IPP INSTITUTE OF PLASMA PHYSICS OF THE CZECH ACADEMY OF SCIENCES **NEW OPTICAL POLISHING TECHNIQUES FOR ASPHERICAL AND FREE FORM LENSES**

ESA CONTRACT NO 4000134543/21/NL/AR

FINAL PRESENTATION PTAF-TOP-HO-002_REV.1.0

AUTHORS: FRANTIŠEK PROCHÁSKA, ONDŘEJ MATOUŠEK DATE: 14.12.2023

PRESENTATION OUTLINE

- Project objectives and organization,
- Asphere manufacturing process development,
- HW3; HW4 realization + lessons learned,
- Free form manufacturing process development,
- HW5; HW6 realization + lessons learned,
- Vision of the future / Way forward / Business perspective / New market,
- Conclusion.

PROJECT OBJECTIVES

- develop the technologies and the processes for the production of highly aspheric and free form lenses
- surface roughness and shape accuracies suitable for high performance optical systems operating in visible and ultraviolet spectral range

	Fused	Silica	CaF ₂ (crystal ori	entation <111>)
Specification	asphere	freeform	asphere	freeform
SE (nm RMS)	40 (25)	150 (40)	40 (25)	150 (40)
SaD ISO 10110-7	1x0.1	1x0.1	1x0.1; each ø 25 mm	1x0.1; each ø 25 mm
Microroughness (nm RMS)	0.5 (0.3)*	0.6 (0.3)*	0.7 (0.5)*	1.0 (0.5*)
Diameter (mm)	>= 80	>= 80	>= 80	>= 80
Curvature radius (mm)	<= 80	<= 80	<= 80	<= 80
Slope (mrad)	>1	>1	>1	>1
Departure from BSF (mm)	> 0.045	> 0.045	> 0.045	> 0.045

- () represent project target value defined in SoW
- target value defined in SoW will be retained as long as possible

PROJECT TEAM AND RESPONSIBILITIES

Toptec – elements design, freeform processes development

Radek Melich – project management, elements design František Procháska – experiment coordination, freeform polishing David Tomka – freeform grinding Markéta Paprčková – measurement procedures Kamila Hortová – project PA

- asphericon CaF2 microroughness polishing process development, asphere processes development
 Ondřej Matoušek - experiment coordination, aspheres polishing, measurement procedures
 Karolína Sedláčková – CaF2 polishing, measurement procedures
- ESA project management
 Emilie Lhome project management, acceptance of all deliverable items

PROJECT WORK LOGIC

- Six work packages
- Three milestones
- Detail project documentation (TN1 – TN7; TP...)
- Progress meetings on a three weeks basis (MoMs)
- HW1 HW6 delivered to ESA

PROJECT TIME SCHEDULE

				2021	1	Qtr 4, 202	1	Qtr 1	1, 2022		Qtr 2,	2022		Qtr 3,	2022		Qtr 4	, 2022		Qtr 1	, 2023		Qtr 2	, 2023		Qtr 3_2	023	_
		Task Name 🗸	Duration 👻	Aug	g Sep	Oct No	v Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Ođ	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul /	Aug	Sep
	0	TPTC-New Polishing Techniques	486.88 days														_										j	
	1	T0 - kick-off	0 days	1	9/1	I																						
	2	WP0000 - Project management	24.3 mons																									
	3	WP0010 - State-of-the-Art of the Polishing Techniques	1.2 mons																									
	4	WP0020 - Manufacturing Process	4.75 mons			1))																		
	5	WP0030 - Polishing Setup Commissioning	5 mons						1																			
	6	WP0040 - Aspherical Lenses Manufacturing and Testing	13.45 mons											Ŭ													h	
	7	WP0050 - Free Form Lenses Manufacturing and Testing	13.45 mons											Ŭ.													ł	
	8	WP0060 - Test Results Assessment	13.45 mons											Ŭ													ł	
	9	Consortium Milestones and need dates	462 days																									
	10	SRR	1 day			ĩ																						
	11	DDR	1 day																									
_	12	MRR	1 day											ľ														
ARI	13	Final Review	1 day																								Ĩ	
Н	14	TOPTEC Milestones	235.13 days																								_	
Ę	15	MS-1	0 days						7	2/2	8																	
GA	16	MS-2	0 days											•	7/21													
	17	MS-3	0 days																								6	8/21

