GaN Power stage based on European technology for Navigation SSPA in L-band Contract 4000103322

WE LOOK AFTER THE EARTH BEAT

Final Review

12/07/2016

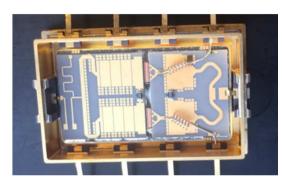
Ref.:

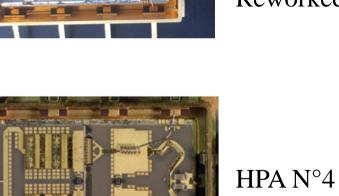
THALES ALENIA SPACE SECRET

GaN Power stage based on European technology for Navigation SSPA in L-band Contract 4000103322

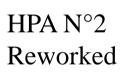
2

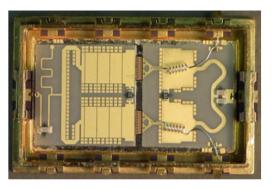
~ AGENDA

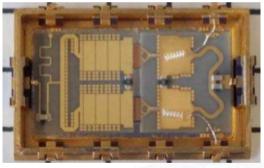

HPA measurements


- Failure Analysis
- Improvements proposition
- Possible HPA design with improvement
- Assessment of performance of SSPAs
- Development perspectives
- SOW Compliance Matrix
- 🛰 RIDs

	Main message		
12/07/2016	, in the second s	<u> </u>	
Ref ·		PROPRIETARY INFORMATION	ThalesAlenia


HPA measurements

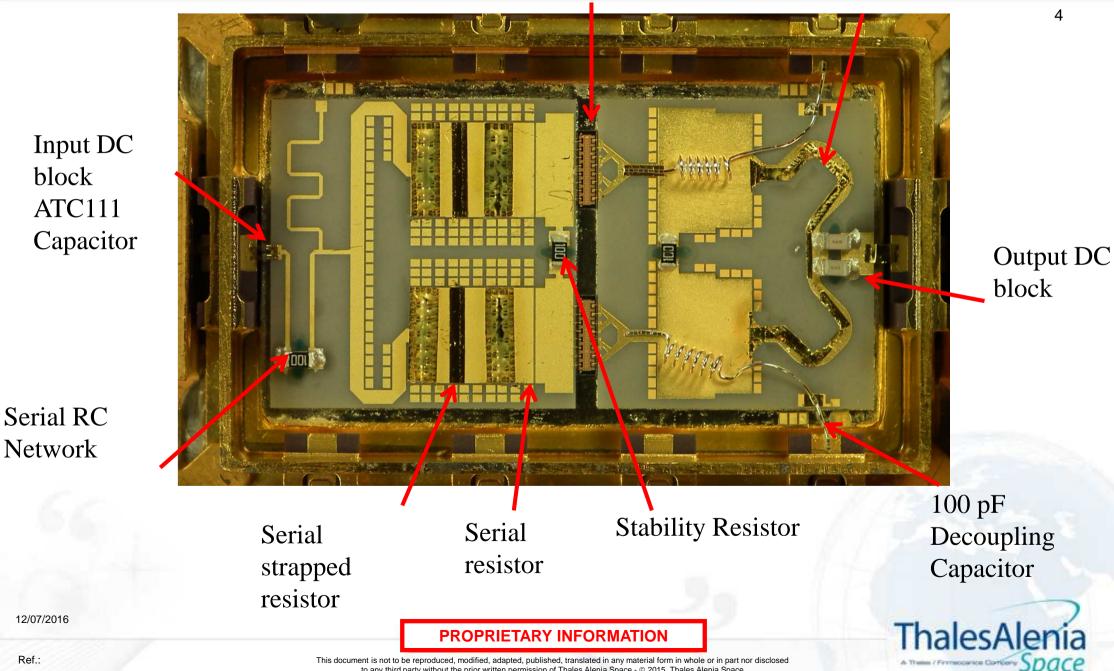

- >> 10 HPAs manufactured/reworked
 - >> 5x L-band GaN HPA TREK measured
 - 2 presented HPA N°1 & 4
 - >> 2x L-band GaN HPA STARDUST manufactured&tested


