |
CA-PRN21 CA-PRN21 -
CA-PRN22 CA-PRN22
CA-PRN23 CA-PRN23 -
CA-PRN24 CA-PRN24 -
CA-PRN25 | CA-PRN25 - |
CA-PRN26 1 | CA-PRN26 { |
CA-PRN2S o | CA-PRN28 4 |
CA-PRN31 | | CA-PRN31 | |
CA-PRN32 o . ‘ ‘ ‘ | CA-PRN32 4 . . ‘ ‘ |
0.32 130.96 261.6 392.24 522.88 0.32 130.96 261.6 392.24 522.88

timestamps [seconds] timestamps [seconds]

Galileo  sceruos BC-PRNO3
BC-PRNOS BC-PRNO5
BC-PRNOS BC-PRNOB
BC-PRN13 BC-PRN13
BC-PRN15 BC-PRN15
BC-PRN18 BC-PRN18
BC-PRN21 BC-PRN21 |
.64 134.42 264.19 39397 <2374 .64 134.42 264.19 393.97 523.74

timestamps [seconds] timestamps [seconds]

Spoofing detections across time for individual GPS and Galileo signals.
Timing attack (dataset: s1 2 TA)

Il no spoofing

B spoofing
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Results: NN-based spoofing detection — Sensor vs. GNSS-
derived measurements

Dataset

Accuracy

No Spoofing

CA

MA

d1 (round 2)

0.996

0.902

0.991

d2 (round 1)

0.981

0.912

0.931

d3 (round 2)

0.975

0.796

0.823

Sensor data based spoofing detection results for
dynamic scenarios. The detection accurarcy is given
for the nominal case and for coordinated (CA) and
meaconing attacks (MA).
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Results: NN-based spoofing detection — Sensor vs. GNSS- <

derived measurements

Velocity Magnitude [m/s]

d2 rl1_CA validation
|

25 - - | r ’\‘/—ﬂ/ﬂ\ \/\/\

I} GNS5/INS EKF Velocity Mag. :
—— 11} Wheel Odo. Velocity Mag. !
Difference: 1}-11) \
- -- - -5Spoofing Start

Speofing Ground Truth
I Spoofing Detection (NN)

15 u

20

o

: \ 20
: V
1
! o
i \ )
1
' 15 §

10 - ! .%
|
| V /\ o

5 1 o
! tr 10 £
, |/ K k]
I [=]
| . &

0 T
1
1
: 5

5 v
1
1
i
1

-10 | | |

1.318 1.3185 1.319 1.3195 1.32 1.3205 1.321 1.3215 1.322

Time of Week [s] %107

Spoofing detection across time (marked red) for a simulated coordinated
attack (attack start marked with red dashed line). Consistency check of wheel
odometry velocity (orange) and GNSS/IMU EKF derived velocity (blue). Signal

difference in yellow.
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Results: Camera-based localization — Road map generation A
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Results: Camera-based localization — Two applications

jer pach. =% =

#
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5
5

pensors

Scenario
Database i

Machine Learning supported Anti-Spoofing Sensor Fusion
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Results: Camera-based localization — Spoofing mitigation usingA:
camera-based pose from camera-image-to-map matching

S
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Results: Camera-based localization — Spoofing mitigation usingA:
camera-based pose from camera-image-to-map matching

Advanced Navigation Solutions
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Results: Camera-based localization — Spoofing detection by <
camera-image-to-map matching

A S
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Results: Camera-based localization — Spoofing detection by
camera-image-to-map matching
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Results: Overview

Advanced Navigation Solutions

m Data Collection and Data Generation

m Anti-Spoofing Techniques Results
m Anti-Spoofing Sensor Fusion based on Machine Learning
= Individual techniques results
m Overall results

m GNSS SW Receiver (Airbus SDR) vs. COTS Receiver
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Results: Anti-Spoofing Sensor Fusion based on Machine Learning.
Sensor fusion performance without spoofing mitigation.

Advanced Navigation Solutions

,,,,,

Unspoofed, Coordinated attack, Meaconing attack,
Trajectory of low-dynamic scenario Trajectory of low-dynamic scenario Trajectory of low-dynamic scenario
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Results: Anti-Spoofing Sensor Fusion based on Machine Learning.
Sensor fusion performance with spoofing mitigation.

1 ﬁ
09
0.8 |

B
0.7 /
0.6 - 8 Lail
80
S .5
0.4
03F | !Unspoofed
| Unspoofed (Mitigation)
0.2 [ |CA (Mitigation) _ \ N . 3 2 2 :
MA (Mitigation) SR ey f 7 NS Unspoofed (Mitigation)
01F CA : : : & S i - [ ]CA (Mitigation)
L IMA ) Y O r QL gy ' MA (Mitigation)
ob— — L o . o T RN 7 (TS e L___CA
1072 10 10° 10° 102 10° e A8 4 -
Horizontal Position Error [m] AR ‘ /4 e PV 1ty Google Earﬂth;
Performance of spoofing mitigation. Cumulative distribution Comparlson between mltlgated unspoofed mltlgated CA and mltlgated MA, and the CA
function (CDF) of horizontal position error. and MA without mitigation.