ASPHERE ELEMENTS DESIGN

- Fused Silica; CaF2
- First side plano
- Second side asphere

Material	CaF ₂ , Fused Silica
Diameter D [mm]	97
Vertex shape	Convex
Vertex radius R [mm]	80 ± 0.015
Curvature C = 1/R [mm- 1]	0.0125
Conic constant K [-]	0
Aspheric coefficient A6 [mm-6]	-5e-12
RMSi [nm]	≤ 40

FUSED SILICA ASPHERE MANUFACTURING PROCESS SETUP

FS ASPHERE CNC GRINDING

- Machine ASM100
- Tool D91 for rough grinding and D30 for fine grinding

FS ASPHERE CNC POLISHING

- Polishing was performed on machine ASP200-B
- Pre-polishing done with tool with polyurethane pad LP26 and cerium oxide-based slurry AUERPOL PZ110
- 2D correction was done with finer slurry cerium oxide-based Hastilite FIN
- For microroughness suppression asphericon's Angstrom polishing process was used with the same slurry

Resulting form deviation was 30 nm RMSi and microroughness 0.411 nm Sq

FS ASPHERE RESULTS

Surface form of the HW3

Α

В

С

PV

Surface microrougness of the HW3, measured with magnification 20x, measured on vertex, 10° from vertex, 20° from vertex and 26° from vertex

FS ASPHERE RESULTS

	Target / Goal	Result
Surface form error CX (rms)	40 nm	30 nm
Surface radius error CX (rms)	± 15 μm	0.72 µm
Microroughness CX (rms) (20x)	0.5 nm	0.37 – 0.45 nm
Cleanliness	1 x 0.1	OK
Edge Chips	0.1 mm	OK
Central thickness	± 0.3 mm	-0.07

Summary of the reached parameters on Fused Silica aspherical lens #3 (HW3)

Position	0 °	10°	20 °	26 °	median
Microroughness RMS [nm]	0.448	0.379	0.394	0.428	0.411

Summary of the reached microroughness on the (HW3), magnification 20X < 1.22, 780> mm-1

Position	0 °	10°	20 °	26 °	median
Microroughness RMS [nm]	1.103	0.4293	0.5906	0.8598	0.725

Summary of the reached microroughness on the Fused Silica aspherical lens #3 (HW3), magnification 10X, spatial frequency range <1, 398> mm-1

Position	0 °	10°	20 °	26 °	median
Microroughness RMS [nm]	0.541	0.35	0.3797	0.3626	0.371

Summary of the reached microroughness on the Fused Silica aspherical lens #3 (HW3), magnification 50X, spatial frequency range <3.05, 1000> mm-1

CALCIUM FLUORIDE ASPHERE MANUFACTURING PROCESS SETUP

CALCIUM FLUORIDE ASPHERE CNC GRINDING

- Machine ASM100
- Tool D91 for rough grinding and D20 for fine grinding

CALCIUM FLUORIDE ASPHERE CNC PRE-POLISHING

- During polishing of CaF₂ its cubic crystalline structure forms on the surface -> goal is to reduce the forming and surface microroughness
- Polishing was performed on machine ASP200-B
- Pre-polishing with tool with polyurethane pad LP-46 and diamond-based slurry Pureon OPW - 86/10 DP 0.75 – 1 µm

ISO Formabweichung / Deviations

A		RMSt	2.919 µm
В	13.122 µm	RMSi	2919 nm
C	4.711 µm	RMSa	2.765 µm
PV	13.122 µm		

CALCIUM FLUORIDE ASPHERE CNC CORRECTION POLISHING

- 3D Polishing was performed on machine ASP200-B and integrated software PolyCam
- 3D polishing with tool with polyurethane pad LP-46 and diamond-based slurry Pureon OPW - 86/10 DP 0. 5 – 1 µm
- 3D correction removed trefoil structure, it only remained in the center of the surface

CALCIUM FLUORIDE ASPHERE CNC ANGSTROM POLISHING

- Improves surface quality in lateral frequencies microroughness in lateral frequencies in the range of microroughness and mid-spatial frequencies
- First test Angstrom polishing tool and slurry OPW - 86/10 DP 0.5 – 1.0 -> resulting microroughness 1.5 nm RMS
- Second test Angstrom polishing tool and slurry OPW - 10/20 DP 0 – 0.2 GAF -> resulting microroughness 0.7 nm RMS
- Necessary to control the influence of rpm to prevent trefoil reappearance

RMSt

RMSi

RMSa

0.461 µm

0.085 µm

0.461 µm

PV

0.040 µm

0.031 µm

40 nm

CALCIUM FLUORIDE ASPHERE MICROROUGHNESS RESULTS

Surface microrougness of the HW4, measured with magnification 20x, measured on vertex, 10° from vertex, 20° from vertex and 26° from vertex

