

#NewWays4Space

Implementation and validation of in-situ process monitoring and control for highly automated space solar generator manufacturing

SpaceTech GmbH

SME Small System integrator

Facts

- Independent SME
- Founded in 2004
- 109 Employees
- 20 M€ Turnover

Customers

- Institutional Space
- **New Space**

In Orbit 1044 units... ...on 442 satellites

Equipment

Solar Arrays Structures & Mechanisms Electronics

Oneweb, York, Copernicus,... > 163 in orbit (on 79 satellites)

Mechanisms > 600 Satellites > 800 in Orbit (on > 400 satellites)

Structures GRACE FO Formosat 5

> **Electronics** Laser Electronics Remote Terminal Units Instrument control units

958 S .

Instruments

Optical Components

Photonic & QT Instruments

Structures & Mechanisms

GRACE Follow-On 2018 NGGM 2028

MERLIN 2024

Small Satellites End-to-End Systems

Formosat 5 2017

DEOS 2012 M2Space 2019

Clean Rooms

- ISO 8 / class 100,000
- ISO 7 / class 10,000
- ISO 5 / class 100

Manufacturing

- Electronics Lab
- Laser-optics Lab
- Mechanical Workshops
- Mechanical Integration
- CFRP Production
- Solar arry factory

Testing

- Thermal Vacuum Chambers
- Thermal cycling chambers
- Shakers & Shock Tables
- Flasher

Filament Winding

New Solar Array Facility G4

CFRP manufacturing area

Clean Rooms

ISO 8 / class 100,000

Manufacturing

- Mechanical Integration
- CFRP Production
- PVA integration
- Solar array factory

Testing

- Thermal Vacuum Chambers
- Thermal cycling chambers
- Shakers & Shock Tables
- Flasher and sun simulator

Selection of Space Projects Managed by ESA

Solar Arrays (selection)

- Sentinel-5 Precursor, external PVA,
- JASON CS /S-6, external PVA,
- EUCLID, external PVA,
- FLEX, ALTIUS, PLATO,
 Copernicus, STI PVA,

Instruments

- NGGM
- LISA Laser

Electronics

- LISA Laser Head electronics
- Rose-LICM
- Galileo LADU

Mechanism

- JUICE RIME, antenna, Multi hinge
- Jason-CS/Sentinel-6 deployement mechanism

STI offering

- PVA laydown on customer furnished panels
- Solar array panels (SAP) with CST substractes and STI PVA laydown
- Solar Array Wings (SAW) with CST substractes STI PVA laydown and STI deployment system
- STI SADA stand-alone or in combination with SAW

STI Solar Array Programmes

- GökTürk 2, deployable SA, external PVA, launched 2012
- Formosat-5, deployable SA, external PVA, launched 2017
- Sentinel-5 Precursor, deployable SA, external PVA, launched 2017
- C-Sat, deployable SA, external PVA, delivered 2017
- Space IL, body mounted SA, external PVA, launched 2019
- JASON CS /S-6, deployable SA, external PVA, 2 SA launched 2020
 - NGSAR, body mounted SA, external PVA, delivered 2018
- EUCLID, body mounted SA, external PVA, delivered 2021
 - Lapan A4(Indonesia), body mounted SA, STI PVA, delivered 2019
 - York Space Systems, deployable SA, STI PVA, launched 2019
 - Vigoride, deployable SA, STI PVA ,delivered 2020
 - Imece, deployable SA, STI PVA, delivered 2021
 - NAOS, deployable SA, STI PVA, delivery 2022
 - FLEX, deployable SA, STI PVA, delivery 2022
 - ALTIUS, deployable SA, STI PVA, delivery 2022
 - PLATO, body mounted SA, STI PVA, delivers 2023
 - 8 Solar arrays for Copernicus HPCM: CHIME, CO2M, CRISTAL, LSTM,
 - Airbus Oneweb Satellites , >300 solar panels, STI PVA, > 100 launched
 - YORK, 10 plus 80 (Transport layer) SA, STI PVA, delivery 2021/22

GSTP In-Situ Process Monitoring for Solar Generator Manufacturing

Since 2018 STI applies own laydown process with ongoing improvement towards automation

GSTP program linked to the PVA laydown (String of solar cell assembly to panel)

- to define and surveil process parameters
- build inspection head
- enable automated reporting
- verification of process with manufacturing and testing of a DVT coupon

Goals of SpaceTech (STI)

- Innovative automated production line to provide competitive edge
- High quality/yield with tight control of process parameters
- Increase production capacity to serve large system integrator

PVA Assembly Line (PAL)