HPA N°1 Reworked

3

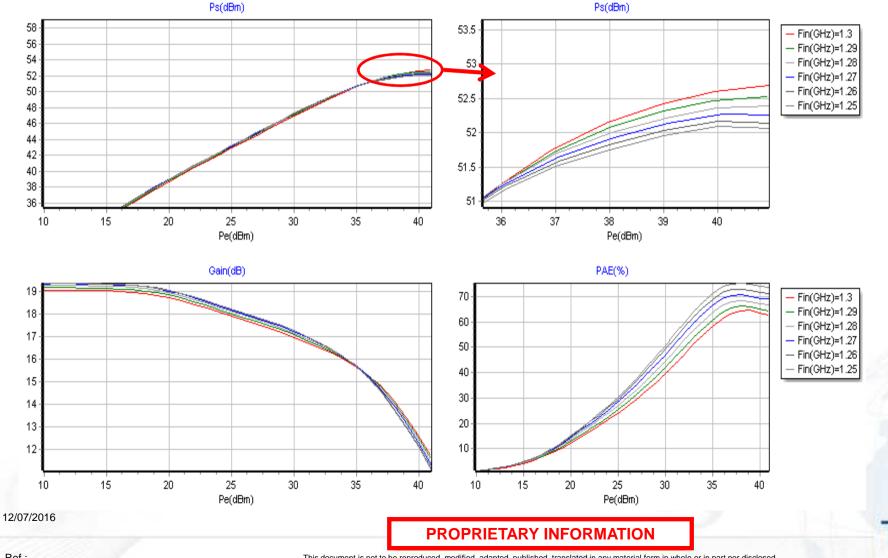
HPA N°3 Reworked

 $HPA \ N^{\circ}5$

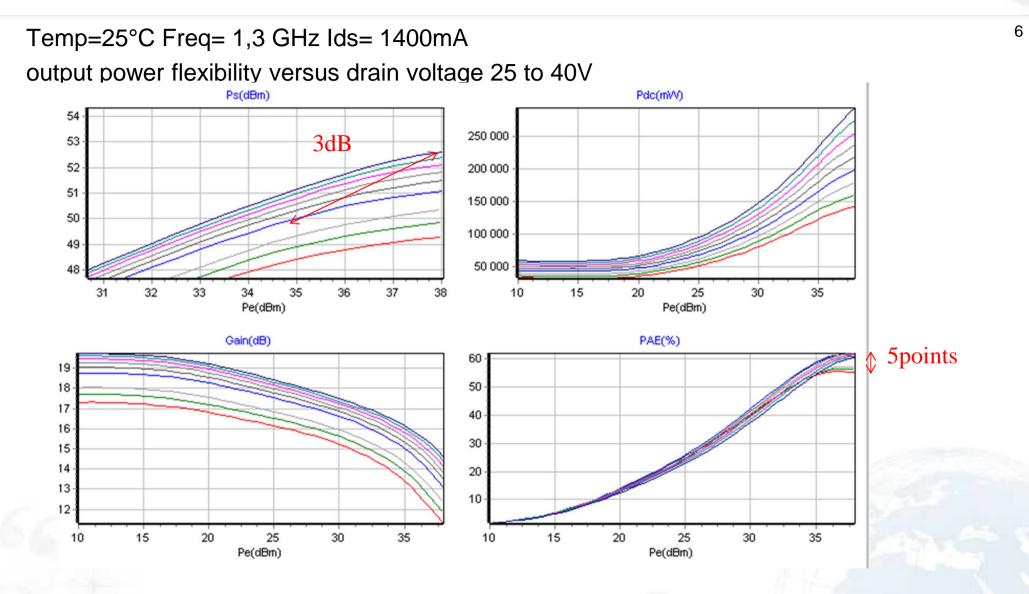


12/07/2016

PROPRIETARY INFORMATION


Transistor HPA design: final configurationPower Bar

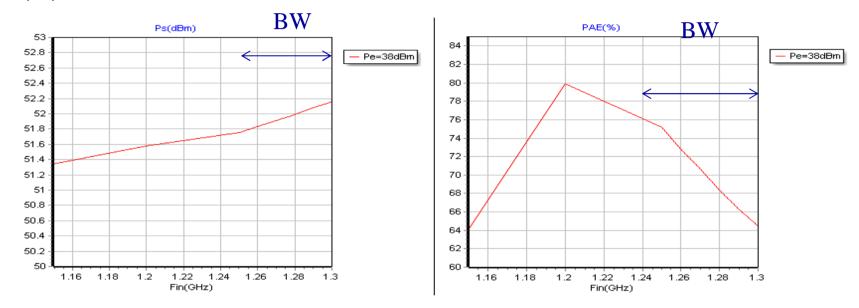
Tuning


to any third party without the prior written permission of Thales Alenia Space - © 2015, Thales Alenia Space

Temp=25°C (Vds=42.5V), Ids= 1400mA, RF=1.25 to 1.3 GHZ. Pout(dBm), Gain(dB), PAE(%) vs Pin(dBm)

ThalesAlenia A Trains / Frynscortice Corto

5



12/07/2016

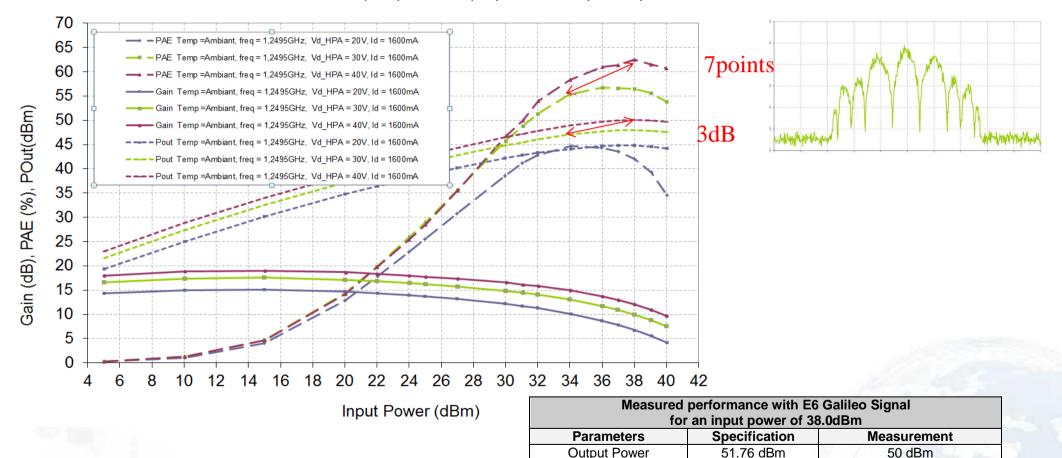
PROPRIETARY INFORMATION

ThalesAlenia Space

HPA#4 Power measurements over frequency Temp=+25°C VDS=+40V Pout (dBm) PAE (%) at Pin =38dBm

CW mode : PAE performance for an input power of 38.0dBm						
Parameters Specification Measurement						
Output Power	53dBm	52 dBm				
Output Power	200W	160W				
PAE	61%	> 65%				
Power gain	15 dB	14 dB				
Gain compression	5dBcomp	5dBcomp				

7


12/07/2016

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space - © 2015, Thales Alenia Space

PROPRIETARY INFORMATION

HPA measurements HPA N°1 E6 Signal

HPA#1 Power measurements with E6 signal. For Vds=20 30 40V, Ids=1600mA, RF=1,2495GHz, Gain(dB), PAE(%), vs Pin(dBm)

12/07/2016

PROPRIETARY INFORMATION

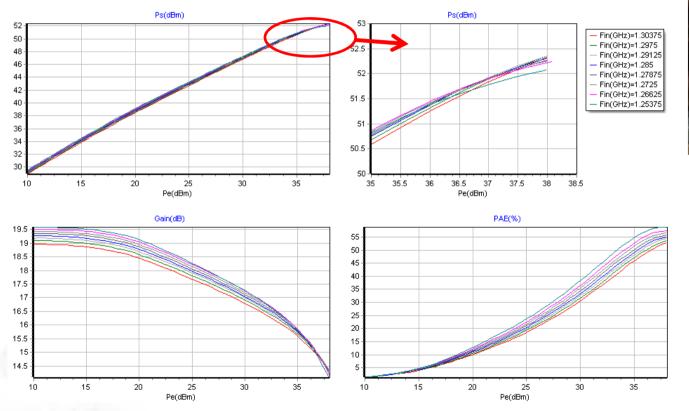
Output Power

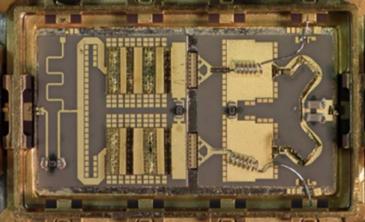
PAE

Power gain

150W

50%


15dB



100W 62%

13dB

Temp=25°C (Vds=40V), Ids= 1400mA RF=1.25 to 1.3 GHZ. Pout(dBm), Gain(dB), PAE(%) vs Pin(dBm)

