THALES

Contract N° 4000129501/20/NL/HK

32GHz 150W TWT (THL 32150 C)

THALES AVS FRANCE

25/01/2023

- TWT Development plan
- **TWT EBB Results**
- Ways of TWT improvements
- TWT Tunability

TWT Development plan

3 main phases

- > 1st = preliminary design & EBB testing → Final Review → PDR milestones
- ➤ 2nd = improvement of design & critical margin tests
- ➤ 3rd = qualification & acceptance tests

- → CDR milestones
- → TQR milestones

Baseline technology & design

Summary

Sub assembly	TWT configuration	250W Ka-band configuration	TV 1 (HW1)	EBB1	EBB3		
Gun	Technology	10 KV class Metallic envelop gun					
	Design	250W Ka-band					
	M cathode Ø	Diam. 1		Diam. 2			
	Barrel	250W Ka-band					
	PPM stack	250W Ka-band PPM stack	Optimized 250W Ka-band PPM stack	150W 32 GHz PPM stack	Optimized 150W 32 GHz PPM stack (magnets at the end of the line)		
	Helix thickness	Same dimensions					
	Helix length	Same dimension					
Delay line	Helix conicity	Low	increased				
	Helix taper/ diameter	THL20250C - THL20250R	Profil 1				
	Input rods	Same geometry as 250W Ka-hand					
	Output rods	Same geometry as 250W Ka-band					
	RF input	Coaxial connector	Wave-Guide on coax connector		New Wave-Guide on coax connector		
	RF output	doorknob	Wave-Guide on coax connector	Doorknob			
Collector		250W Ka Shrunk 4 stage collector	80W Q 4 stage collector				
Housing		250W Ka housing		-	THL32150C housing		

Operating point

Parameter	EBB1	EBB3	Proposed operating point
VH (V)	9100	9050	9000
IK (mA)	112	111	112
Vc1 (V)	4150	4400	4250
Vc2 (V)	3600	3750	3650
Vc3 (V)	3000	3050	3050
Vc4 (V)	800	800	800

Compatible with 15 years lifetime

Good focussing

Tests results over 31.8-32.3 GHz

Output power at saturation ($T^{\circ} = 25^{\circ}C$)

Output power above 150W within temperature operating range

Max phase-shift at Fmax < 50°

Typical **global efficiency** > 50%

Gain at small-signal & saturation

Typical gain at sat = 54 dB \rightarrow Pin max = -2.5 dBm at Fmax

Typical gain at ss = 62 dB

Power flexibility

- > RF performances from 100W to 150W
- Frequency band [31.8 32.3] GHz (VH = constant = 9050 V)

Output power min (W)	Global efficiency mean (%)	Pin max at sat, at Fmax (dBm)	IH mean (mA)	IK (mA)
150 W	52	-2	1	112
140 W	50	-0.5	0.9	109
130 W	48.6	0.7	0.8	105
121 W	47.6	1.1	0.8	102
110 W	46.3	1.6	0.7	99
100 W	44.7	2.4	0.7	95

Good output power fexibility

Tests results over 31.8 – 32.3 GHz

■ Gain variations at 25°C

Specifications are challenging

Can be improved by changing slightly the delay-line taper,

VSWR Input & Output

Input: VSWR can be improved (minor modification)

Output: Good max VSWR

Global Efficiency

- ➤ Relaxation of phase-shift specification → redesign of helix taper
- > Improvement of electron optic collector
- Improvement of magnetic stack at the entrance of collector

Stability of the gain

> Slight modification of the helix taper to better balance Gain

Mass

Redesign of housing

Conclusion

Feasibility of a TWT delivering 150W output power in a [31.8 – 32.3] GHz bandwidth has been demonstrated

- Overall performances are good
 - ➤ Good RF performances + No oscillations
 - Good focusing + Compatible of 10KV EPC class
- Improvement margins
 - Efficiency / Gain / Mass
- TWT flexibility
 - Good behavior vs. different output power and frequency range
- All relevant parameters have been fulfilled paving the way to launch CDR phase