Fully automated stringing (28 Strings/day for 2.5 m x 4 m panels)

First laydown planned for July 2022

PVA Pilot Line

Currently main production line

- Max Panel Size: 2.5 x 4 m
- Portal (1)
- Inspection head (2)
 EL, 3D-Tasks, 2D Tasks
- Solar panel (3)
- Buffer station (4)
- EL contacting unit (5)
- Flipper Unit (6)
- Input Station (7)
- Pick and Place Unit (8)

Test Bench

- Introduction
- Single Axis, travel range 1.5 m
- Incoming Inspection
- Testing of new methods
 - All junction
 Electroluminescence/ Photoluminescence
- Laser welding (not part of the activity)

In Process Control Tasks

Processes	Analysis
Incoming inspection of substrate	ightarrow Check for defects/ flatness requirement within SCA-S
Incoming inspection of (string of) solar cells	\rightarrow Rear-side inspection
- meeting inspection of (string of) solar cens	\rightarrow Luminescence (ELM/ PL optional)
	\rightarrow electrical integrity (ECD/ECC)
	\rightarrow SCA-S alignment
Applying of Adhesive	 → Volume/height of RTV – Dots → Location of Dots
 Gap between Cell and Substrate 	ightarrow Bonding of cell
 Alignment of SCA 	ightarrow Gap between adjacent cells (ESD risk)
Final Defect detection	→ Photoluminescence
2D Analysis	3D Analysis

Sensors used in Inspection Head

STIZ

- Two different sensor: 2D Senor & 3D Sensor
- Both of type line scan sensors
- Commercial sensor
- Home built analysis software
- Laser/LED Illumination
- Band pass filter
- Scanning speed approx. 10 m/min
- FOV adapted to largest cell dimensions
- Sub 100 μm resolution and accuracy (x,y,z)

Example of Computational Steps

- Intrinsic and Extrinsic Camera Calibration
 → Results in "World Coordinate System"
- Filtering of Data Points
- Image Stitching
- Analysis Tasks
- Speed Optimization
 - 5s to 40s of 1m of SCA-S

CFRP substrate image Before/after filtering

Substrate Flatness (3D Task)

>935.5µm 891.5µm

847.5µm 803.5µm 759.5µm

715.5µm

Goal:

- Integrity of substrate (incoming inspection of substrate)
- Peak-Valley requirements for SCA-S laydown

Input:

Adhesive Checking (3D Task)

Goal:

- Check position of RTV dots
- Verify height/volume of dots
- Particle alarm

Input:

Drawing of dot pattern

Output:

- Acceptance decision
- Statistic of Dots → used to counteract tool wear out

In Process Control Tasks

Processes	Analysis
Incoming inspection of substrate	ightarrow Check for defects/ flatness requirement within SCA-S
Incoming inspection of (string of) solar cells	ightarrow Rear-side inspection
5 1 1 1 1 1 1 1 1 1 1	ightarrow Luminescence (ELM/ PL optional)
	ightarrow electrical integrity (ECD/ECC)
	\rightarrow SCA-S alignment
Applying of Adhesive	Volume/height of RTV – Dots
	\rightarrow Location of Dots
 Gap between Cell and Substrate 	ightarrow Bonding of cell
 Alignment of SCA 	ightarrow Gap between adjacent cells (ESD risk)
Final Defect detection	→ Photoluminescence
2D Analysis	3D Analysis

Adhesive Gap (2D Task)

Goal:

- **Guarantee thermal and** mechanical bonding
- **Important in-line** monitoring tool

Input

3D Image

Output

Adhesive Gap map for **PVA KIP**

Alignment Monitoring (2D Task)

Alignment monitored twice:

- Before laydown → movement commands
- After laydown → ESD-risk

GOAL:

- Allow automated positioning
- Verify Requirements

Input needed:

- Configuration of nominal SCA positions
- Drawing of the SCA
- High-resolution 2D image

Output:

- Location and angle of cell
- Distance to next neighbors (all directions)

Rear-side Inspection (2D Task)

GOAL:

Check for presence/positioning

Input needed:

- CAD Drawings of Assembly
- High-resolution image

Output:

- Presence of component
- Delta position compared to nominal
- Score for shapematching → indicator of damage

Presence inspection for bottom and top of string

Component	1	Busbar_Bottom	1	Busbar_Top	Universal	Inplane_Interconnect	T
Result	1	- 1.0		-1.0	1	1.0	
Score	1	0.96	1	0.95	1	0.91	
Delta Position	1	0.522	1	0.606	I	0.695	

1.0 |

0.90 |

0.178 |

Result

Delta Position

Score

String summary:

