

FTSnext

Next Generation Flight Termination Systems for Launchers

Kick-Off Presentation for Final Review

October 04, 2023

1 Introdu

Agenda

- 1. Introduction
- 2. Project Goals
- 3. Project Overview
- 4. Project Results
- 5. Outlook

INTRODUCTION

© 2023 Astos Solutions

FTSnext Final Review Kick-Off

FTSnext Final Review Kick-Off

RADAR

Flight Termination Systems (FTS)

Cause:

- Leaving safe trajectory
- Observable system failure
- Increased risk to humans
 - or property

Termination

- Destruction of the launcher
- Engine shut-off

ommanc

erminatio

© 2023 Astos Solutions

Onboard tracking, monitoring and termination rules

Flight Termination Systems (FTS)

Optional termination from ground

Autonomous FTS (AFTS)

<u>Advantages</u>

- Cheaper infrastructure
- More flexible trajectories possible

PROJECT GOALS

© 2023 Astos Solutions

FTSnext Final Review Kick-Off

FTSnext project

FTSnext

- AFTS development for international market
- Easy reconfiguration to launch sites, launchers and regulations
- Team: Astos Solutions, HyImpulse and Ariane Group

Focus

- Requirement Engineering
- System Design
- Simulation Environment
- Software Prototype

PROJECT OVERVIEW

© 2023 Astos Solutions

FTSnext Final Review Kick-Off

© 2023 Astos Solutions

Schedule / Milestones

Meeting	Purpose	Companies attending	Date(s)	Location
KOM	Kick-off of activity	Astos, Hylmpulse, ArianeGroup	2023-11-03	Online
PM1	Progress Meeting 1	Astos, Hylmpulse, ArianeGroup	2022-02-08	Online
DSR	Design Specification Review	Astos, Hylmpulse, ArianeGroup	2022-07-22	Stuttgart / Online
PM2	Progress Meeting 2	Astos	2022-09-15	Online
FR	Finale Review	Astos, Hylmpulse, ArianeGroup	2023-10-20 (TBC)	Online

Additionally, bi-weekly meetings with ESA

stos

HyImpulse

Ш

SOW

TN-01

TN-02

МОМ

PR

	TN-03	Functional analysis	DSR
TN-03	TN-04	FTSnext Design Specification	DSR
TN-04	TN-05	FTSnext Simulator: User Manual, Architectural Design and Model Reference	FR
TN-05	TN-05	FTSnext Simulator: User Manual, Architectural Design and Model Reference	FR
	TN-07	Test Plan and Test Report	FR
SRF	SRF	Software reuse File (content see SOW)	FR
TDP	TDP	Technical Data Package 🛞	FR
TAS	TAS	Technology Achievement Summary	FR
FP	FP /	Final Presentation	FR
ESR	ESR	Executive Summary Report	FR
FR	FR	Final Report	FR
CCD	CCD	Contract Closure Documentation	Contract Closure

Monthly Progress Report with updated schedule, problem notification, AIL, DDL

Documents

Doc#

TN-01

TN-02

Title / description

Minutes of Meeting

AFTS Reference Framework

FTSnext Requirements Specification

Deliverables

MOM

PR

Milestone

DSR

DSR

5 days

Monthly

Deliverables

∭ HyImpulse

Software / Models

SOW	SW#	Title / Description	Quantity	Milestone
SW-01	SW-01	FTSnext Simulator Software and Environment	1	FR
SW-02	SW-02	FTSnext Simulator Runs and Results	Ţ	FR
SW-01	SW-03	FTSnext Algorithms	1	FR
	SW-04	Capella files of functional analysis	1	DSR

PROJECT RESULTS

© 2023 Astos Solutions

FTSnext Final Review Kick-Off

Regulatory Analysis: Contacted Launch Sites

Country	Launch Site	Response
UK	SaxaVord	Yes
Sweden	Esrange	Yes
Japan	Hokkaido	Yes
Germany	GOSA	Yes
Kazakhstan	Baikonur	No
Portugal	Azores	Yes
France	CSG	No
Norway	Andoya	Yes
Brazil	Alcântara	No
South Korea	Naro	No
New Zealand	Rocket Lab	No
Australia	Whalers Way	Yes

General feedback

Esrange, GOSA, Azores

- Would liked to keep informed
- Open for further discussion

Regulatory Analysis

Detailed regulations from United States:

- Title 14 Code of Federal Regulations (CFR) 450.108 Flight abort
- Range Commander Council (RCC) Flight Termination Systems Commonality Standard 319-19

Regulatory Analysis

National regulations:

- The French Space Operation Act
- United Kingdom Space Industry Regulations
- Australian flight safety code
- Japanese Space Regulations

Flexible design of AFTS necessary

Model Based System Engineering

Operational Analysis

Functional Need Analysis

Functional Requirements

- Architecture

Physical Architecture

Logical Architecture

FTSnext Final Review Kick-Off

System Requirements Analysis

Input:

- Statement of Work
- Functional analysis
- Regulation survey
- ECSS-E-40 Part 1B and ECSS-Q-ST-80C

Outcome

- 137 system requirements
- 104 software requirements

High-Level System Architecture

Astos

HyImpulse

Redundancy for reliability

- Tracking: GNSS and IMU
- Two power units
- Cables and connectors
- Two processing units: Software

Self-monitoring and fail-safe

Software Prototype

Software Prototype: Sensor Fusion

- Extended Kalman Filter
- Data Loss handling
- Sensor Cross Validation

Software Prototype: Instantaneous Impact Point (IIP)

- Propagate trajectory to find impact point
- Keplerian algorithm
- Keep out zones defined by polygon areas

Software Prototype: Non-nominal Trajectory

- Continuous state monitoring against limits
- Generic selection from all available observables (meas.* & derived**)
- E.g.: detect extreme acceleration or tumbling

Software Prototype: Conditional Limit

- Rules are evaluated after 'event' (predefined state condition)
- Generic selection from all available observables (meas. & derived)
- E.g.: detect if orbit is reached, populated area safely passed

Software Prototype

Data loss handling

Purpose

- Self monitoring

<u>Affects</u>

- Fusion quality
- INS quality
- Sensor Fusion Algorithm
- Termination decision

Data loss handling

Sensor outages

- GNSS position
- GNSS velocity
- IMU angular rate
- IMU acceleration
- Further influences
- Cross validation fails
- Launch pad vs flight phase

Outage limits

GNSS

- Cumulated angular rate
- Acceleration

121 combinations

Adaptability

Goal: Adaptable to launcher, missions, launch sites and regulation

<u>Wrapper</u>

- Changes on functional level
- E.g. sensor interfaces

<u>Core</u>

- Parameters
- E.g. IIP boundaries

Qualification Approach

DO-178C: certification of aerospace software

- Test case for every line of code
- Test case for every possible state transition

Wrapper must be requalified after changes

Automatize qualification and document generation

Simulator

- ASTOS and Simulink
- 3 launcher scenarios
- 10 failure and near failure trajectories.
- Prototype of onboard software

Simulator: Nominal Scenarios

Test Campaign

Analyzed termination scenarios

- Extreme accelerations
- Tumbling
- Outside of controlled area
- Not reaching orbit
- Straight up launch
- Data loss

(+ respective 'near-failure' cases)

Test Campaign

Robustness Sensor Fusion

- Monte Carlo: Uncertain parameters
- Monte Carlo: Outage handling
- High vibrations on IMU measurement
- High accelerations
- Further requirements
- Cross validation
- Monte Carlo IIP: Accuracy
- Unit Tests

Requirements

- Position accuracy: Min 100 m (1 sigma)
- Velocity accuracy: Min 0.3 m/s (1 sigma) Outliers up to 8.66m/s
- Robus to sensor outages
- Robust to vibrations: White noise with spectral density 0.04 g²/Hz
- Robust to high acceleration: 3 times highest expected acceleration

Monte Carlo Distributed Parameters

- Sensor noise and biases
- Initial estimate error
- Sensor position knowledge
- Earth model
- Gravity model

Sensor Outages

- GNSS of 10s
- Angular rate of 0.8s
- Acceleration of 10s

HyImpulse

© 2023 Astos Solutions

HyImpulse

Test Results: IIP Accuracy

- Keplerian vacuum IIP vs IIP from 3-DoF simulation
- 3-DoF simulation for different gravity models with & w/o atmosphere
 - Vacuum IIPs 'ahead' of drag IIPs, all vacuum IIPs close

Estimation error safely within requirement (on Vac. IIP!)

