

GeSiR Final Project Meeting

J. Ohlmann, E. Winter, J. Schön, P. Dold, P. Henatsch, A. A. Khaan, S. Nold, <u>D. Lackner</u>

ESA ESTEC Centre Noordwijk, March 10th, 2023 www.ise.fraunhofer.de

Content

Low Ge Alternative Space Triple Junction Solar Cells on SiGe Engineered Substrates and Ge Recovery from Grinding Slurry of Wafer Thinning

- **1. Project Overview**
- 2. Ge-Recycling from Grinding
- 3. Low Ge alternative triple junction

Motivation

- Germanium is a critical raw material, yet it is the basis of today's European space solar cells
- We assume about 2 tons of Ge is sent to space in solar cells every year
- Ge wafers have high environmental impact
- Ge sourcing from coal ashes or mining
- Ge puryfing, crystal pulling, wafering....

Low Ge Alternative Space Triple Junction Solar Cells on SiGe & Ge Recovery from Grinding Slurry of Wafer Thinning

Content

- **1. Project Overview**
- 2. Ge-Recycling from Grinding
- 3. Low Ge alternative triple junction

© Fraunhofer ISE FHK-SK: ISE-INTERNAL

4

• Ge wafer serve as growth substrate and bottom junction. A certain thickness is needed for high yield during epitaxy and photolithography processes

• Ge is relatively heavy - thus for weight (and thus cost) reasons, substrates are thinned by grinding at end of processing

 \rightarrow How to recyle Ge from the grinding slurry (water with little Ge concentration)

Analysis of Grinding Waste Water

- Particle size distribution is in the lower micrometer / sub-micrometer range.
- Germanium is present as solid particles (micrometer, sub-micrometer range)
 together with dissolved GeO₂ in aqueous solution
- Germanium concentration is in the range of 50 - 100 g/m³ (50 to 100 ppm).

Analysis of Grinding Waste Water

Table II: Germanium etch rate for aqueous oxidative chemistries.

	Etch rate
	(nm/min)
H ₂ O with O ₂ bubbling	0.005
H ₂ O with O ₃ bubbling	4
H_2O/H_2O_2 (9/1)	40

A Study of the Influence of Typical Wet Chemical Treatments on the germanium Wafer Surface

B. Onsia^{1, 2, a}, T. Conard¹, S. De Gendt^{1, 2}, M. Heyns¹, I. Hoflijk¹, P. Mertens¹, M. Meuris¹, G. Raskin³, S. Sioncke¹, I. Teerlinck¹, A. Theuwis³ J. Van Steenbergen¹ and C. Vinckier²

¹ Imec, kapeldreef 75, B-3001 Heverlee, Belgium

² K.U.Leuven, Afd. Fysische en Anal. Chemie, Celestijnenlaan 200F, B-3001 Heverlee, Belgium ³ Umicore, Watertorenstraat 33, B-2250 Olen, Belgium

> Solid State Phenomena Vols. 103-104 (2005) pp 19-22 Online available since 2005/Apr/01 at www.scientific.net © (2005) Trans Tech Publications, Switzerland doi:10.4028/www.scientific.net/SSP.103-104.19

- Maximum solubility of germanium in water:
 - 4 g/l @ RT
 - Around 10 g/l @ T_b
- Dissolution in water:
 - Lack of oxygen: slow
 - Oxidizing agent: fast (up to 1 µm in diameter within 10 minutes)

With stirrer

0,5l Ge-grinding water (P1200, 0,13 g/l) 20 drops of H2O2 (50%),

10 min

0 min

5 min

15 min

FHK-SK: ISE-INTERNAL

- Evaporators: Ge-concentration in the process water is too low; Vacuum evaporator are preferable for lower through-put; the low temperature bears less risk of solid deposits / crusts
- Precipitation: Extraction / de-complexation is laborious
- Filtration: only the solid particles are extracted, dissolved GeO₂ is lost
- Osmosis: accumulation of dissolved GeO₂ by a factor of 10 to 20 is easily (fast and at low energy consumption) possible; following step: evaporator
- Ion-exchanger: fast, low-cost solution with high extraction rates (>95 %); regeneration of resin externally

Osmosis followed by Evaporation

- A membrane was connected to a water pump, flow meters and a 5 µm filter.
- The concentration in the concentrate increases by a factor of 2-3 with each cycle.

In our case, 200 l/h high purity water / 100 l/h concentrate is obtained, i.e. about 4.5 h is needed for one IBC.

Osmosis followed by Evaporation

Ion Exchange followed by Evaporation

- Test with an IBC of 1,000 liter with a GeO₂ concentration of 110 ppm, Flow rate: 300 l/h.
- Solid particles had been oxidized prior to the ion-exchanger using H₂O₂.
- Several ion-exchanger are now available at the CSP, the resin can be exchanged easily.
- Ge-concentration outlet: below detection limit (LOD=20ppm).
- A 20 I exchanger (which is still a rather small one) could extract 1 kg of germanium / could handle 10.000 liter of grinding water.