Overall string result: 1.0

4		ALL AND		200	j	20			No.		Jul I				
	5113	- Area Area Area Area Area Area Area Area				S113		6113 20			5113		5113		
٦	0 (491 37				Jan J	0 1491 54		0 1491 45			0 1491 53		0 1491 35		
										1					
	Cells ID-(06, 51	130 14	491 35											
	Presence in Component	nspect t	ion 			Diode	Dio	de_Int	ercon	nect	I	Inte	rconne	ect	

1.0 |

0.84 |

0.417 |

1.0

0.88 |

0.208 |

In Process Control Tasks

Processes	Analysis				
Incoming inspection of substrate	ightarrow Check for defects/ flatness requirement within SCA-S				
Incoming inspection of (string of) solar cells	\rightarrow Rear-side inspection				
	ightarrow Luminescence (ELM/ PL optional)				
	\rightarrow electrical integrity (ECD/ECC)				
	\rightarrow SCA-S alignment				
Applying of Adhesive					
- Applying of Adhesive	Volume/height of RTV – Dots				
	ightarrow Location of Dots				
 Gap between Cell and Substrate 	\rightarrow Bonding of cell				
 Alignment of SCA 	ightarrow Gap between adjacent cells (ESD risk)				
 Final Defect detection 	→ Photoluminescence				
2D Analysis	3D Analysis				

Luminescence (2D Task)

Developed Electro- and Photoluminescence on all 3 Junctions

- Top + Middle Junction with silicon photonics
 - High resolution
 - High speed
 - Baseline in Production Environment
- Bottom junction with InGaAs photonics
 - High resolution
 - Low speed
 - Implemented in Test bench

Electroluminescence vs Photoluminescence (i)

STI prefer Photoluminescence

- Contactless
- Portable
- Tendency to higher contrast

Issues related to manufacturing

In particular cracks / shunts visible in both EL and PL

Verification on-going

- Defect catalogue
- Ongoing implementation in series manufacturing

Electroluminescence vs Photoluminescence (ii)

STI prefer Photoluminescence

- Contactless
- Portable
- Tendency to higher contrast

Issues related to manufacturing

In particular cracks / shunts visible in both EL and PL

Verification on-going

- Defect catalogue
- Ongoing implementation in series manufacturing

Machine Vision Defect Detection

3-04 18-03 0000 0000 03 PH-03-Freilaydown 8A-02-nn-1 PL-8P650-png -04 ID-03 0000 0000 03_7H-05-FoetLaydown SA-02-nn-1 PL-BF650.png

GSTP2 compare cell images

Result comparison path: /home/sysgen/NSSA/Projects/2021_OneWeb_Tes Log created on 2021-03-29 17:36:41,181 by LumiCompareImages 0.2

ref:03	PreLaydo	wn	05_PostLaydown
TDBC9999_0000	0000 01	EL-BP650	OK
TDBC9999_0000	0000 01	PL-BP650	OK
TDBC9999_0000	0000 02	EL-BP650	OK
TDBC9999_0000	0000 02	PL-BP650	OK
TDBC9999_0000	0000 03	EL-BP650	OK
трвс9999_0000	0000 03	PL-BP650	DEFECT
TDBC9999_0000	0000 04	EL-BP650	DEFECT
TDBC9999_0000	0000 04	PL-BP650	DEFECT

- Segmentation of images with px accuracy
- Machine vision based defect detection

DVT Coupon

Built with automated process

- TV Cycling
- APTC
- Electrical performance
- ightarrow Coupon is fine and healthy

Voltage (V)

DVT Coupon IV Curve Before vs After APTC1

Conclusion & Outlook

Implementation innovative in-line monitoring process

 \rightarrow High Yield, high quality

Dedicated Software development

- Analysis
- Reporting
- Configuration management
- Verification with DVT Coupon
- Since then series production of >200 m² manufactured SAPs

Outlook

PAL to be put into operation, increase max throughput by 4
Laser welding (2022, supported by ARTES 4.0 activity, DVT)

Thanks to colleagues of ESA for the support

Emilio Fernandez Lisbona Franziska Erkelens-Sickinger

Questions?

Contact (ESA)

Emilio Fernandez Lisbona Emilio.Fernandenz.Lisbona@esa.int Contact (STI)

David Fehrenbacher David.Fehrenbacher@spacetech-i.com

SpaceTech GmbH

- Systems
- Instruments
- Equipment

Thank you very much for your attention!

Seelbachstr. 13 D-88090 Immenstaad Tel: +49 7545 932 84 86 www.spacetech-i.com