CALCIUM FLUORIDE ASPHERE RESULTS

	Target / Goal	Result
Surface form error CX (rms)	40 nm	40 nm
Surface radius error CX	± 15 μm	8.22 μm
Microroughness CX (rms) (20x)	0.7 nm	0.66 – 0.89 nm
Cleanlines	1 x 0.1 (at each Ø 25 mm)	ОК
Edge Chips	0.1 mm	ОК
Central thickness	± 0.3 mm	-0.02

Summary of the reached parameters on the HW4

Position	0 °	10°	20 °	26 °	median					
Microroughness RMS [nm]	0.660	0.745	0.745 0.697		0.721					
Summary of the reached microroughness on the HW4, magnification 20X, spatial frequency range <1.22, 780> mm-1										
Position	0 °	10°	20 °	26 °	median					
Position Microroughness RMS [nm]	0 ° 2.371	10 ° 1.174	20 ° 0.9862	26° 0.890	median 1.0801					

Position	0 °	10°	20 °	26 °	median
Microroughness RMS [nm]	0.660	0.8679	0.6978	0.827	0.7624

Summary of the reached microroughness on the HW4, magnification 50X, spatial frequency range <3.05, 1000> mm-1

OVERVIEW OF MANUFACTURING PROCESSES

	1 st side	Grinding	Pre- polishing	2D correction	3D correction	Angstrom polishing	Summary
HW3 (FS)	Approx. 45 min on crank arm polishing machine	1 cycle – 40 minutes	2 cycles - 60 minutes	10 cycles – 90 minutes	N/A	17 cycles – 100 minutes	30 cycles – 290 minutes
HW4 (CaF ₂)	Approx. 25 min on crank arm polishing machine	4 cycles – 15 minutes	2 cycle – 10 minutes	3 cycles – 50 minutes	25 cycles - > 360 minutes	16 cycles - > 360 minutes	50 cycles - > 800 min

HW3 - fused silica asphere

HW4 - CaF2 asphere

ASPHERES LESSONS LEARNED

					The second
			_		
-					
Cirectoriochen	-				
intege			A REAL PROPERTY.		
inta unitie X		0.2 mm/janet	I inet		
Vale is all it's		0.2 mm/pivel	(II) Invertiv		
Setti scale 2		0.007 anna	E Avert 2		
alarance nimit:		195 mm	Extrapolatio plan		
Neterance site V		#15 mm	100000000000000000000000000000000000000		
Cerner 2	+	0.0.47 pm	Contra 2		
Create *MOD Imm		•]	Create MOD	and the second se	and the second s

Data handling for 3D correction

- Proper 3D correction depends on proper data handling
- Finding correct orientation of the CNC machine

Angular calibration

- Angular offset of the workpiece position between measurement and polishing cause structure generation with a period corresponding to the angular offset
- Necessary step was to guarantee repeatibility development of new calibration procedure for angular correction

ASPHERES LESSONS LEARNED

Tooling for 3D correction

- Necessary to find compromise between a tool speed and diameter of the tool
- Solution was to used radial tool covered with polyurethane

Central defect issue

- With incorrect settings in 3D correction polishing parasitic periodical structure appear
- Solution was to reduce correction polishing in central part - filter imported data and move correction to the edges of the lens

ASPHERE MACHINING CONCLUSION

- Realization of the parts HW3 Fused Silica and HW4 CaF₂ <1,1,1> validate the manufacturing processes on a laboratory scale, which corresponds with TRL4.
- Both aspherical elements were successfully realized and reached the goal of the project as regards the surface form error to be smaller than 40 nm RMS.
- Regarding the surface micro-roughness, the goal to reach values under 0.5 nm on Fused Silica was met when asphericon reached 0.4 nm. The production process is very stable and can be used even for volume production.
- The micro-roughness level requirement of the CaF₂ was set to 0.7 nm. The required value was very tightly met but the microroughness around 0.7 nm is very on the edge of the developed process and is suitable for single-piece production or very small series.
- During the project, asphericon developed several new polishing processes. Asphericon gained plenty of experience with new polishing slurries, with the 3D correction polishing process, and handling non-constant removal rates on crystalline materials.