Test Results: Safe-Lock/Termination

For all 3 launcher scenarios and all failure/near-failure cases

	S1				S2				S3	
Scenario Subtype	AFTS State (at end of sim.)	Trigger time (sim. time [s])	Indicator	Scenario Subtype ID	AFTS State (at end of sim.)	Trigger time (sim. time [s])	Indicator	Scenario Subtype ID	AFTS State (at end of sim.)	Tri (si
Baseline	Safe-lock	949	-	Baseline	Safe-lock	1004	-	Baseline	Safe-lock	10
NF: Turn	Safe-lock	948	-	NF: Turn	Safe-lock	1003	-	NF: Turn	Safe-lock	10
NF: High Acceleration	Safe-lock	940	-	NF: High Acceleration	Safe-lock	1003	-	NF: High Acceleration	Safe-lock	10
NF: Orbit	Safe-lock	951	-	NF: Orbit	Safe-lock	1010	-	NF: Orbit	Safe-lock	10
NF: Low Thrust	Safe-lock	951	-	NF: Low Thrust	Safe-lock	1010	-	NF: Low Thrust	Safe-lock	11
F: IIP Slow	Termination	677	IIP	F: IIP Slow	Termination	700	IIP	F: IIP Slow	Termination	84
F: IIP Fast	Termination	704	IIP	F: IIP Fast	Termination	668	IIP	F: IIP Fast	Termination	80
F: Tumbling	Termination	727	TRAJECTORY	F: Tumbling	Termination	756	TRAJECTORY	F: Tumbling	Termination	77
F: Straight-up	Termination	645	GATE	F: Straight-up	Termination	678	GATE	F: Straight-up	Termination	63
F: Extreme Acc.	Termination	699	TRAJECTORY	F: Extreme Acc.	Termination	675	TRAJECTORY	F: Extreme Acc.	Termination	63
F: No orbit	Termination	958	GATE	F: No orbit	Termination	1033	GATE	F: No orbit	Termination	11:
F: No lift-off	-	-	-	F: No lift-off	N/A	N/A	N/A	F: No lift-off	N/A	N//
							-			

Scenario Subtype ID	AFTS State (at end of sim.)	Trigger time (sim. time [s])	Indicator
Baseline	Safe-lock	1062	-
NF: Turn	Safe-lock	1098	-
NF: High Acceleration	Safe-lock	1069	-
NF: Orbit	Safe-lock	1098	-
NF: Low Thrust	Safe-lock	1109	-
F: IIP Slow	Termination	847	IIP
F: IIP Fast	Termination	809	IIP
F: Tumbling	Termination	776	TRAJECTORY
F: Straight-up	Termination	636	GATE
F: Extreme Acc.	Termination	630	TRAJECTORY
F: No orbit	Termination	1121	GATE
F: No lift-off	N/A	N/A	N/A

AFTS with expected behavior in all simulated cases Termination cause indicated in telemetry

Test Results: Near-Failure Example

- Mainly nominal ascent trajectory for Scenario 1
- Sequence of short high-acceleration bursts before stage 1 burnout

Test Results: Near-Failure Example

- Non-nominal trajectory conditions due to bursts correctly detected
- Increase of termination timers and occurrence counter during bursts (single-point failure avoidance)

Test Results: Near-Failure Example

- All IIP and gate conditions remain fulfilled throughout ascent
- No termination indicated as timers/counter remain within threshold
- Safe-lock after IIP enters 'exit gate' 1 (and passing related check)

Feedback Conferences

Guiana Space Centre:

- Open for using FTSnext
- Recommend to include them in the development as early as possible

CNES

 New french space law is under development with more flexibility for AFTS

Avio

Pushes for international regulations

Feedback Conferences

SpaceX

- Uses less complex termination rules
- Points out effort for missionization

Generally:

- AFTS was a popular topic at IAASS
- Be more flexible and need less infrastructure
 - Workshop designated for this topic

Summary

- An adaptive AFTS design, potentially compatible with applicable regulations for many launch sites, countries and launch systems has been designed
- All identified requirements are covered by the AFTS design
- Prototype was implemented in Matlab/Simulink
- Test camping shows that the software behaves as expected

OUTLOOK

© 2023 Astos Solutions

FTSnext Final Review Kick-Off

Outlook

- FMECA, Safety and Security Analysis
- Hardware development
 - Breadboarding
 - Hardware in the Loop tests
- Detailed definition of (re-) qualification process in collaboration with launching state authorities and launch sites
- Independent validation
- Outline proposal for next phase already sent to ESA
- Potential partners for next phase identified and contacted