)s

Secure PNT with Sensor Fusion and Machine Learning — Final Presentation 31.08.2023 38 AIRBUS A



Results: Overview

Advanced Navigation Solutions

m Data Collection and Data Generation

m Anti-Spoofing Techniques Results

= Anti-Spoofing Sensor Fusion based on Machine Learning

m GNSS SW Receiver vs. COTS Recelver
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Results: GNSS SW Receiver vs. COTS Receiver

-
=]

m Classical AS techniques of SW-receiver not :

effective against simulated spoofing attacks (a,b) . f, E
m  COTS receiver was resistant against :

coordinated and meaconing attacks, but not . o

effective againSt timing attack (a’b) a) Timing atTtir;i:(sll fools SW- b) Coordinatedﬂr:r(::j meaconing

receiver and Ublox attack affect SW-receiver, but not

= Ublox receiver shows partially very low Ublox (in this case)

availability (c) -l ] ! °
= Ublox solution shows strong extrapolation | el

artifacts, even when signal with sufficient quality

are available (d) v — ] |

c) Low availabilityEa(S)t;‘m)COTS solution d) Strong extrapolatTiiger;S)of COTS receiver
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QOutline

Advanced Navigation Solutions

m Motivation

= Innovative Anti-Spoofing Testbed with Sensor Fusion

and Machine Learning

= Design
= Results

m Software and Hardware

® Summary

m Next Steps
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Software and Hardware — Overview

User Platform

Averna Recorder

GNSS
BB samples

real sensors &
ground truth

- spoofin
manitoring pooting
A . ° detections
information

1

emulated sensors

GNSS observables
multi-correlator data

BB samples

BB samples

scenario metadata &
ground truth

BB Samples
Replayer

High-level testbed architecture

7

oA v
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Advanced Navigation Solutions

Hardware Modules

m  Multi-Sensor RTK Module
= Computer Vision Module (NVIDIA Jetson embedded

platform)

Software Modules
m Sensor Data and Network Aiding Simulator
m  Spoofing Attack Simulator
m  GNSS SW Receiver

=  Anti-Spoofing Sensor Fusion based on Machine

Learning

m Performance Analysis Tool
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Hardware Deliverables — Overview

MSRTK Module

* Industrial Casing (with
Touchscreen)

*  3x Ublox Dual-Frequency
GNSS Receivers

+  3x Survey-grade GNSS
Antennas

* High-grade MEMS IMU
(Epson-MG370)

* Interfaces:

 Ethernet
e Wi-Fi

+ CAN

« LTE

Multi-Sensor RTK Module

Advanced Navigation Solutions

NVIDIA Jetson Xavier NX

* Al-power: 21 TOPS

«  GPU: NVIDIA Volta™-GPU mit
384 Cores und 48 Tensor-Cores

« CPU: NVIDIA Carmel ARM® v8.2
64-Bit-CPU, 6 Cores

 RAM: 16 GB

* Interfaces:

* Ethernet
« USB

«  MIPI/CSI
« HDMI

High-quality RGB camera
(FLIR Grasshopper3)
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Hardware Deliverables — Demo Video

simpleScreenRecorder Advanced Navigation Solutions
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m Motivation

= Innovative Anti-Spoofing Testbed with Sensor Fusion

and Machine Learning

= Design
= Results

m Software and Hardware

m Summary

m Next Steps
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Summary

m Flexible anti-spoofing testbed, including sensor data and

spoofing attack simulation developed

= Innovative anti-spoofing sensor fusion based on machine
learning developed, that achieves very promising results in all

tested scenarios

m Comparison to classical anti-spoofing techniques and

performance of a COTS receiver

m Testbed software and data acquisition hardware provided
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m Motivation

= Innovative Anti-Spoofing Testbed with Sensor Fusion

and Machine Learning

= Design
= Results

m Software and Hardware

® Summary
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ENABLING TECHNOLOGIES FOR SECURE POSITION-NAVIGATION-
TIME USER SEGMENTS

Contractor{s): ANavS (DE), Airbus Defence & Space (DE) ESA Budget: “

TRP T606-606ES Contract 4000129660 YoC: 2023
TO: Gianluca Caparra (TEC-ESN)
m Achieved: 4 Target TRL: 3 Date: Q4 2022

Next Steps

esa

A‘\@;’ AIRBUS

m_Secure, robust and accurate positioning enabled by camera-, LIDAR-

and/or RADAR-based localization on custom and publicly available

mapS ' Testhed architecture
= General purpose flexible machine learning techniques for multi-sensor T
s u.s: ,)l
data anomaly detection. o
w 1 Spoofed
= - D501: TN — Guidelines for Sensor fusion-based GNSS AS and “rn e
Potential System Evolution al  J =

o
102 107! 10° 10! 107 103
Haorizontal Position Error [m]

Spoofing mitigation performance
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Thank you

for listening!

Questions?

Contact information

WWWw.anhavs.de

Managing director:
Phone:

Fax:

Email:

Address:

ANavS GmbH
GotthardstralRe 40
80686 Miinchen

Dr. Patrick Henkel

+49 (0) 89 890567-21
+49 (0) 89 890567-20
patrick.henkel@anavs.de
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