9

12/07/2016

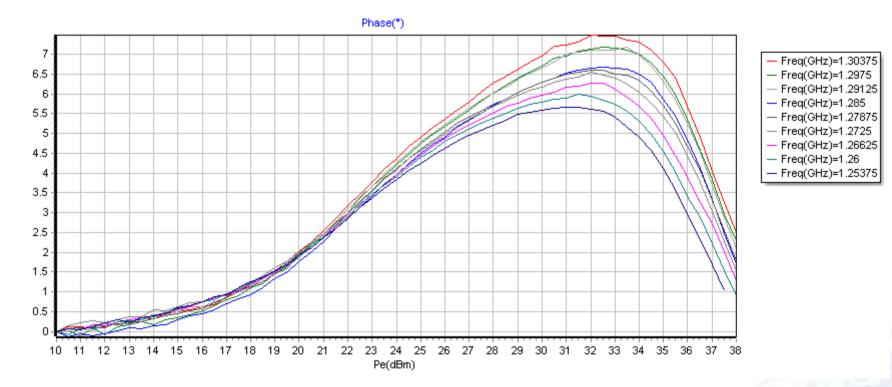
PROPRIETARY INFORMATION

ThalesAlenia Space

HPA#4 Power measurements over frequency Temp=+25°C VDS=+40V Pout (dBm) PAE (%) at Pin =38dBm Ps(dBm) 52.5 PAE(%) 60 52.45 -59 52.4 58 52.35 57 52.3 -56 52.25 55 52.2 54 52.15 53 52.1 52 52.05 51 50 1.26 1.27 1.28 1.29 1.3 1.26 1.27 1.29 1.3 1.28 Fin(GHz) Fin(GHz)

CW mode : PAE performance for an input power of 38.0dBm						
Parameters	Measurement					
Output Power	53dBm	52.2 dBm				
Output Power	200W	165W				
PAE	61%	> 55%				
Power gain	15 dB	15 dB				
Gain compression	5dBcomp	5dBcomp				

PROPRIETARY INFORMATION


12/07/2016

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space - © 2015, Thales Alenia Space

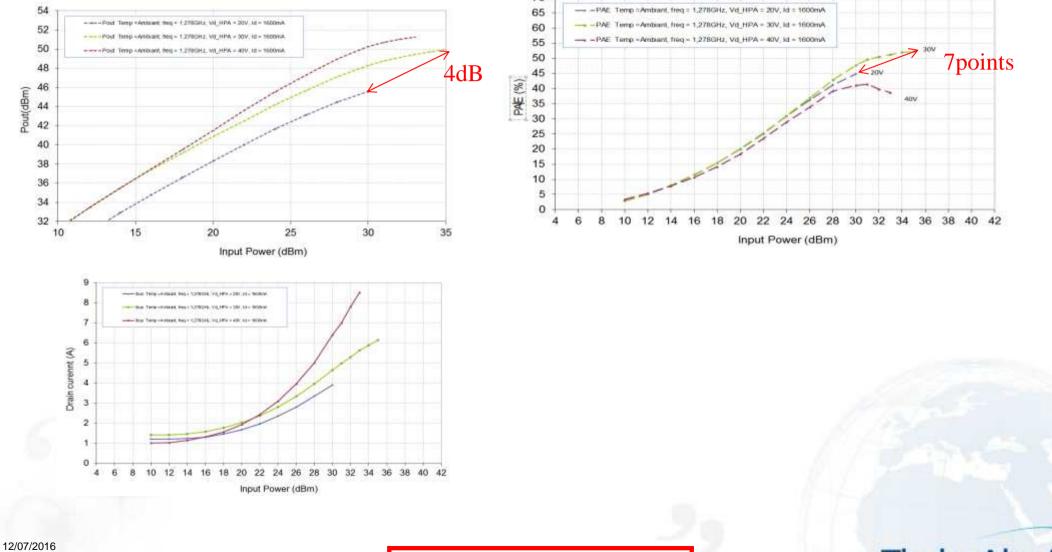
10

11

Temp=25°C (Vds=40V), Ids= 1400mA, RF=1.25 to 1.3 GHZ. Phase shift (°) vs Pin(dBm)

12/07/2016

PROPRIETARY INFORMATION



This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space - © 2015, Thales Alenia Space

Ref.:

HPA measurements HPA N°4 E6 Signal

HPA#4 Power measurements with E6 signal. For Vds=20V 30V 40V, Ids=1500mA, RF=1,278GHz, Pout (dB), PAE(%) I drain (A) vs Pin(dBm)

PROPRIETARY INFORMATION

12

CW mode Performance Compliance Matrix

	CW mode : Mea	sured performance fo	or an input power of 38.0dBm	
Parameters	Specification	Measurement	Compliance	Comments
Output Power	> 190 W	160 W ⁽¹⁾ 170 W ⁽⁴⁾	N/A	At center frequency
PAE	55%	68% ⁽¹⁾ 56% ⁽⁴⁾	N/A	At center frequency
Power Flexibility 3dB back off	4 % efficiency degradation	5 % ⁽¹⁾	C PAE >55%	
Center frequency	1278.75 MHz	1278.75 MHz	С	
Power gain	15 dB	14 dB ^{(1) (4)}	NC	
Gain compression	2dBcomp	5dBcomp (1) (4)	NC	
BW	>50MHz	50MHz	С	
Phase shift	3 deg max -20 <ibo<-10db 6 deg max -10<ibo<-5db 15 deg max -5<ibo<-0db 20 deg max 0<ibo<+3db< td=""><td>6 deg ⁽⁴⁾ 7 deg ⁽⁴⁾ 7 deg ⁽⁴⁾ N/A ⁽⁴⁾</td><td>PC 7 deg max of phase shift</td><td></td></ibo<+3db<></ibo<-0db </ibo<-5db </ibo<-10db 	6 deg ⁽⁴⁾ 7 deg ⁽⁴⁾ 7 deg ⁽⁴⁾ N/A ⁽⁴⁾	PC 7 deg max of phase shift	
Phase Linearity v.s. frequency	2.5 deg peak-peak	Not measured	NC	
Input Reflexion coefficient	<-15dB	<-15dB ⁽¹⁾ <-8dB ⁽⁴⁾	PC	Over frequency range
2 nd harmonic rejection	>30 dBc	Not measured	NC	
Main DC voltage supply	>40V	40V	С	
Temperature	-10/ +80 degrees All performance met junction temperature below 150 deg. C	measured only at 25°C	PC	For 100W of dissipation at 85°C junction temperature is around 110°C see ⁽⁵⁾