Ge-concentration in DI-H2O after passing the ion exchanger

Ion Exchange followed by Evaporation

- For extraction, we used HCl. The acid solution was neutralized with NaOH and evaporated: GeO2 was recovered.
- With respect to energy consumption, an ion exchanger is very cheap (our pumps are driven by compressed air).

Ion Exchange followed by Evaporation

ISE

FHK-SK: ISE-INTERNAL

Option 1: Filtration/Oxidation + Osmosis + evaporation + drying:

DI-water + solid GeO₂

Osmosis: CAPEX and OPEX is low; evaporator: CAPEX and OPEX rather high

Option 2: Filtration/Oxidation + lon-exchanger + regeneration + evaporation + drying: wastewater + solid GeO₂

- Ion-exchanger: CAPEX and OPEX is low; regeneration requires skills
- For low concentrated, high purity solutions, we recommend osmosis/evaporator or ion-exchanger; it might also depend, whether it is a continuous waste water stream or a batch application
- For low concentrated, low purity solutions, a first step filtration is recommended
- For high concentrated solutions, we go directly into the vacuum evaporator

LCA Analysis – Production of GeCl₄ from Secondary Ge

LCA analysis by A.A. Khan & S. Nold

	Overview	of Model Parameters					
Underlying Standard	ISO 14040	ISO 14040-44					
System Model	Cut-off (https://ecoinvent.org/the-ecoinvent-database/system-models/)						
Model System Boundary	Cradle-to-gate						
Geographical System Boundary	DE: market	DE: market for electricity, medium voltage (Germany)					
Software Used	Umberto 11	Umberto 11			econòmic reserve mineral reserve		
Data Source for Life Cycle Inventory	Ecoinvent	Ecoinvent v3.8 (background)					
LCIA Category		LCIA Method	Unit				
Global Warming Potential		IPCC 2013 100y	kg CO2 eq				
Ozone Depletion Potential Particulate Matter		CML (ReCiPe 2008) kg CFC-11 eq ReCiPe 2008 kg PM10 eq			4	ultimate	
				Co	crus		
Acidification		CML 2001 (2016)	kg SO2 eq		Earth crust mass (kg)		
reshwater Eutrophication		ReCiPe 2008	kg P eq			1	
Marine Eutrophication Ionising Radiation Photochemical Oxidant Formation		ReCiPe 2008	kg N eq		Reserve base		
		ReCiPe 2008	kBq U235 eq		corrected.		
		ReCiPe 2008	kg NMVOC eq		D		
Minerals and Metals Resource Depletion, Ultimate Reserve		CML (Environmental Footprint 3)	kg SB eq	· ·	Reserve base,		
Fossil Resource Depletion		ILCD 2011 (CML Environmental Footprint 3)	MJ		uncorrected		
Freshwater Ecotoxicity		UseTox	CTUe	•	Ultimate		
Marine Ecotoxicity Potential		CML 2001 (2016)	kg 1,4-DCB eq		reserve		
Human Toxicity, Cancer		UseTox	CTuh			1	
Human Toxicity, Non-Cancer		UseTox	CTuh	-			
Gross Water Consumption		Environmental Footprint 3	m3 world eq	1			
rimary Energy Consumption		CED	MJ				

LCA Analysis – Production of GeCl₄ from Secondary Ge - "Ion Exchange & Evaporation"

Functional Unit: This study is a cradle to gate LCA of 1 kg ultrapure germanium tetrachloride (GeCl₄) produced from secondary germanium obtained from grinding wastewater from PV production.

Total Global Warming Potential (GWP): 29.69 kg CO₂-Eq./ kg ultrapure GeCl₄

Process Contribution in Impacts:

LCA Analysis – Production of GeCl₄ from Secondary Ge - "Ion Exchange & Evaporation"

Global Warming Potential (GWP) – Hotspot analysis

RecyclingSteps	GWP (kg CO ₂ -Eq/kg GeCl ₄)			
Oxidation	0.76			
electricity, medium voltage	0.50			
hydrogen peroxide production, product in 50% solution state	0.27			
Ion Exchange	10.10			
electricity, medium voltage	1.50			
hydrochloric acid, without water, in 30% solution state	0.62			
sodium hydroxide, without water, in 50% solution state	0.49			
wastewater from PV cell production	7.48			
water, deionised	0.01			
Chlorination and Refining	18.83			
electricity, medium voltage	0.98			
hydrochloric acid, without water, in 30% solution state	17.84			
wastewater from PV cell production	3.04E-03			
otal GWP	29.69			

Analysis of result:

- The most contributing recycling step is Chlorination and Refining, followed by Ion Exchange step. The step Oxidation showed the least impacts.
- The highest contributing material to produce ultra pure GeCl₄ from secondary Ge is the HCl used in chlorination and refining.
 - ~31kg HCl is needed to produce 1kg GeCl₄
- · Second highest contributing input is the wastewater from PV production due the large volume requirement.
 - Based on the LCI, 1 kg of Ge is present in 10000 liters of wastewater.
- Third highest input contributing to the GWP is the electricity consumed in the ion exchange process.

