

Project – 2 way communication

Final Presentation

09/11/2023

THALES ALENIA SPACE INTERNAL

Tuesda y 09/11/2 023	09:30 – 09:40 10'	Intro & agenda	TASF
	09:40 – 09:50 5'	Project Summary – Use Cases	TASF
	09:50 – 10:00 10'	Project Summary – Protocol & Algorithm design	TASF
	10:00 – 10:10 10'	Project Summary – Testbed experimentation & Security analysis	Qascom
	10:10 – 10:30 20'	WP4 output - Recommendations for a space-based two-way system	TASF
	10:30 – 10:40 10'	WP4 output - Adaptation of two-way ranging to commercial technologies	TASF
	10:40 – 10:50 10'	Conclusion & Way Forward	TASF
	10:50 – 11:30 30'	Discussion	

THALES ALENIA SPACE INTERNAL

2

Project Summary - Reminder

THALES ALENIA SPACE INTERNAL

Use Case analysis

	Autonomou s vehicle	Asset tracking	RUC	Fishing monitoring	Critical infrastructur e
Nb of users (2024) Nb of users (2029)	225 k	10 k (active)	10 M	25 k	25 k
	10 M	10 k (active)	10 M	50 k	25 k
Density	Specific, see [RD1]	Uniform	Specific, see [RD1]	Specific, see [RD1]	Follow pop. density
Value between two PVT verifications	10 s N/A	1 min	2 min	30 min	5 s
Mode of operation	Waypointin g Bootstrappi ng	Waypointin g	Waypointin g	Waypointin g	Waypointin g
Pmd	10 ⁻⁷ /h	10 ⁻⁴ /h	10 ⁻³ /h	10 ⁻³ /h	10 ⁻⁵ /h
Pfa	10 ⁻⁵ /h	10 ⁻³ /h	10 ⁻⁵ /h	10 ⁻⁵ /h	10 ⁻³ /h
TTA	6 s	15mn	15 min	15 min	6 s
Ranging/Timing accuracy	10 m	25 m	100 m	100 m	240 ns (5G)
Reference environment	Light urban	Light urban	Light urban	Open sky	Light urban
Additional sensors	IMU, cameras, lidars, radars, LTE/5G positioning	RFID tags	(LTE/5G positioning)	-	(Internal clock)

THALES ALENIA SPACE INTERNAL

Protocol design

- Literature of Distance-Bounding protocols: robustness to Distance-Decrease attacks
 - RTT measurement robust to Distance-Decrease
 - Multi-RTT position robust to Distance-Decrease
- > Tradeoff : satellite-initiated VS user-initiated
 - Satellite-initiated selected
 - Adoption of Downlink Multicast

> Downlink request

6

Overview of two-way protocol measurements

- > 2 measurements :

 - RTT: $m_{RTT} = t_{rec}^{sat} t_{eme}^{sat}$ Synchro: $m_{sync} = \frac{1}{2}(t_{rec}^{user} t_{eme}^{sat} + t_{eme}^{user} t_{eme}^{sat}) \delta \tau_{forward\backslash return}$

Position verification algorithm design

- > Multi-RTT Snapshot Algorithm based on DB protocol
- Single primary satellite → Common focus of ellipsoids
- Two-Step Approach

8

Position verification algorithm design

Step 1 : position verification – Measurements consistency at reported position

Step 2 : position computation – Computation of independent bound based on Distance-Bounded RTT

ThalesA

a Thales / Leonardo company

Space

Synchronization Algorithm design

Computation of maximum possible spoofing delay introduced

- Unknown user position : Uncertainty on computed desynchronization depends on altitude
- Known user position : The RTT can be checked with exact theoretical value

THALES ALENIA SPACE INTERNAL

Two-Way Ranging Simulator

- Development of a Matlab simulator
 - □ Simulation of both positioning and time transfer
 - Compute the KPIs on a single *target user*
 - □ Simulation of attacks
 - Man in the Middle attack (SCER, Distance Increase)
 - Distance Fraud attacks
 - GNSS attacks

Preliminary simulati Experimentation Plan

Description

- test several short simulations;
- tune the parameters having the higher impact on the KPIs
- □ Goals
 - assess the sensitivity of the KPIs with respect to the tuned parameters
 - define a baseline nominal scenario and a baseline attack scenario
- Long simulations:
 - Description
 - increase the simulation duration;
 - test the baseline scenarios and tune the most interesting parameters
 - Goal
 - derive statistically meaningful KPIs