⁽¹⁾HPA N°1
 ⁽⁴⁾HPA N°4
 ⁽⁵⁾D3b 0.5µm Transistors an Power Bar thermal analysis

12/07/2016

PROPRIETARY INFORMATION

13

		E6 Signal : Measured	performance	
Parameters	Specification	Measurement	Compliance	Comments
Output Power	> 150W	100W ⁽¹⁾ 100W ⁽⁴⁾	NC	(1) at VDS 40V (4) at VDS 30V
PAE	50%	62% ⁽¹⁾ 52% ⁽⁴⁾	С	At center frequency
Power Flexibility 3dB back off	4 % efficiency degradation	7 % (1) (4)	PC	
Center frequency	1278.75 MHz	1278.75 MHz	С	
Power gain	15 dB	14 dB ⁽¹⁾ 15 dB ⁽⁴⁾	PC	
Gain compression	2dBcomp	5dBcomp (1) (4)	NC	
Input Reflexion coefficient	<-15dB	Not measured	NC	
2 nd harmonic rejection	>30 dBc	Not measured	NC	
Main DC voltage supply	>40V	40V	С	
Temperature	-10/ +80 degrees All performance met. junction temperature below 150 deg. C	measured only at 25°C	PC	For 100W of dissipation at 85°C junction temperature is around 110°C see ⁽⁵⁾

⁽¹⁾HPA N°1
 ⁽⁴⁾HPA N°4
 ⁽⁵⁾D3b 0.5µm Transistors an Power Bar thermal analysis

PROPRIETARY INFORMATION

14

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space - © 2015, Thales Alenia Space

Ref.:

GaN Power stage based on European technology for Navigation SSPA in L-band Contract 4000103322

🛰 AGENDA

➤ HPA measurements

🛰 Failure Analysis

- Improvements proposition
- ➤ HPA design with improvement
- Assessment of performance of SSPAs
- ➤ Development perspectives
- ➤ SOW Compliance Matrix
- 🛰 RIDs

Main message

12/07/2016

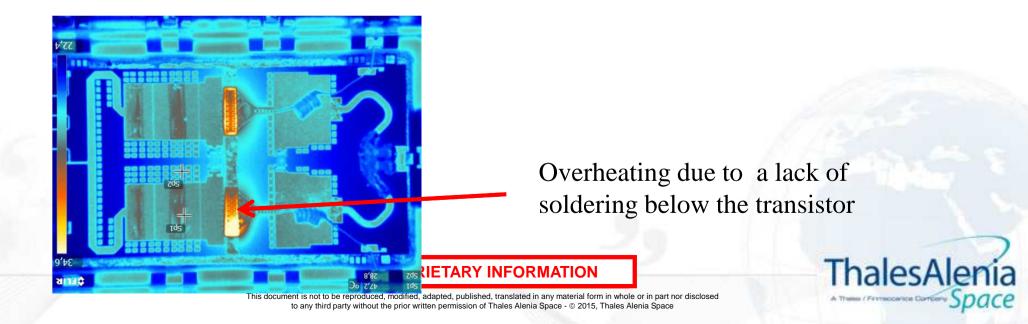
15

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space - © 2015, Thales Alenia Space

PROPRIETARY INFORMATION

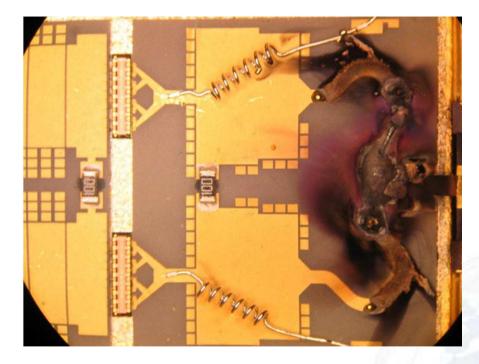
We have used housing Silver diamond carriers that are very good heatsink (thermal conductivity ~ 800 W /m. K) cf [RD2] :

- poses problems of irregular solder
- Due to the Silver diamond material, the X-rays are very difficult to be performed and the results are not so conclusive.


These carriers are now obsolete. For the next HPAs we will use copper diamond carriers:

• Very good heatsink ~ 400 W /m. K.

12/07/2016


Ref.:

 Facility to perform X-rays analysis and to control soldering quality under the power bar

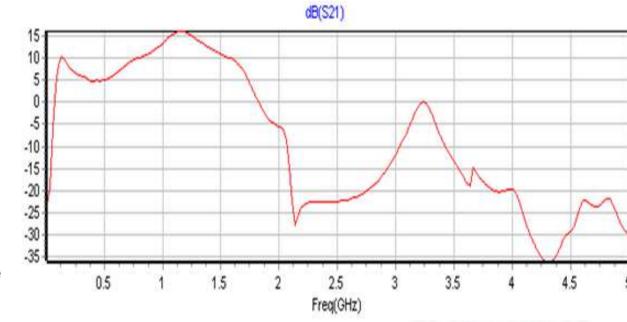
Output capacitor DC black Failure

In the design, we decide to put ATC600s Capacitor with low Electrical Serial Resistance [RD3]. But the selected report processes on MIC was gluing (84 LMI). This conductive glue has unfortunately significant RF losses, which led to a break of the output circuit matching linked to the high level of dissipation. By adding glue we managed to reduce overheating.