LCA Analysis – Production of GeCl₄ from Secondary Ge – "Ion Exchange & Evaporation"

Route 1, 2 and 3 sourced from Robertz, B., Verhelle, J. and Schurmans, M. (2015) The Primary and Secondary Production of Germanium A Life-Cycle Assessment of Different Process Alternatives, JOM, 67, 412-424. <u>https://doi.org/10.1007/s11837-014-1267-6</u> Database: GaBi and ELCD): Evaluation Method: ILCD by Environmental Footprint Database: Ecoinvent 3.8; Evaluation Method: IPCC 2013

- > 95% recovery of germanium from grinding wastewater is relatively easy and can be done in an economical way.
- 30 kg CO₂-Eq. is emitted per kg of ultrapure GeCl₄ production from secondary germanium sourced from grinding wastewater. The impact is are 61 times lower compared to GeCl₄ from primary germanium produced from coal ash without energy recovery

Content

- **1. Project Overview**
- **2.** Ge-Recycling from Grinding
- 3. Low Ge alternative triple junction

Low Ge Alternative Triple Junction Motivation

Low Ge Alternative Triple Junction Motivation

2 cm x 2 cm mask used for solar cell processing

SiGe Engineered Substrates

ECCI analysis before III-V epitaxy

- Misfits visible on surface
- TDD: 2.7*10⁷ cm⁻²
- TDD expectation:< 3*10⁶ cm⁻²

ECCI

2 cm x 2 cm mask used for solar cell processing

SEM Images of Wafer Surface after Epitaxy

SEM Images of Processed Devices

GalnP/GaAsP/SiGe Triple-Junction

I-V under illumination of triple junction cell

1 MeV Electron Irradiation

I-V under illumination of single junction SiGe cell for differnent fluences of 1 MeV electron irradiation

b)

1 MeV Electron Irradiation

a)

I-V under illumination of triple junction cell for 1*10¹⁵ cm² 1 MeV electron irradiation

Fraunhofer

Low Ge Alternative Triple Junction Engineering Tests – Thermal Cycling

b)

- 1. a dip in liquid Nitrogen (LN Dip)
- 2. a heat up to room temperature (RT)
- 3. waiting for 5 min on the sample chuck at RT
- 4. heating to 50°C on the chuck and waiting for 5 min
- 5. cool down to RT and waiting on the sample chuck
- 6. IV measurement at RT on the sample chuck

a)

Product Development Roadmap

- 1. SiGe metamorphic buffer and SiGe epitaxy (6 yrs)
- 2. Triple-Junction & III-V epitaxy Development (2-4 yrs)
- 3. Industrialization & Space Qualifications (3-5 yrs)

12 no ARC Current density [mA/cm²] GalnP 10 TD 8 GaAsP 6 TD 4 "active" SiGe ID: C5147-4; FF: 68.4 %; η: 10.5 % 2 ID: C5146-1; FF: 68.5 %; η: 11.2 % engineered substrate C5146-simulated; FF: 81.0 %; n: 14.9 % 0 Si wafer 0.0 0.5 1.0 1.5 2.0 2.5 Voltage [V]

→ Successful demonstration of first GaInP/GaAsP/SiGe triple junction cell as "low Ge alternative"

© Fraunhofer ISE FHK-SK: ISE-INTERNAL

36

LCA Analysis

SiGe Engineered Wafer - LCA Analysis 4" SiGe on Si

This study is a cradle to gate LCA of one 4" SiGe engineered substrate on Si. The primary Ge is obtained from lead mining

SiGe Engineered Wafer - LCA Analysis

Comparison 4" Wafers

- SiGe engineered substrate: 5 times lower GWP than Ge wafer
- 18 times less primary Ge consumption

→ Successful demonstration of first GaInP/GaAsP/SiGe triple junction cell as "low Ge alternative" → Efficiency potential similar to todays 3J on Ge → 18 times lower Ge consumption

40

Thank you for your Attention!

Kontakt

David Lackner, PhD Head of Group: III-V Epitaxy and Material Development Division: Photovoltaics Tel. +49 12 3456-5332 Fax +49 12 3456-92 50 david.lackner@ise.fraunhofer.de