FREE FORM ELEMENTS DESIGN

- S-BSL7; Fused Silica; CaF2 materials
- off-axis part of the asphere, distance between mechanical and optical axes 17.5 mm
- non rotary symmetry
- measurable on QED ASI

Material	S-BSL7 glass, CaF ₂ , Fused Silica	
Maternal diameter D [mm]	132	
Vertex shape	Convex	
Vertex radius R [mm]	80 ± 0.015	
Curvature C = 1/R [mm-1]	0.0125	
Conic constant K [-]	0	
Aspheric coefficient A6 [mm-6]	-5e-12	
Sag check point at ρ = 50 mm Z(50) [mm]	17.472	
SE specification (nm RMS)	150 (40)	
Microroughness (nm RMS)	FS:0.6 (0.3); CaF2 1.0 (0.5)	

FUSED SILICA FREE FORM MANUFACTURING PROCESS SETUP

FS FREE FORM CNC GRINDING

- Satisloh SPM 60 machine with customized post-processor; SolidWorks CAD SW for 3D model construction; Siemens NX CAD-CAM SW for 5 axis machining
- Radial Zig Variable Contour process kinematics for rough grinding; Spiral kinematics for fine grinding

- cup tool D90 for best-fit radius generation; wheel tool D90 and D38 for free form shaping
- surface with an SFE < 15 um PV or SFE < 3 um RMS</p>

FS FREE FORM CNC CORRECTIVE GRINDING

- corrective grinding process based on the correction of the tool path calculated from the deviation of ground and nominal surface
- using of the Global Deformation Function of Siemens NX SW
- surface with SFE < 10 um PV or SFE < 1.9 um RMS after 1st step
- surface with SFE < 7 um PV or SFE < 1.3 um RMS after 2st subseqent step
- resulting SE fully acceptable for polishing

FREE FORM CNC POLISHING

- all polishing processes realized on Zeeko IRP100 machine using of the raster kinematics
- prepolishing integrated with MSF suppressing into one process by FEM polyurethane polishing tool
- Corrective polishing based on Dwell time calculation from SE map measured by ASI and from the Tool influent function
- Microroughness pitch polishing for surface finishing

CALCIUM FLUORIDE FREE FORM MANUFACTURING PROCESS SETUP

CALCIUM FLUORIDE FREE FORM SPDT MACHINING

 SPDT machining performed on 5 axis Moore Nanotech 350 FG machine

SPDT mode	Slow side servo
WP spindle rotation (1/min)	22 - 150
Radial feed (mm/rev)	0.01
Penetration depth (µm)	5 x 30; 20; 5; 2
Tool radius (mm)	0.7

• Surface from SPDT fully acceptable for polishing

Peak

mm

mm

305291

FREE FORM MACHINING PROCESS TEST

- Process chain CNC grinding CNC Corrective grinding CNC polishing tested on glass S-BSL7 (FF2 element)
- SE after CNC grinding 15 um PV; after 1st iteration of Corrective grinding 9 um PV and after 2 nd iteration 6 um PV
 - reduction of the freeform surface radius error (SAG)
 - also reduction of surface curvature and residual error (IRR; RSI)

 SE after polishing process (Prepolishing + Corrective polishing) 1.6 um PV – Machining process ready for skip to Fused silica material

FREE FORM MACHINING PROCESS TEST

- process chain SPDT CNC polishing tested on 1;1;1 oriented monocristalline CaF2 (CaF FF1 element)

 Image: style plot
 Image: style plot
 Image: style plot
 Image: style plot
- SE after SPDT 6 um PV; after prepolishing 4.5 um PV and after Corrective polishing 3.5 um PV
 - reduction of the low frequencies, but developing of MSF limiting specification fulfilment

Prepolishing

SPDT

Corrective polishing

 Machining process ready for skip to CaF2 material after Zeeko Non linear correction implementation

FREE FORM HW5 REALIZATION

- HW5 (Free form element FS FF4) realized with process settings tested on S-BSL7
- CNC polishing involved: Prepolishing, Corrective polishing, Polishing for microroughness
- HW5 machining process results (with Power removing):

Corrective grinding

Corrective polishing

Microroughness polishing

WLI 20x microroughness

FREE FORM HW5 REALIZATION

HW5 results – ISO 10110 analysis

ISO 101 10-5 parameter	PV	RMS
SAG; RMSt (µm)	0.53	0.18
IRR; RMSi (µm)	0.83	0.09
RSI; RMSa (µm)	0.14	0.09
Microroughness Sq (nm) 5x	-	0.96 (remaining MSF)
Microroughness Sq (nm) 20x	-	0.49
Microroughness Sq (nm) 50x	-	0.51