17

PROPRIETARY INFORMATION
This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space - © 2015, Thales Alenia Space

12/07/2016


Failure due to low frequency oscillations

Compared to the simulations, all the measured HPA present more gain at low frequencies:

- K<1 for Freq<100MHz
- Low frequencies oscillations
- Several HPAs destroyed

The reduction of gain at low frequencies has been managed by adding a RC network in serial at the input.

- Improvement of the stability with few margin
- Trade-off between stability vs perfomance

Gain response vs frequency with RC network

18

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space - © 2015, Thales Alenia Space

PROPRIETARY INFORMATION

Ref.:

GaN Power stage based on European technology for Navigation SSPA in L-band Contract 4000103322

19

~ AGENDA

- ➤ HPA measurements
- ➤ Failure Analysis

Improvements proposition

- ➤ HPA design with improvement
- ➤ SOW Compliance Matrix
- Assessment of performance of SSPAs
- Development perspectives
- 🛰 RIDs

Main message 12/07/2016 Thales PROPRIETARY INFORMATION This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed

Use copper diamond carriers instead of Silver diamond
 Better Soldering and controling

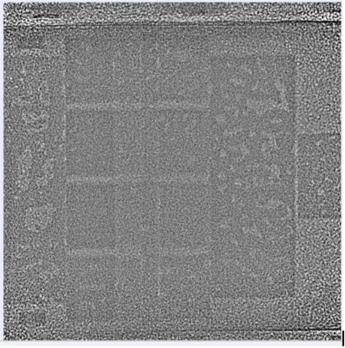


Figure 3 : C-Band HPA X rays with Diamond Silver

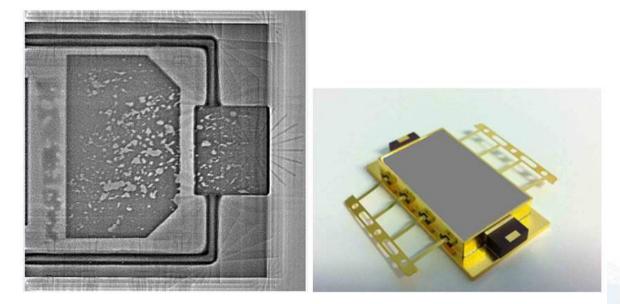
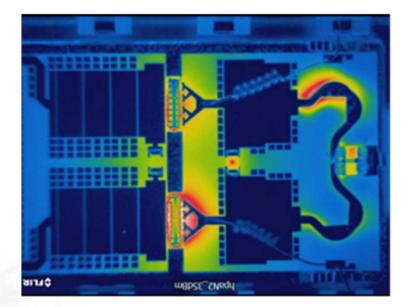


Figure 4 : X rays with Diamond cooper Egide vehicle test



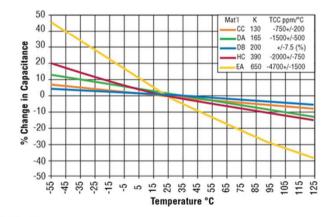
20

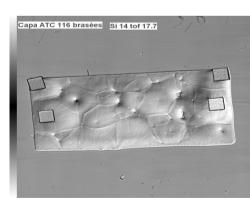
Transistor Sorting

The transistors must be paired as well in voltage pinch than current IDSS. In order to have the same DC current and the same behavior with the RF power

N° Mesure Х VG100 (V) IDSS (mA) Y 110614967 V 42 -2.1406257684 110614535 R -1.9093756404 42 110614103 Ν 42 -2.253125 8468 110613671 -2.2125 8526 <mark>42</mark> J 110613683 **53** -2.2375 8565 J 110614115 Ν 53 -2.218758189 110614088 Ν 29 -2.231258609 110614520 8533 R 29 -2.234375110614952 29 -2.203125 8427 V 110614954 30 -2.2258424 V 110613670 J 41 -2.2031258521 110614102 8535 Ν 41 -2.25625

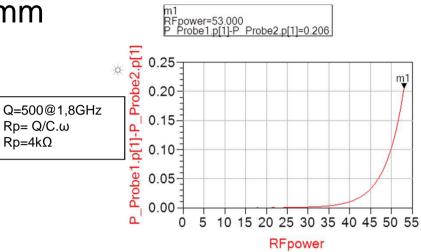
Example of DC +RF unbalanced


21


Improvements : Output capacitor

ATC 116 DA 11pF 0.889x0.889mm + soldering

Mid-K Dielectrics


D	ielectric	Dielectric	TCC	Cap. Range	Max. D	F (%)*	0
	Code	Const. (K)	(–55°C to +125°C)	(pF)	@ 1 MHz	@ 1 KHz	4
	СС	130	-750 ±200 PPM/°C	0.3 to 56	0.15	-	2310 @ 5 GHz
	DA	165	-1500 ±500 PPM/°C	0.4 to 68	0.25	-	500 @ 1.8 GHz
	DB	200	±7.5% max. change (non-linear)	0.5 to 82	0.25	-	29 @ 5 GHz
	HC	420	-2000 ±500 PPM/°C	1.1 to 180	0.7	0.3	-
E	EA	650	-4700 ±1500 PPM/°C	1.5 to 270	0.3	0.3	-

SAM (Scanning Acoustic Microscopy) of ATC116 soldering MIC test jig

PROPRIETARY INFORMATION

Dissipation estimation for 2 capacitors in //

22

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space - © 2015, Thales Alenia Space

Ref.:

The input matching circuits are based on the use of the technology UMS ULRC-10.