Nominal scenarios Experimentation Plan

Goal

- Authenticate the user GNSS position (positioning mode)
- Authenticate the clock bias (time transfer mode)
- Tune key parameters
- Extract KPIs
- Attack scenarios
 - Goal
 - Detect the attack

Key Performance Indicators (KPIs)

System availability $-A_{system}$

percentage of iterations the system authenticates the user

Target application availability $-A_{targetApp}$

percentage of times the system authenticates the user within the target application period

Probability of false alarm $-P_{fa}$

• Misdetection probability $-P_{md}$

- Main tuned parameters:
 - \Box User equipment transmitting power P_{UE}
 - \Box Time between user requests T_{req}
 - □ Scheduling rule M_{scRule}
 - \Box Bandwidth (uplink and downlink) B_w
 - \Box Target position accuracy x_{acc}
 - \Box LEO satellite constellation *SV*_{const}

Constellation name SV _{const}	#sat	Satellite altitude [km]
a)	900	1200
b)	300	1200
c)	375	2000
inculton course (la binko for the co	450	2000

□ Number of simultaneous Uplinks for the selected simulations : 100

Results Long Simulations (6h duration):

□ No false alarms: $P_{fa} = 0\%$

□ Baseline scenario:

- $A_{system} = 43\%$
- $A_{targetApp} = 92\%$

#ID	M _{scRule}	T _{req} [s]	P _{UE} [W]	B _w [MHz]	x _{acc} [m]	A _{system} [%]	A _{targetApp} [%]	P _{fa} [%]
1	1	10	1	2	100	42.82	92.16	0
2	Inf	10	1	2	100	37.29	91.24	0
3	Inf	10	1	1	100	26.12	78.17	0
4	Inf	5	1	2	100	42.06	100.00	0
5	1	5	1	2	100	42.29	99.01	0
6	Inf	20	1	2	100	28.15	53.27	0
7	1	20	1	2	100	44.26	78.42	0
8	Inf	25	1	2	100	5.45	10.20	0
9	1	25	1	2	100	40.51	60.33	0
10	Inf	10	1	2	25	21.85	71.00	0

Testbed Configuration – Attack Scenario

- 4 types of simulated attacks:
 - □ GNSS attack;
 - □ GNSS + Man In the Middle (MIM) attack;
 - □ Distance Fraud (DF) attack;
 - □ Distance Fraud + GNSS attack
- Tuned parameters:
 - \Box Distance between the true and the spoofed position $d_{spoofed}$
 - \Box Uncertainty on the layover time T_{layStd}

Positioning Mode – Attack Scenarios

GNSS attacks

always detected

□ incompatibility between authentic ranges and spoofed position

GNSS + MIM, DF, GNSS + DF attacks

□ detected with low std of the layover time → incompatibility between spoofed ranges and spoofed position

 $\square P_{md} = 7.02$ with higher uncertainty on layover time \rightarrow looser compatibility checks \rightarrow two-way ranges can be compatible

#ID	Attack type	$d_{spoofed} \ [m]$	T _{layStd} [ns]	P _{md} [%]
1	GNSS	500	0.289	0
2	GNSS	150	0.289	0
3	GNSS + MIM	500	0.289	0
4	GNSS + MIM	150	0.289	0
5	GNSS + MIM	150	289	7.02
6	DF	500	0.289	0
7	DF	150	0.289	0
8	GNSS + DF	500	0.289	0
9	GNSS + DF	150	0.289	0

System availability: **Time Transfer Mode – Nominal Scenario**

□ Impacted by:

- Elevation mask angle $\rightarrow 30^{\circ}$
- Constellation altitude \rightarrow 4 tuned constellations

 $\Box A_{targetApp} = 100\%$

Constellation name	#sat	Satellite altitude [km]
a)	900	1200
b)	300	1200
c)	375	2000
d)	450	2000

#ID	SV _{const}	Satellite altitude [km]	δ_c^{max} [ms]	A _{system} [%]
1	a)	1200	2.7	100
2	b)	1200	2.7	100
3	c)	2000	3.8	100
4	d)	2000	3.8	100

Time Transfer Mode – Attack Scenario

MIM Distance Increase attack

 $\Box \delta_c > \delta_c^{max} \rightarrow \text{attack always detected}$

Distance Fraud attack

 $\Box \delta_c > \delta_c^{max} \rightarrow \text{attack always detected}$

#ID	Attack type	Link	δ_c [ms]	P _{md} [%]
1	MIM - DI	Uplink	3.85	0
2	MIM - DI	Downlink	3.85	0
3	DF	Uplink	3.85	0