FreeForm FS	Form deviation ø80 mm (ISO 10110-5) [nm]	Surface radius	Microroughness rms [nm]	Cleanliness (ISO)
Tolerances	RMSi < 150	80 +/- 0.015 mm	< 0.6	1x0.1; E0.5
Results	RMSi 77.915	80.0013 mm +0.0016%	0.5	0x0.1

Process time estimation

	No. of Cycles	Time
		sum/1 cycle .[min]
BFS generation	1	120/120
CNC free-form grinding	15	1410/94
SFE measurement	1	60/60
CNC free-form corrective grinding	7	658/94
SFE measurement	1	60/60
Prepolishing and MSF correction	10	360/36
SFE measurement	10	600/60
Corrective polishing	8	660/82.5
SFE measurement	8	480/60
Microroughness polishing	4	120/30
SFE and WLI measurement	4	360/90
SUM of all time		4648

FREE FORM HW6 REALIZATION

- HW6 Free form element CaF2 FF2 realized by process connected SPDT and CNC polishing
- CNC polishing involved: Prepolishing, Corrective polishing, Polishing for microroughness
- HW6 machining process results (with Power removing):

FREE FORM HW6 REALIZATION

HW6 results – ISO 10110 analysis

ISO 101 10-5 parameter	PV	RMS
SAG; RMSt (µm)	0.31	0.18
IRR; RMSi (µm)	1.18	0.15
RSI; RMSa (µm)	0.03	0.15
Microroughness Sq (nm) 5x	-	5.21 (remaining MSF)
Microroughness Sq (nm) 20x	-	2.3
Microroughness Sq (nm) 50x	-	2.6

FreeForm CaF2	Form deviation ø80 mm (ISO 10110-5) [nm]	Surface radius	Microroughness rms [nm]	Cleanliness (ISO)
Tolerances	RMSi < 150	80 +/- 0.015 mm	< 1	1 x 0.1 (at each subaperture of ø25 mm); E0.5
Results	RMSi 131.190	79.9963 mm -0.0046%	2.3	0x0.1

Process time estimation

	No. of Cycles	Time sum/1 cvcle .[min]
BFS generation	1	95/95
SPDT free-form surface generation	8	420/52.5
SFE measurement	1	60/60
Prepolishing and MSF suppresion	8	248/31
SFE measurement	8	480/60
Corrective polishing	4	284/71
SFE measurement	4	240/60
Microroughness polishing	4	120/30
SFE and WLI measurement	4	360/90
SUM of all time		2307

fine micro-scratches formation on CaF2 by the pitch tool and diamond slurry interaction

FREE FORM MACHINING – LESSONS LEARNED

- Toptec was able to overcome and solve several difficulties to achieve project requirements:
 - Free form 3D model with detail construction steps description
 - Data handling through process chain (data format transformation, data resolution, axis orientation etc.) – applications programming in MatLab necessary
 - ASI surface error measurement data lateral calibration and recalculation

FREE FORM MACHINING

Technology progress

- process combines a mechanical engineering approach based on Computer Aided Design and Computer Aided Manufacturing software and an optical engineering approach using specific devices
- integration of the prepolishing steps with the Mid spatial suppression steps thanks to using the developed FEM polyurethane tool

Business perspective

- ability to produce free form elements, or optical systems with these optical elements, in very high quality
- ability to produce TMA as part of the TRUTHS and Sboc mission or the optical system for the QUVIK satellite of the Czech Ambitious Mission under the patronage of ESA

Future vision

- usage of SPDT technology with laser assistance for other than CaF2 material
- minimisation of the microroughness on CaF2

FREE FORM MACHINING CONCLUSION

- The ESA project 4000134543/21/NL/AR named "New Optical Polishing Techniques for Aspherical and Free-form Lenses" summarizes manufacturing and measurement techniques that enable high performance elements to be made of two main materials – crystalline CaF2 with <1,1,1> orientation and Fused Silica - those suits to both VIS and UV application as well as for space applications.
- Realization of the parts HW5 and HW6 validate the manufacturing processes on a laboratory scale, which corresponds with TRL4.
- Realized free form elements successfully reach the goal of the project as regards the surface form error to be smaller than 150 nm RMS.
- Regarding the surface micro-roughness, the goal to reach values smaller than 0.6 nm on Fused Silica was met when Toptec reached 0.51 nm.
- However, the micro-roughness level requirement of the CaF2 to be smaller than 1.0 nm. was not met due to fine micro-scratches formation.
- Toptec was able to overcome and solve several difficulties connected to the right data handling and data processing.

THANK YOU FOR YOUR ATTENTION