This GaAs technology enables the use of lumped elements (R, L, C):

Enhance the complexity, accuracy and integration of matching networks

- Consolidating stability function
- Perform DC / RF decoupling efficient
- Enable broadband matching
- Minimize production tunings
- Second harmonic matching

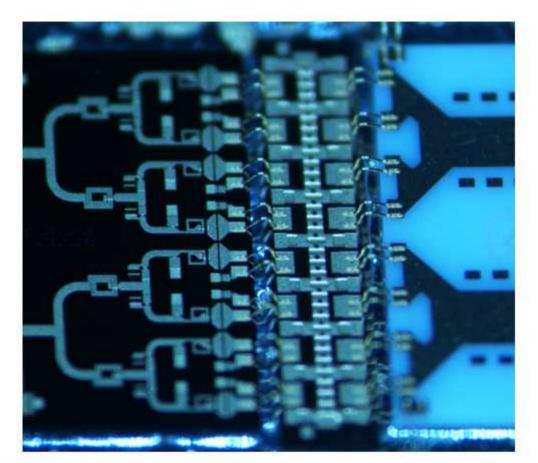


Figure 12 : Photo of C- BAND HPA with quasi MMIC approach

23

PROPRIETARY INFORMATION
This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space - © 2015, Thales Alenia Space

12/07/2016

Ref.:

GaN Power stage based on European technology for Navigation SSPA in L-band Contract 4000103322

~ AGENDA

- ➤ HPA measurements
- ➤ Failure Analysis
- Improvements proposition

HPA design with improvement

- ➤ SOW Compliance Matrix
- Assessment of performance of SSPAs
- Development perspectives
- ∽ RIDs

Main message 12/07/2016 Thales **PROPRIETARY INFORMATION** This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed

24

Possible HPA design with improvement

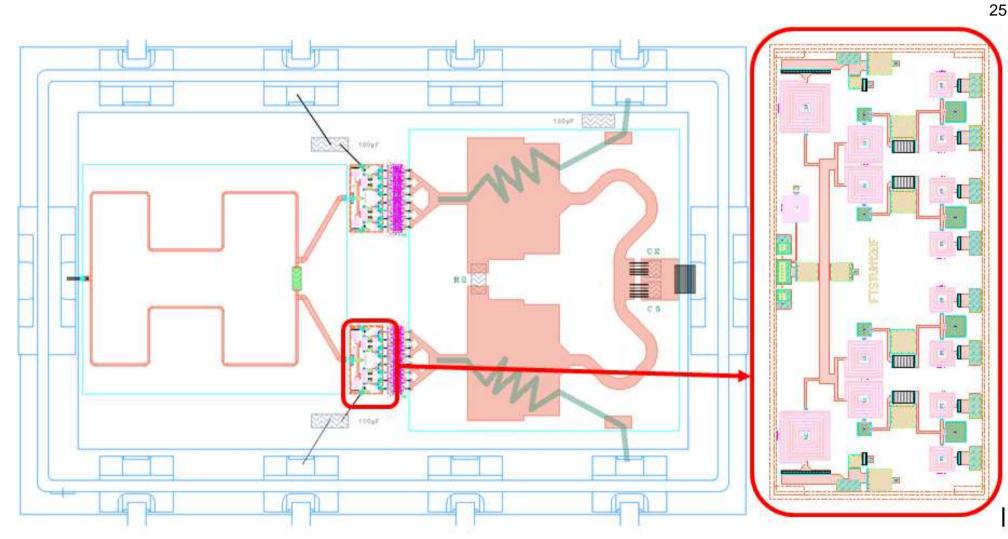
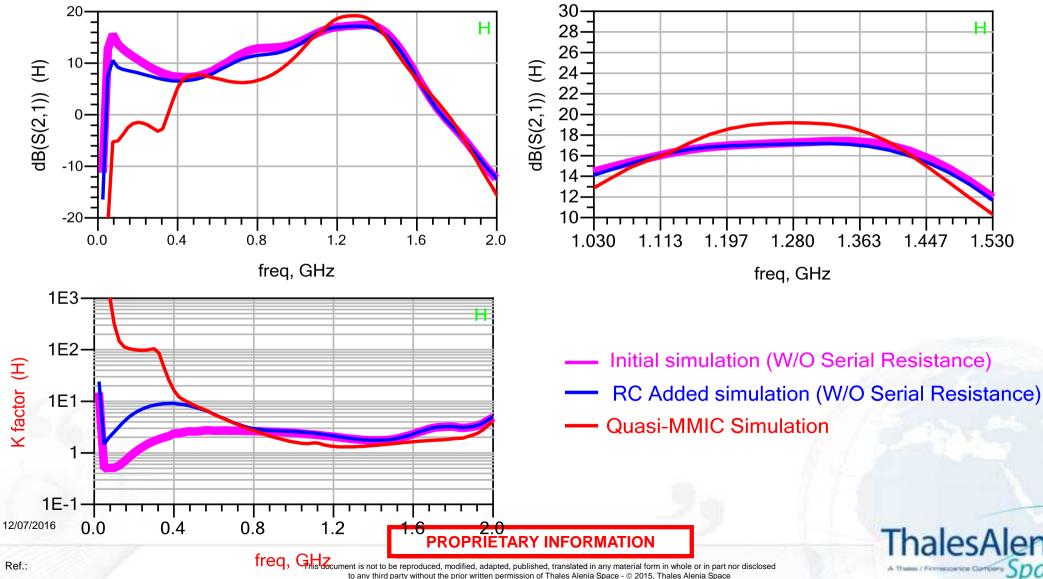


Figure 17 : Layout of HPA with Quasi MMIC approach


12/07/2016

PROPRIETARY INFORMATION

HPA simulated performances with improvement

to any third party without the prior written permission of Thales Alenia Space - © 2015, Thales Alenia Space

HPA simulated performances with improvement

~ CW power simulation

PAE (%) 80 70 60 Pout (dBm) 50 40 30 Power gain (dB) 20 10 Gain comp. (dB) 0 1.26 1.28 1.30 1.32 1.22 1.24 RFfreq CW mode : PAE performance for an input power of 39 dBm **Parameters** Simulation **Output Power** 53.7dBm PAE >69% 15 dB Power gain 5dBcomp Gain compression

Pout PAE & Power gain at Pin (dBm) = 39.0

27

PROPRIETARY INFORMATION

12/07/2016

GaN Power stage based on European technology for Navigation SSPA in L-band Contract 4000103322

🛰 AGENDA

- ➤ HPA measurements
- ➤ Failure Analysis
- Improvements proposition
- ➤ HPA design with improvement
- ➤ SOW Compliance Matrix

Assessment of performance of SSPAs

- ➤ Development perspectives
- 🛰 RIDs

Main message

PROPRIETARY INFORMATION

28

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space - © 2015, Thales Alenia Space

12/07/2016

For Galileo G2G, 3 types of SSPA with different level of Pout are required in the payload:

- E1 band (fc=1,575 GHz, Δf= 40MHz) : 220W up to 300W (max), CW mode
- E5 band (fc=1,17 GHz, Δf= 90MHz) : 130W, CW mode
- E6 band (fc=1,28 GHz, Δf= 40MHz): 130W CW mode

For EGNOS or SBAS services, the maximum output power required for future SSPA will be:

- E1, SSPA with Pout<150W in CW mode
- E5, SSPA with Pout<170W in CW mode

29

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space - © 2015, Thales Alenia Space

PROPRIETARY INFORMATION

Preliminary specifications of a L-band 300W GaN SSPA for navigation applications

Parameter	Value		
Frequency	E1 (fc=1,575 GHz)		
Bandwidth	40 MHz		
Pout	Maximum of 300W at saturation level (CW mode)		
Associated efficiency	>53%		
Gain max	75dB		
Control Mode for Gain	Fixed Gain Mode		
Primary Bus	50 or 100V		
CAN protocol	Yes		
Mass	<3,1 kg		
Temperature	[-20°C,+65°C] qualification		
Size (Lxlxh)	300x140x125mm		

Table 1 : Preliminary specifications of a L-band 300W GaN SSPA for navigation (G2G, E1 signal)

30

PROPRIETARY INFORMATION

to any third party without the prior written permission of Thales Alenia Space - © 2015, Thales Alenia Space

12/07/2016

300W SSPA block-diagram

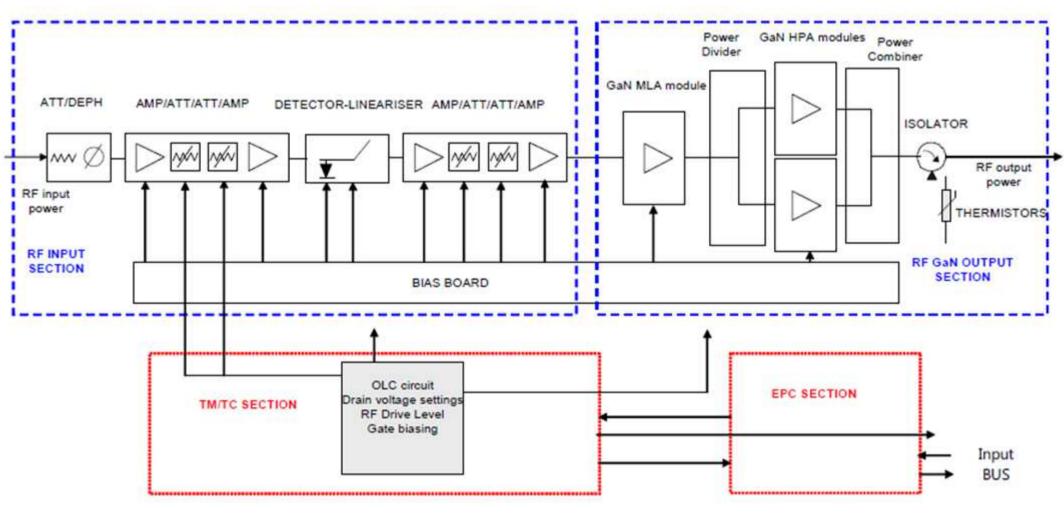


Figure 18: 300W SSPA schematic using GaN HPA modules

12/07/2016

PROPRIETARY INFORMATION

31

Electrical budget in CW mode of the 300W L-band GH50 SSPA

	RF SECTION	Gain	Cum ul Gain	NF	Cum ul NF	Signal Level	Signal level	Intermod	Pdc	Pdis s	PAE	EPC	Gain Comp
N°	Elements	dB	dB	dB	dB	dBm	w	dB	W	W	%	N°	dB
	INPUT					-10,00	1,00E-04						
1	ATT_PHASE_SHIFTER	-6,00	-6,00	6,00	6,00	- 16,00	0,0000	N/A	0,00	0,00	0,00	2	0,00
2	LLA_GaAs	17,30	11,30	5,00	11,00	1,30	0,0013	N/A	0,33	0,33	0,40	2	0,00
3	ATT1	-27,00	-15,70	27,00	16,96	-25,70	0,0000	N/A	0,00	0,00	0,00		0,00
4	1XCHA3801	28,67	12,97		16,96	2,97	0,0020	N/A	0,32	0,32	0,62	2	0,01
5	COUPLER+ATT	-5,00	7,97	5,00	16,97	-2,03	0,0006	N/A	0,00	0,00	0,00		0,00
6	LIN_GaN	-9,51	-1,54	10,00	17,09	-11,54	0,0001	N/A	0,10	0,10	-0,56	3	-6,10
7	LLA_GaAs	17,30	15,76	5,00	17,35	5,76	0,0038	N/A	0,33	0,33	1,12	2	0,00
8	ATT2	-28,00	-12,24	28,00	18,51	-22,24	0,0000	N/A	0,00	0,00	0,00		0,00
9	1XCHA3801	28,64	16,41		18,51	6,41	0,0044	N/A	0,32	0,32	1,35	2	0,04
10	MLA_GaN_2stages_25W	34,88	51,29		18,51	41,29	13,4488	N/A	31,84	18,40	42,22	1	2,77
11	Divis cur_IN	-3,31	47,98	0,30	18,51	37,98	6,2756	N/A	0,00	0,90	0,00		0,00
12	HPA_200W_ESA_TRP	14,42	62,40		18,51	52,40	173,7057	N∕A	267,81	100,38	62,52	1	5,01
13	HPA_200W_ESA_TRP	14,42	62,40		18,51	52,40	173,7057	N/A	267,81	100,38	62,52	1	5,01
14	Combineur_OUT	2,71	65,11	0,30	18,51	55,11	324,2233	N/A	0,00	23,19	0,00		0,00
1 5	ls olator	-0,15	64,96	0,15	18,51	54,96	313,2162	N∕A	0,00	11,01	0,00		0,00
	Total RF Section		64,96		18,51	54,96	313,22	N/A	568,87	255,65	55,06		1,73
								-					

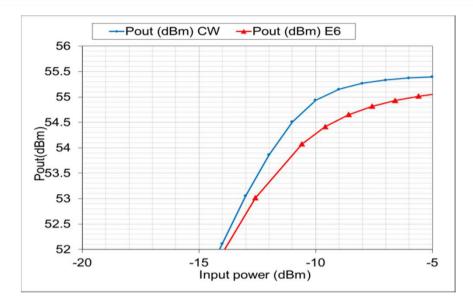
TM/TC Board	
Connected To EPC Output N°	Pc W
1	1,00
2	0,50
3	1,00