Recommendations for a spacebased system dedicated to two-way

www.thalesaleniaspace.com

THALES ALENIA SPACE INTERNAL

Constellation geometry

- > Testbed showed that essential parameters are :
 - Number of satellites in visibility instantaneously
 - Primary satellite elevation
 - Geometric diversity between secondary satellites
- Retained constellations
 - ≥450 satellites / ≥2000km altitude
 - Hypothesis : random selection of primary satellite
- Promising constellations : MEO + LEO
 - Primary satellites at MEO \rightarrow High elevation (+ No UL budget problems)
 - Secondary satellites at LEO \rightarrow Low elevation
- Possible adaptation of protocol for constellation optimization
 - → Selection of primary satellite at user level
 - Better geometry \rightarrow Reduction of constellation size
 - Simplification of allocation plan

Payload Design – Satellite onboard computation needs

Recall of session rate for 1200km satellite

	Total nb of active users in 2029 (k)	Tx duration (s)	Tx period (min)	Nb of signals simultaneously transmitted in a sat footprint
Autonomous vehicles (bootstrapping)	700		<mark>8</mark> h	44
Road user charging	70		15	93
Asset tracking	10	1.2	10	20
Fishery monitoring	50		30	33
Critical infrastructures	25		5	100
TOTAL	855			290
Target				280

- > Extrapolation to 2000km altitude \rightarrow 384 /s
- > Main operations performed onboard
 - Acquisition / Demodulation of 384 AUI Uplinks /s
 - Acquisition / Demodulation of 384 Uplink responses /s
- \rightarrow 1 Versal Core Processing board (50W)

Rights according to ESA Contract No. 4000133402/20/NL/CRS

Payload Design – Satellite Downlink transmission power

- Downlink Data Stream
 - Downlink requests \rightarrow 460bps (1 request each 1.2s)
 - Two-Way Data Downlink -> 61.6kbps 268b per user of AV / CI
- Downlink Budget analysis
 - Omni-directional transmission within the footprint
 - → 100W Transmission Power
- ➤ Two-Way Data Downlink is unicast → Use of SDMA w DL Beamforming
 - 7 beam uniform power accross beams
 - → 14W Transmission Power
- Beamforming allows
 - Sufficient UL demodulation probability under Intra-syst. Interference
 - Reduced DL transmission power

Payload Design – Tentative payload Size / Weight / Power

- Estimated required power for 2 scenarios
 - Omnidirectional Downlink Transmission
 - DownlinkSDMA

		consumption - Omni (W)	consumption – Beamforming (W)
Rx C	€NSS	10	10
	Processing : - 1 Versal core processing board - 1 timing board	50	50
2 way	RF : - 1 Front-end RF Tx (100W / 15W RF) - 1 Front-end RF Rx	200	30
	Filtering	0	0
Margin (%)	20	56	18
	Total	336	108

> Benchmark Solution → GOMSpace 16U

- 12U Payload size
- 80W-150W Average power
- \rightarrow 16U estimated for beamforming solution
- →Towards micro-satellite (80kg) for Omnidirectional DL

Recommendations on revisit time

- Revisit time = max. duration between 2 station visibilities
- Revisit time dimensioning for
 - Compliance to TTA requirement for remote users
 - Required onboard memory (secondary)
- Revisit time dimensions TTA of monitoring use cases
 - Information transits through ground segment
 - Target TTA value : 15mn → Asset tracking / IUU Fishing / RUC
- > Target revisit time depends on ISL in system design
 - No ISL \rightarrow Revisit time = 15mn
 - ISL \rightarrow 15mn = transit time through ISL to ground segment

THALES ALENIA SPACE INTERNAL

- Estimated onboard memory needs
 - 52kbps memory input
 - 47Mb for 15mn revisit time

26

> 2000km, 30° elevation mask

- → Fp area 14M km² 460 simultaneous Uplinks interferring
- → Number of users above system capacity assessed in testbed
- Beamforming (7 beams), 30° elevation mask
 - → Beam area 1.9M km² 70 simultaneous Uplinks interferring per beam
 - → Number of users coherent with capabilities demonstrated in testbed
- Elevation mask of 30° considered due to environmental conditions of most use cases
- Beamforming hypothesis requires antenna area of :
 - 0.73m² for considered L-band hypothesis
 - 0.17m² for retained S-band in ELCANO dedicated to Two-Way

