

D6 - Final Presentation

Battery Passivation

ELEC.ENG.PRS.2018.1000070464.ADS

Mathilde Aouizerate – Airbus Defence & Space ESTEC – 23rd October

Battery Safety and Passivation

ESA CleanSpace Industrial Days

Mathilde Aouizerate – Airbus Defence & Space ESTEC – 23rd October

Why are we talking today about Battery Passivation?

Causes of known satellite breakups until 2008. Source: US Space Surveillance Network (SSN)

Goals:

CNES Passivation/Fin de vie du

sous-système de puissance

2012

2008: French law LOS (Loi

d'Opérations Spatiales) applicable to satellites launched after 2020 from

- Assessing various **passivation strategies**
- Understanding battery behaviour at End-of-Life under **extreme conditions** through testing

2013

GSTP Spacecraft Power System Passivation Battery thermal analysis

• Three different cases have been studied:

GSTP Spacecraft Power System Passivation Battery thermal analysis

• Three different cases have been studied:

GSTP Spacecraft Power System Passivation Battery thermal analysis

• Three different cases have been studied

Thermal Analysis with Systema/

Airbus DS

Assumptions :

- <u>Orbit</u>: Geo-synchronous orbit
- <u>Duration</u>: 100 years (or forever)
- <u>Season</u>: Solstice (no eclipse) certain worst case
- <u>Attitude</u>: Radiator pointing the Sun possible scenario

Objective of the study:

To test Li-lon battery cells and modules under extreme conditions encountered after spacecraft disposal in order to assess their safety

 \rightarrow <u>Abusive tests</u> on 200+ SAFT and ABSL space cells

SAFT cells	ABSL cells	Modules
o VES140	o18650HC	8P VES140
o VES180	o18650HCM	6S2P NL
o VES16	o18650NL	6S2P HCM

VES140 Test **Specification** VES140 Test Campaign **VES140** Post Test Review **Other cells Test Specification Other cells Test** Campaign **Final Post Tests** Review

In order to **optimize the overall test campaign**, it was decided to:

- Perform a first test campaign on VES140 model only
- Perform a second test campaign with the remaining cell models.

First assessment of the impact of **ageing** and **radiations**

Identification of useless tests (if any)

Possibility to add new tests

External short-circuit - Assessment

Short circuits are a **direct connection between the positive and negative terminals** of a cell and/or battery.

•Can be caused by:

- •Faulty connections between the positive and negative terminals.
- •Conductive electrolyte leakage paths within a battery.
- •Structural failures.

•Can result in:

- •Very high current spikes that cause high pressure inside the cell resulting in venting and explosions.
- •Any hot spot may induce a fire and ejection of parts.

•Can be prevented:

With the use of internal protections at cell level
Fuses, circuit breakers, thermal switches at battery level.

ABSL cells test setup

3 mΩ short-circuit on VES140 Test setup

External short-circuit - Results

General conclusions:

Cells internal protections help limiting the maximum temperature reached as well as avoiding the generation of debris.

SAFT cells:

- <u>VES140 & VES180:</u> no internal protections
 - → High current spikes (>1000 A)
 - \rightarrow High temperatures (up to 160°C)
 - → Ejection of electrolyte and even the jelly roll (debris generation).
- <u>VES16:</u>
 - → Circuit Breaker activation
 - → Electrolyte leakage and smoke but **no debris generation**

ABSL cells:

- PTC (internal protection) is activated for all cells, limiting the temperature rise (85°C)
- No ejection of electrolyte or smoke. No debris generation.

 $3 \text{ m}\Omega$ short-circuit on VES140

100 m Ω short-circuit on HCM cell

cea

AIRBUS

Internal short-circuit - Assessment

- Internal short circuits are a **direct contact** between the positive and negative materials **inside a battery cell**.
- It is a **punctual perforation of the separator** which generates a local hot spot.

•Can be caused by:

- Manufacturing defect.
- Induced internal shorts in the field:
 - usage in extreme thermal environments;
 - crash or a failure of the fixture system

•Can result in:

• Venting, smoke, fire and go into thermal runaway.

•Can be prevented:

- No prevention
- Use of venting disk to mitigate the impact.

ABSL cells test setup

Impact of nail location and penetration depth was assessed

SAFTABSL

Internal short-circuit - Assessment

General Conclusions:

- No impact of the nail **location** on tests outcome and temperature results. ٠
 - \rightarrow Fast exothermic reaction in any case
- No clear impact of ageing or depth of penetration (full or partial) ٠ \rightarrow However, with higher nail velocity, it is suspected that the maximum temperature would be reduced as the surface for energy release would be higher.

Nail test on a VES180 cell

HC cell

VES16 Internal Short-circuit results

AIRBUS

Overcharge - Assessment

On the anode:

- Overcharge can cause plating that can ultimately result in a short circuit. On the cathode:
- Overcharge can cause excess removal of lithium. The crystalline structure becomes unstable, resulting in an exothermic reaction.

•Can be caused by:

- Charging a cell to too high of a voltage (over voltage overcharge).
- Charging at **excessive currents**, but not excessive voltages.