EPC	Overall E	93		
Output	Voltage	Voltage Current		
N°	v	Α	v	
1	42,00	13,53	568,46	
2	5,00	0,36	1,80	
3	-5,00	-5,00 0,22		

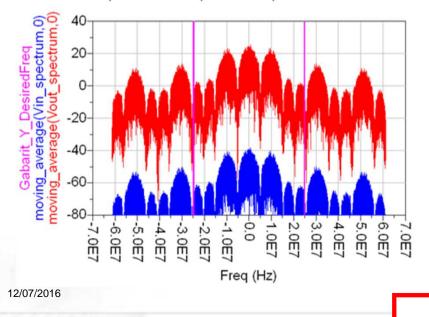
EQUIPMENT						
Primary DC Voltage	Primary DC Current	Primary DC Power	PAE	Pdiss		
V	Α	W	%	W		
100,00	6,14	614,37	50,98	301,16		

Table 6: Electrical budget in CW mode of the 300W L-band GH50 SSPA

Measured data


12/07/2016

PROPRIETARY INFORMATION




32

Simulation with E6 GALILEO SIGNAL at SSPA Level

Spectra at the Input and Output of the SSPA

Parameter	Value
Signal	E6 Signal
Pout(W)	≥ 250W
PAE(%)	>45%
Compression	2 dB
Gain at compression	64dB

Table 8 : SSPA main electrical performances with a E6 signal

PROPRIETARY INFORMATION

33

GaN Power stage based on European technology for Navigation SSPA in L-band Contract 4000103322

🛰 AGENDA

- MPA measurements
- ➤ Failure Analysis
- ➤ Improvements proposition
- ➤ HPA design with improvement
- Assessment of performance of SSPAs
- Development perspectives
- ✤ SOW Compliance Matrix
- 🛰 RIDs

Main message

PROPRIETARY INFORMATION

34

12/07/2016

Development perspectives

- The HPA module designed, manufactured and tested in the frame of this study has proven its ability to deliver very high output power at L band (up to 180W) with efficiency above 65%. These excellent performances made it a perfect candidate to the high power SSPA at L band, as well as at S band the derived HPA module, with a straightforward adaptation to the new frequency.
- This module will be the heritage power building block for the High Power L/S SSPA product that will make use of a single HPA, and also for the Very High Power L/S SSPA which power section will be built around two HPA modules in parallel.
- One major program target for these products at L band is the Galileo program, with several tens of units. But several other prospects have been already identified : digital radio satellite payloads at S band where overall emission power is over 3 kW and is achieved on current programs with several 250W class TWTA, communications channels and GNSS augmentations systems where 50~100W SSPA are commonly used.

12/07/2016

PROPRIETARY INFORMATION

35

GaN Power stage based on European technology for Navigation SSPA in L-band Contract 4000103322

🛰 AGENDA

- MPA measurements
- ➤ Failure Analysis
- ➤ Improvements proposition
- ➤ HPA design with improvement
- ➤ Assessment of performance of SSPAs
- ➤ Development perspectives
- SOW Compliance Matrix
- 🛰 RIDs

Main message

12/07/2016

PROPRIETARY INFORMATION
This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space - © 2015, Thales Alenia Space

36

>> Deliverable compliance matrix

Items	Compliance	Comments
HW1: Mask reticule for foundry run	С	
(GDS2 file)		
HW2: GaN wafer and diced	C	
transistors		
SW1: Electrical transistor &	C	
passive circuit models for usage in		
ADS circuit simulation tool		
HW4: HPA modules including test	PC	1st HPA Performance are closed to the target
jigs, 2 units ⁽¹⁾		2nd HPA is not working
HW5: Delivery of Multipactor /	C	
Corona test jig equipped with		
power micropackage		

(1) 03_AO6505 TAS-F_Proposal_Management_Volume 2.pdf Table 8: Compliance to the SoW

12/07/2016

Ref.:

PROPRIETARY INFORMATION

Interface and Environmental compliance matrix

Interface Requirements				
Specification	Compliance			
RF accesses shall have coaxial connectors in 50hm. DC accesses shall be separated from RF accesses via a dedicated connector.	с			
These connectors shall be provided by the test jig .				
The HPA RF accesses shall be DC blocked and the DC accesses shall be RF free.	с			
The test jig shall have a sufficient surface in order to provide the capability to transfer efficiently the heat produced by the HPA when connected to a heat sink.	С			
The test jig shall be delivered with the HPA.	С			

Environmental Requirements					
Parameter	Value	Specification	Compliance	Comments	
Pressure	Ambient and 10e-6 mbar	The HPA shall be able to operate in vacuum Multipactor free with margin as per	С	More than 6dB margin	
Temperature -10 / +80 degrees	Defined as the temperature of the surface where the HPA package shall be mounted		measured only at 25°C		
	All performance met and junction temperature below 150 deg. C for GaN	PC	For 100W of dissipation at 85°C junction temperature is around 110°C see ⁽⁵⁾		

⁽⁵⁾D3b 0.5µm Transistors an Power Bar thermal analysis

12/07/2016

PROPRIETARY INFORMATION

38

- >> Partially compliant to the specification and to deliverables
- In order to improve stability, reliability and performance, TAS-F has identified corrections and solutions to be implemented on future L-band GaN HPA module design
- Less than 20x 32mm Trek Dies available from UMS at the beginning of the study (already noticed identify during negotiation meeting)
- Total of 10x HPAs manufactured/reworked
 - >> 2x HPA modules manufactured and tested with STARDUST dies
- Preliminary HPA re-design with ULRC-10 MMIC

GaN Power stage based on European technology for Navigation SSPA in L-band Contract 4000103322

🛰 AGENDA

- MPA measurements
- ✤ Failure Analysis
- ➤ Improvements proposition
- ➤ HPA design with improvement
- Assessment of performance of SSPAs
- ➤ Development perspectives
- ➤ SOW Compliance Matrix

🛰 RIDs

Main message

12/07/2016

40

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space - © 2015, Thales Alenia Space

PROPRIETARY INFORMATION