Preferred solution: shifting to higher frequency band (S-band) and have a satellite multi-antenna

THALES ALENIA SPACE INTERNAL

Envisioned Way Forwards – System sizing

- Study the extension to multi-epoch of the Distance-Bouded RTT positioning / position verification
 - Extend positioning concept to multi-epoch
 - Possible use of IMU
 - Relax attack hypotheses (LOCFIT)
 - Extend position verification concept to multi-epoch
 - Verification of sequence of positions (LOCFIT)
 - → Enable two-way positioning with smaller constellations

> Study of LEO + MEO constellations

- Assessment of two-way positioning performance with LEO + MEO
- Cost Analysis / Optimization

Envisioned Way Forwards – System sizing

> Protocol improvements (ELCANO)

- Enable online selection of primary satellite at user level
 - Simultaneous Downlink transmission on all satellites
 - Satellite ID information in return Uplink
- → Better geometries and position availability
- Random selection of session (ALOHA Uplink Multiple Access)
 - Reduce allocation plan complexity
 - Avoid an Active Users Identification phase
- → Reduced UL / DL datarates
- →No need for allocation plan
- Adaptations of the waveform (single-PRN DL/UL)
- Followup activity : Perform security analysis of this concept

Adaptation to commercial technologies

www.thalesaleniaspace.com

THALES ALENIA SPACE INTERNAL

ESS

Study Logic

- > The protocol designed in the context of the study i
 - No existing system / user device for this protocol
- Study possibility to use standardized protocol as a support for twoway
 - Derive requirements for a protocol that supports two-way
 - Identify candidate protocols
 - Derive modifications of the associated user device

> Protocols considered

- LoRa CSS
- LoRa LR-FHSS
- Argos
- Nb-loT
- LTE-M
- VDES
- E-SSA
- 5G NR

Requirements for a protocol that supports two-way

- R1 Bidirectional communication
- R2 Wide-band for Uplink & Downlink
 - Def: >2MHz bandwidth (derived from testbed result)
- R3 Secure physical layer
 - Def: Short symbols for robustness to SCER, >1µs length
- R4 Waveform robust to LEO Doppler
- R5 No reliance on user position / synchronization
- R6 Communication with multiple satellites

Benchmark protocols wrt requirements

LoRa CSS

- Vulnerable physical layer (Long symbols)
- Doppler pre-compensation (initial pos. / sync. necessary)
- Single-satellite communication

> Nb-loT

- Narrow-Band (200kHz max)
- Doppler pre-compensation (initial pos. / sync. necessary)
- Single-satellite communication

> LTE-M

- Doppler pre-compensation (initial pos. / sync. necessary)

THALES ALENIA SPACE INTERNAL

- Single-satellite communication

> Argos

- Narrow-Band (50kHz)
- Vulnerable physical layer (long symbols)

LoRa LR-FHSS

- Narrow-Band (Max. 488Hz baseband BW)
- Vulnerable physical layer (Long symbols 325bps max)
- > VDES
 - Narrow-Band (Max. 150kHz)
 - Vulnerable physical layer (Symbol duration >5ms)

> E-SSA

- Doppler pre-compensation (initial pos. / sync. necessary)
- Single-satellite communication

> 5G NR

- Doppler pre-compensation (initial pos. / sync. necessary)
- Single-satellite communication

5.4000133402/20/NL/CR

Adaptation of commercial user devices

> No standardized protocol supports the designed two-way protocol

THALES ALENIA SPACE INTERNAL

- > Operations performed at tracker level
 - Cryptographic operations :
 - key exchange with KMI
 - verification of DL request signature
 - UL response MAC generation
 - UL / DL Encrypted PRNs generation
 - Active users identification ping reception
 - Acquisition / demodulation of Downlink request
 - Precise control of Layover time between DL / UL
 - Transmission of Uplink response
- No identified COTS performs these operations
- → Perspective in prototyping user device

o. 4000133402/20/NL/CRS

Point : Difficulty to overlay Two-Way on standardized protocol / existing COTS

- Consolidate protocol output of ELCANO project
- > Consolidate complexity assessment of user segment
 - Transmission power reasonable
 - Still to be analyzed for constraints imposed by accurate layover time
- Implement first prototypes of user devices