•Can result in:

•Immediate cell thermal runaway.

•Can be prevented:

- •With the **use of internal protections** at cell level.
- •Fuses, circuit breakers, thermal switches at battery level.
- •Voltage control at battery level.

VES16 & ABSL cells - Test setup

Battery Safety and Passivation - Clean Space Industrial Days

٠

٠

TRP Battery Passivation - Cells and Battery abusive testing

0%

HC-27

- No debris generation at any current (2C, 5C & 10C), only a slight electrolyte leakage for some cells
- Internal protections (CID, PTC) activated •

NL-08

HC-28 HC-26 HCM-21 HCM-22 HC-07 HCM-07 NL-07

Overcharge on Modules - Results

ABSL NL Modules :

• Overcharge at <u>1.5C (7.2A)</u> 124°C Activation of the CID, limiting temperature rise

SAFT Modules :

Video

Overcharge at C/8 (40A) 950°C

• Overcharge at <u>C/3 (1.6A)</u> - 1333°C Activation of the CID on 1 string only

18 October 23rd 2018

AIRBUS

Over-discharge - Assessment

Over-discharge can cause internal damage to electrodes and current collectors (copper dissolution), can lead to Cu dendrite generation and can ultimately lead to short-circuit.

Can be caused by:

•Discharging a cell to too low of a voltage.

•Can result in:

•Exothermic reaction linked to the copper reduction-oxidation reaction, no thermal runaway since there is almost no electric charge.

•Can be prevented:

- No prevention at cell level
- Voltage control at battery level.

VES140 cells - Test setup

Other cells Test setup

AIRBUS

High Temperature - Assessment

• Operating at high temperatures helps increasing the reaction rate, leading to higher I²R heat dissipation and thus even higher temperatures.

•Can result in:

•Cell thermal runaway.

Separator melting and decomposition,

•Hot surface ignition of flammable mixtures, there must be sufficient oxygen in the surrounding environment to sustain combustion

•Cell contents may be ejected .

•Can be prevented:

•With the use of Internal Protective Devices.

•Low **SOC**, the **ambient environmental temperature**, the **electrochemical design** of the cell and the **mechanical design of the cell**.

•Ageing reduces carbon reactivity leading to more thermally stable cell

VES140 & VES180 cells test setup

High Temperature - Assessment

• ARC testing (Accelerating Rate Calorimetry)

Objective: analyse the **thermal behaviour** of the cells under adiabatic conditions in order to identify the **non-self-heating**, **self-heating and thermal runaway regions** for each cell model as a function of the **state of charge** and the **state of health**.

- N2 flow : 0.1L/min
- Cells is charged up to desired SoC 100% - 50% - 0% SoC and 0V
- Temperature is increase gradually until a thermal runaway appears. Stop heating.
 - Temperature step: 5°C
 - Temperature rate sensitivity': >0.02°C/min. = onset point of exothermic reaction
 - End temperature': 180°C
 - Safety temperature rate': 3°C/min. (test stop)

High Temperature - Conclusions

• The onset point decreases when SOC increases.

- Contrary to what one might think, ageing and radiation impact is not clear.
- VES140 and VES180 cells have lower onset point temperature than VES16 and ABSL cells
- VES16 and ABSL cells could go up to 100°C at 100% SoC without going into thermal runaway.

• VES16 cells at 0% SoC or 0V do not go into thermal runaway (safe at every temperature up to 210°C)

AIRBUS

Micrometeorids - Assessment

- Micrometeoroids impact can be associated to a mechanical damage (crush or penetration).
- Can be caused by:

•Micrometeoroid and/or debris impact.

•Can result in:

• Internal short circuit (low impedance shorting between the current collectors) likely to cause **cell thermal runaway.**

•Can be prevented:

•With the mechanical design of the cell, battery and/or spacecraft.

An aluminum ball of 8mm diameter is projected three different location of the cell. Its mass is 0.72 - 0.73 g and its speed is above 1000 m.s-1

Micrometeorids - Conclusion

- Aluminum ball enters into the cell but **does not** cross the cell.
- Consequence: internal short-circuit involving an important increase of temperature (360°C -660°C), sparks, smokes and emissions of particles.
- VES140 debris tests ended with the ball located inside (no pass through the cell) and reached similar temperatures than the internal short-circuit tests.

An aluminum ball of 8mm diameter is projected three different location of the cell. Its mass is 0.72 - 0.73 g and its speed is above 1000 m.s-1

• Equivalent debris for small cells would destroy the cells due to their size.

Video

Battery Safety and Passivation Conclusions

Assessment of passivation strategies in order to ensure battery safety at end-of-life.

At battery level

Discharge the battery as much as possible at the EoM.

Connect it to a **bleed resistance** and **disconnect it from the bus**.

Cell internal protections are an asset.

Develop **safer** batteries: solid electrolyte, casings, inter-cells material...

At satellite level

Assess the most probable attitude once the satellite is uncontrolled.

Determine the best possible way to reduce the satellite temperature: spin it!

